Skip to main content

Monotone variational inequalities, generalized equilibrium problems and fixed point methods

Abstract

In this paper, we study monotone variational inequalities and generalized equilibrium problems. Weak convergence theorems are established based on a fixed point method in the framework of Hilbert spaces.

1 Introduction and preliminaries

It is well known that many nonlinear problems can be reduced to the search for solutions of monotone variational inequalities. Fixed point methods are often used for finding and approximating such solutions. In this paper, we always assume that H is a real Hilbert space with the inner product , and the norm . Let C be a nonempty closed and convex subset of H. Let S:CC be a mapping. In this paper, we use F(S) to stand for the set of fixed points. Recall that S is said to be nonexpansive iff SxSyxy, x,yC. S is said to be κ-strictly pseudocontractive iff there exists a constant κ[0,1) such that

S x S y 2 x y 2 +κ x y S x + S y 2 ,x,yC.

The class of strict pseudocontractions was introduced by Browder and Petryshyn [1]. It is clear that the class of κ-strict pseudocontractions includes the class of nonexpansive mappings as a special case.

Let A:CH be a mapping. Recall that A is said to be monotone iff AxAy,xy0, x,yC. A is said to be α-inverse strongly monotone iff there exists a constant α>0 such that

AxAy,xyα A x A y 2 ,x,yC.

It is clear that α-inverse strongly monotone is monotone and Lipschitz continuous.

Recall that the classical variational inequality, denoted by VI(C,A), is to find xC such that

Ax,yx0,yC.
(1.1)

One can see that variational inequality (1.1) is equivalent to a fixed point problem. The element xC is a solution of variational inequality (1.1) iff xC satisfies the fixed point equation x= Proj C (xλAx), where λ>0 is a constant. This alternative equivalent formulation plays a significant role in the studies of variational inequalities and related optimization problems. If A is α-inverse-strongly monotone and λ(0,2α], then the mapping Proj C (IλA) is nonexpansive; see [2] and the references therein.

A set-valued mapping T:H 2 H is said to be monotone if, for all x,yH, fTx and gTy imply xy,fg>0. A monotone mapping T:H 2 H is maximal if the graph G(T) of T is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal if and only if, for any (x,f)H×H, xy,fg0 for all (y,g)G(T) implies fTx. The class of monotone operators is one of the most important classes of operators. Within the past several decades, many authors have been devoted to the studies on the existence and convergence of different schemes for zero points for maximal monotone operators; see [315] and the references therein.

Let denote the set of real numbers, and let F be a bifunction of C×C into . Recall that the following generalized equilibrium problem is to find an x such that

F(x,y)+Ax,yx0,yC.
(1.2)

In this paper, the solution set of the equilibrium problem is denoted by GEP(F,A), i.e.,

GEP(F,A)= { x C : F ( x , y ) + A x , y x 0 , y C } .

To study equilibrium problem (1.2), we may assume that F satisfies the following conditions:

(A1) F(x,x)=0 for all xC;

(A2) F is monotone, i.e., F(x,y)+F(y,x)0 for all x,yC;

(A3) for each x,y,zC,

lim t 0 F ( t z + ( 1 t ) x , y ) F(x,y);

(A4) for each xC, yF(x,y) is convex and lower semi-continuous.

If F0, the generalized equilibrium problem is reduced to variational inequality (1.1). If A0, the generalized equilibrium problem is reduced to the following equilibrium problem: find an x such that

F(x,y)0,yC.
(1.3)

In this paper, the solution set of the equilibrium problem is denoted by EP(F), i.e.,

EP(F)= { x C : F ( x , y ) 0 , y C } .

Equilibrium problems, which were introduced by Blum and Oettli [16], have intensively been studied. It has been shown that equilibrium problems cover fixed point problems, variational inequality problems, inclusion problems, saddle point problems, complementarity problem, minimization problem, and Nash equilibrium problem. Equilibrium problem has emerged as an effective and powerful tool for studying a wide class of problems which arise in economics, finance, image reconstruction, ecology, transportation, network, elasticity, and optimization. Recently, many authors studied the numerical solution of equilibriums (1.2) and (1.3) based on iterative methods. Convergence theorems are established in a different framework of spaces; see [1724] and the references therein.

In this paper, an iterative algorithm is investigated for monotone variational inequalities and generalized equilibrium problems. Weak convergence of the algorithm is obtained in the framework of Hilbert spaces.

Recall that a space is said to satisfy Opial’s condition [25] if, for any sequence { x n }H with x n x, where denotes the weak convergence, the inequality

lim inf n x n x< lim inf n x n y

holds for every yH with yx. Indeed, the above inequality is equivalent to the following:

lim sup n x n x< lim sup n x n y.

Recall that a function is lower semi-continuous at some point x 0 if lim inf x x 0 f(x)f( x 0 ). It is known that the norm is lower semi-continuous. In order to prove our main results, we also need the following lemmas.

Lemma 1.1 [16, 17]

Let C be a nonempty closed convex subset of H, and let F:C×CR be a bifunction satisfying (A1)-(A4). Then, for any r>0 and xH, there exists zC such that

F(z,y)+ 1 r yz,zx0,yC.

Further, define

T r x= { z C : F ( z , y ) + 1 r y z , z x 0 , y C }

for all r>0 and xH. Then the following hold:

  1. (a)

    T r is single-valued;

  2. (b)

    T r is firmly nonexpansive, i.e., for any x,yH,

    T r x T r y 2 T r x T r y,xy;
  3. (c)

    F( T r )=EP(F);

  4. (d)

    EP(F) is closed and convex.

Lemma 1.2 [4]

Let A be a monotone mapping of C into H and N C v be the normal cone to C at vC, i.e.,

N C v= { w H : v u , w 0 , u C }

and define a mapping T on C by

Tv={ A v + N C v , v C , , v C .

Then T is maximal monotone and 0Tv if and only if Av,uv0 for all uC.

Lemma 1.3 [26]

Let { a n }, { b n }, and { c n } be three nonnegative sequences satisfying the following condition:

a n + 1 (1+ b n ) a n + c n ,n n 0 ,

where n 0 is some nonnegative integer, n = 1 b n < and n = 1 c n <. Then the limit lim n a n exists.

Lemma 1.4 [27]

Let { a n } n = 1 be real numbers in [0,1] such that n = 1 a n =1. Then we have the following:

i = 1 a i x i 2 i = 1 a i x i 2 ,

for any given bounded sequence { x n } n = 1 in H.

2 Main results

Theorem 2.1 Let C be a nonempty closed and convex subset of H, and let A:CH be an L-Lipschitz continuous and monotone mapping. Let F m be a bifunction from C×C to which satisfies (A1)-(A4), and let B m :CC be a κ m -inverse strongly monotone mapping for each m1. Assume that F:= m = 1 GEP( F m , B m )VI(C,A) is not empty. Let { α n }, { δ n , m } be real number sequences in [0,1]. Let { λ n } and { r n , m } be positive real number sequences. Let { x n } be a sequence generated in the following manner:

{ x 1 C , z n , m C  such that  F m ( z n , m , z ) + B m x n , z z n , m + 1 r n , m z z n , m , z n , m x n 0 , y n = Proj C ( m = 1 δ n , m z n , m λ n A m = 1 δ n , m z n , m ) , x n + 1 = α n x n + ( 1 α n ) Proj C ( m = 1 δ n , m z n , m λ n A y n ) , n 1 .

Assume that { α n }, { δ n , m }, { λ n }, and { r n , m } satisfy the following restrictions:

  1. (a)

    0 α n a <1;

  2. (b)

    m = 1 δ n , m =1, and 0<δ δ n , m 1;

  3. (c)

    lim inf n r n , m >0, and λ λ n λ , where λ, λ (0,1/L).

Then the sequence { x n } weakly converges to some point x ¯ F.

Proof We first show that the sequence { x n } is bounded. Set u n = Proj C ( v n λ n A y n ), where v n = m = 1 δ n , m z n , m . Letting pF, we see that

u n p 2 v n p 2 v n u n 2 + 2 λ n A y n , p u n = v n p 2 v n u n 2 + 2 λ n ( A y n A p , p y n + A p , p y n + A y n , y n u n ) v n p 2 v n y n 2 y n u n 2 + 2 v n λ n A y n y n , u n y n .

Since A is L-Lipschitz continuous and y n = Proj C ( v n λ n A v n ), we find that

v n λ n A y n y n , u n y n = v n λ n A v n y n , u n y n + λ n A v n λ n A y n , u n y n λ n L v n y n u n y n .

It follows that

u n p 2 v n p 2 v n y n 2 y n u n 2 + 2 λ n L v n y n u n y n v n p 2 + ( λ n 2 L 2 1 ) v n y n 2 .
(2.1)

On the other hand, we obtain from the restriction (c) that

v n p 2 m = 1 δ n , m z n , m p 2 m = 1 δ n , m T r n , m ( I r n , m B m ) x n p 2 x n p 2 .
(2.2)

Substituting (2.2) into (2.1), we obtain that u n p 2 x n p 2 +( λ n 2 L 2 1) v n y n 2 . This in turn implies from the restriction (c) that

x n + 1 p 2 α n x n p 2 + ( 1 α n ) u n p 2 α n x n p 2 + ( 1 α n ) ( x n p 2 + ( λ n 2 L 2 1 ) v n y n 2 ) x n p 2 + ( 1 α n ) ( λ n 2 L 2 1 ) v n y n 2 x n p 2 .
(2.3)

It follows from Lemma 1.3 that lim n x n p exists. This in turn shows that { x n } is bounded. From (2.3), we also have that

(1 α n ) ( 1 λ n 2 L 2 ) v n y n 2 x n p 2 x n + 1 p 2 .

This implies from the restrictions (a) and (c) that

lim n v n y n =0.
(2.4)

Since y n u n λL v n y n , we find from (2.4) lim n y n u n =0. Hence, we have

lim n v n u n =0.
(2.5)

Notice that

z n , m p 2 = T r n , m ( I r n , m B m ) x n T r n , m ( I r n , m B m ) p 2 ( I r n , m B m ) x n ( I r n , m B m ) p , z n , m p = 1 2 ( ( I r n , m B m ) x n ( I r n , m B m ) p 2 + z n , m p 2 ( I r n , m B m ) x n ( I r n , m B m ) p ( z n , m p ) 2 ) 1 2 ( x n p 2 + z n , m p 2 ( x n z n , m ) r n , m ( B m x n B m p ) 2 ) = 1 2 ( x n p 2 + z n , m p 2 x n z n , m 2 + 2 r n , m x n z n , m , B m x n B m p r n , m 2 B m x n B m p 2 ) .

This implies that

z n , m p 2 x n p 2 x n z n , m 2 +2 r n , m x n z n , m B m x n B m p.

It follows from Lemma 1.4 that

v n p 2 m = 1 δ n , m z n , m p 2 m = 1 δ n , m ( x n p 2 z n , m x n 2 + 2 r n , m x n z n , m B m x n B m p ) = x n p 2 m = 1 δ n , m z n , m x n 2 + 2 m = 1 r n , m x n z n , m B m x n B m p .

By use of (2.3), we find that

x n + 1 p 2 α n x n p 2 + ( 1 α n ) u n p 2 α n x n p 2 + ( 1 α n ) v n p 2 x n p 2 ( 1 α n ) m = 1 δ n , m z n , m x n 2 + 2 ( 1 α n ) m = 1 r n , m x n z n , m B m x n B m p .

This implies that

( 1 α n ) m = 1 δ n , m z n , m x n 2 x n p 2 x n + 1 p 2 + 2 ( 1 α n ) m = 1 r n , m x n z n , m B m x n B m p .

Since T r n , m is firmly nonexpansive, we find from the convexity of 2 that lim n B m x n B m p=0. It follows that

lim n z n , m x n =0.

Since { x n } is bounded, we may assume that a subsequence { x n i } of { x n } converges weakly to ξ. It follows that { z n i , m } converges weakly to ξ for each m1. Next, we show that ξGEP( F m , B m ). Since z n , m = T r n , m (I r n , m B m ) x n , we have

F m ( z n , m ,z)+ B m x n ,z z n , m + 1 r n , m z z n , m , z n , m x n 0,zC.

From assumption (A2), we see that

B m x n ,z z n , m + 1 r n , m z z n , m , z n , m x n F m (z, z n , m ),zC.

Replacing n by n i , we arrive at

B m x n j ,z z n j , m + z z n i , m , z n i , m x n i r n i , m F m (z, z n i , m ),zC.

For t m with 0< t m 1 and ρ m C, let ρ m = t m ρ+(1 t m )ξ. Since ρC and ξC, we have ρ m C. It follows that

ρ m z n i , m , B m ρ m ρ m z n i , m , B m ρ m B m x n i , ρ m z n i , m ρ m z n i , m , z n i , m x n i r n i , m + F m ( ρ m , z n i , m ) = ρ m z n i , m , B m ρ m B m z n i , m + ρ m z n i , m , B m z n i , m B m x n i ρ m z n i , m , z n i , m x n i r n i , m + F m ( ρ m , z n i , m ) .
(2.6)

It follows from (A4) and (2.6) that

ρ m ξ, B m ρ m F m ( ρ m ,ξ)as i.

From (A1) and (A4), we see

0 = F m ( ρ m , ρ m ) t m F m ( ρ m , ρ ) + ( 1 t m ) F m ( ρ m , ξ ) t m F m ( ρ m , ρ ) + ( 1 t m ) ρ m ξ , B m ρ m = t m F m ( ρ m , ρ ) + ( 1 t m ) t m ρ ξ , B m ρ m ,

which yields that

F m ( ρ m ,ρ)+(1 t m )ρξ, B m ρ m 0.

Letting t0 in the above inequality, we arrive at

F m (ξ,ρ)+ρξ, B m ξ0.

This completes the proof that ξ m = 1 GEP( F m , B m ). Next, we show that ξVI(C,A). In fact, let T be the maximal monotone mapping defined by

Tx={ A x + N C x , x C , , x C .

For any given (x,y)G(T), we have yAx N C x. So, we have xm,yAx0 for all mC. On the other hand, we have u n = Proj C ( v n λ n A y n ). We obtain that v n λ n A y n u n , u n x0 and hence x u n , u n v n λ n +A y n 0. In view of the monotonicity of A, we see that

x u n i , y x u n i , A x x u n i , A x x u n i , u n i v n i λ n i + A y n i = x u n i , A x A u n i + x u n i , A u n i A y n i x u n i , u n i v n i λ n i x u n i , A u n i A y n i x u n i , u n i v n i λ n i .
(2.7)

On the other hand, we see that v n x n m = 1 δ n , m z n , m x n . It follows that

lim n v n x n =0.
(2.8)

Notice that

u n x n u n v n + v n x n .

Combining (2.5) with (2.8), one finds

lim n u n x n =0.

This in turn implies that u n i ξ. It follows that xξ,y0. Notice that T is maximal monotone and hence 0Tξ. This shows from Lemma 1.2 that ξVI(C,A). This completes the proof that ξF.

Finally, we show that the whole sequence { x n } weakly converges to ξ. Let { x n j } be another subsequence of { x n } converging weakly to ξ , where ξ ξ. In the same way, we can show that ξ F. Since the space H enjoys Opial’s condition [25], we, therefore, obtain that

d = lim inf i x n i ξ < lim inf i x n i ξ = lim inf j x j ξ < lim inf j x j ξ = d .

This is a contradiction. Hence ξ= ξ . This completes the proof. □

If B m 0, we have the following result on equilibrium problem (1.3).

Corollary 2.2 Let C be a nonempty closed and convex subset of H, and let A:CH be an L-Lipschitz continuous and monotone mapping. Let F m be a bifunction from C×C to which satisfies (A1)-(A4) for each m1. Assume that F:= m = 1 EP( F m )VI(C,A) is not empty. Let { α n }, { δ n , m } be real number sequences in [0,1]. Let { λ n } and { r n , m } be positive real number sequences. Let { x n } be a sequence generated in the following manner:

{ x 1 C , z n , m C  such that  F m ( z n , m , z ) + 1 r n , m z z n , m , z n , m x n 0 , y n = Proj C ( m = 1 δ n , m z n , m λ n A m = 1 δ n , m z n , m ) , x n + 1 = α n x n + ( 1 α n ) Proj C ( m = 1 δ n , m z n , m λ n A y n ) , n 1 .

Assume that { α n }, { δ n , m }, { λ n }, and { r n , m } satisfy the following restrictions:

  1. (a)

    0<a α n b<1;

  2. (b)

    m = 1 δ n , m =1, and 0<c δ n , m 1;

  3. (c)

    lim inf n r n , m >0, and d λ n e, where d,e(0,1/L).

Then the sequence { x n } weakly converges to some point x ¯ F.

Corollary 2.3 Let C be a nonempty closed and convex subset of H, and let A:HH be an L-Lipschitz continuous and monotone mapping. Assume that A 1 (0) is not empty. Let { α n } be a real number sequence in [0,1], and let { λ n } be a positive real number sequence. Let { x n } be a sequence generated in the following manner:

x 1 C, x n + 1 = α n x n +(1 α n ) ( x n λ n A ( x n λ n A x n ) ) ,n1.

Assume that { α n } and { λ n } satisfy the following restrictions:

  1. (a)

    0<a α n b<1;

  2. (b)

    c λ n d, where c,d(0,1/L).

Then the sequence { x n } weakly converges to some point x ¯ A 1 (0).

Proof Put F m (x,y)0 for all x,yC, and r n , m 1. Notice that A 1 (0)=VI(H,A), and P H =I, we easily find from Corollary 2.2 the desired conclusion. □

Letting F m =0, B m =0, and r n , m =1 in Γ, we have the extragradient-type algorithm (see Table 1).

Table 1 The framework of the EA

Corollary 2.4 Let C be a nonempty closed and convex subset of H, and let A:CH be an L-Lipschitz continuous and monotone mapping. Assume that VI(C,A) is not empty. Let { α n } be a real number sequence in [0,1]. Let { λ n } and { r n , m } be positive real number sequences. Let { x n } be a sequence generated in the following manner:

{ x 1 C , y n = Proj C ( x n λ n A x n ) , x n + 1 = α n x n + ( 1 α n ) Proj C ( x n λ n A y n ) , n 1 .

Assume that { α n } and { λ n } satisfy the following restrictions:

  1. (a)

    0 α n a <1;

  2. (b)

    λ λ n λ , where λ, λ (0,1/L).

Then the sequence { x n } weakly converges to some point x ¯ VI(C,A).

Letting F m =F, B m =B and A=0 in Γ, we have the Mann-type algorithm (see Table 2).

Table 2 The framework of the MA

Corollary 2.5 Let C be a nonempty closed and convex subset of H. Let F be a bifunction from C×C to which satisfies (A1)-(A4) such that EP(F) is not empty. Let { α n } be a real number sequence in [0,1]. Let { r n } be a positive real number sequence. Let { x n } be a sequence generated in the following manner:

{ x 1 C , z n C  such that  F ( z n , z ) + 1 r n z z n , z n x n 0 , x n + 1 = α n x n + ( 1 α n ) z n , n 1 .

Assume that { α n } and { r n } satisfy the following restrictions:

  1. (a)

    0<a α n a <1;

  2. (b)

    lim inf n r n >0.

Then the sequence { x n } weakly converges to some point x ¯ EP(F).

3 Conclusion

Generalized equilibrium problems have emerged as an effective and powerful tool for studying a wide class of problems which arise in economics, finance, image reconstruction, ecology, transportation, and network. The problems include variational inequality problems, saddle point problems, complementarity problems, Nash equilibrium problem in noncooperative games, and others as special cases. In this paper, we study monotone variational inequalities and generalized equilibrium problems based on a fixed point method. The extragradient algorithm is valid for a family of infinite bifunctions. We analyze the convergence of the algorithm and establish a weak convergence theorem for solutions under mild restrictions imposed on the control sequences.

References

  1. Browder FE, Petryshyn WV: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 1967, 20: 197–228. 10.1016/0022-247X(67)90085-6

    Article  MathSciNet  Google Scholar 

  2. Iiduka H, Takahashi W: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal. 2005, 61: 341–350. 10.1016/j.na.2003.07.023

    Article  MathSciNet  Google Scholar 

  3. Qin X, Cho SY, Wang L: Iterative algorithms with errors for zero points of m-accretive operators. Fixed Point Theory Appl. 2013., 2013: Article ID 148

    Google Scholar 

  4. Rockafellar RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 1970, 149: 75–88. 10.1090/S0002-9947-1970-0282272-5

    Article  MathSciNet  Google Scholar 

  5. Wang ZM, Lou W: A new iterative algorithm of common solutions to quasi-variational inclusion and fixed point problems. J. Math. Comput. Sci. 2013, 3: 57–72.

    Google Scholar 

  6. Yang S: Zero theorems of accretive operators in reflexive Banach spaces. J. Nonlinear Funct. Anal. 2013., 2013: Article ID 2

    Google Scholar 

  7. Cho SY, Kang SM: Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math. Sci. 2012, 32: 1607–1618. 10.1016/S0252-9602(12)60127-1

    Article  Google Scholar 

  8. Rockafellar RT: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 1976, 14: 877–898. 10.1137/0314056

    Article  MathSciNet  Google Scholar 

  9. Hao Y: Zero Theorems of accretive operators. Bull. Malays. Math. Soc. 2011, 34: 103–112.

    Google Scholar 

  10. Cho SY, Li W, Kang SM: Convergence analysis of an iterative algorithm for monotone operators. J. Inequal. Appl. 2013., 2013: Article ID 199

    Google Scholar 

  11. Kim JK, Buong N: Regularization inertial proximal point algorithm for monotone hemicontinuous mapping and inverse strongly monotone mappings in Hilbert spaces. J. Inequal. Appl. 2010., 2010: Article ID 451916

    Google Scholar 

  12. Wu C, Sun L: A monotone projection algorithm for fixed points of nonlinear operators. Fixed Point Theory Appl. 2013., 2013: Article ID 318

    Google Scholar 

  13. Yuan Q: Splitting methods for treating strictly pseudocontractive and monotone operators in Hilbert spaces. Adv. Fixed Point Theory 2014, 4: 263–279.

    Google Scholar 

  14. Qin X, Cho SY, Wang L: Convergence of splitting algorithms for the sum of two accretive operators with applications. Fixed Point Theory Appl. 2014., 2014: Article ID 166

    Google Scholar 

  15. Qin X, Su Y: Approximation of a zero point of accretive operator in Banach spaces. J. Math. Anal. Appl. 2007, 329: 415–424. 10.1016/j.jmaa.2006.06.067

    Article  MathSciNet  Google Scholar 

  16. Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994, 63: 123–145.

    MathSciNet  Google Scholar 

  17. Combettes PL, Hirstoaga SA: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 2005, 6: 117–136.

    MathSciNet  Google Scholar 

  18. Hao Y: Weak convergence theorems of a hybrid algorithm in Hilbert spaces. J. Inequal. Appl. 2014., 2014: Article ID 378

    Google Scholar 

  19. Kim JK: Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi- ϕ -nonexpansive mappings. Fixed Point Theory Appl. 2011., 2011: Article ID 10

    Google Scholar 

  20. Chen JH: Iterations for equilibrium and fixed point problems. J. Nonlinear Funct. Anal. 2013., 2013: Article ID 4

    Google Scholar 

  21. Zhang L, Tong H: An iterative method for nonexpansive semigroups, variational inclusions and generalized equilibrium problems. Adv. Fixed Point Theory 2014, 4: 325–343.

    Google Scholar 

  22. Cho SY, Qin X: On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems. Appl. Math. Comput. 2014, 235: 430–438.

    Article  MathSciNet  Google Scholar 

  23. Zhang M: Iterative algorithms for common elements in fixed point sets and zero point sets with applications. Fixed Point Theory Appl. 2012., 2012: Article ID 21

    Google Scholar 

  24. Wang ZM, Zhang X: Shrinking projection methods for systems of mixed variational inequalities of Browder type, systems of mixed equilibrium problems and fixed point problems. J. Nonlinear Funct. Anal. 2014., 2014: Article ID 15

    Google Scholar 

  25. Opial Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 1967, 73: 595–597.

    Article  MathSciNet  Google Scholar 

  26. Weng XL: Fixed point iteration for local strictly pseudocontractive mappings. Proc. Am. Math. Soc. 1991, 113: 727–731. 10.1090/S0002-9939-1991-1086345-8

    Article  Google Scholar 

  27. Yang L, Zhao F, Kim JK: Hybrid projection method for generalized mixed equilibrium problem and fixed point problem of infinite family of asymptotically quasi- ϕ -nonexpansive mappings in Banach spaces. Appl. Math. Comput. 2012, 218: 6072–6082. 10.1016/j.amc.2011.11.091

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the Fundamental Research Funds for the Central Universities (2014ZD44). The author is very grateful to the editor and anonymous reviewers for their suggestions which improved the contents of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghua Wang.

Additional information

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S. Monotone variational inequalities, generalized equilibrium problems and fixed point methods. Fixed Point Theory Appl 2014, 236 (2014). https://doi.org/10.1186/1687-1812-2014-236

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2014-236

Keywords