Skip to main content

Existence and uniqueness of fixed point for mixed monotone ternary operators with application

Abstract

In this paper, partial order theory is used to study the fixed point of a mixed monotone ternary operator A:P×P×P→P. The existence and uniqueness of a fixed point are obtained without assuming the operators to be compact or continuous. In the end, the application to an integral equation is presented. Our results unify, generalize, and complement various known comparable results from the current literature.

MSC:47H05, 47H10.

1 Introduction

Fixed point theory has fascinated hundreds of researchers since 1922 with the celebrated Banach fixed point theorem. It is well known that mixed monotone operators were introduced by Guo and Lakshmikantham [1] in 1987. Later, Bhaskar and Lakshmikantham [2] introduced the notion of a coupled fixed point and proved some coupled fixed point results under certain conditions, in a complete metric space endowed with a partial order. Their study has not only important theoretical meaning but also wide applications in engineering, nuclear physics, biological chemistry technology, etc. (see [1–8] and the references therein).

Very recently, Harjani et al. [9] have established the existence results of coupled fixed point for mixed monotone operators, and further obtained their applications to integral equations. Berinde and Borcut [10] have introduced the concept of a triple fixed point and proved some related theorems for contractive type operators in partially ordered metric spaces. Zhai [11] has considered mixed monotone operators with convexity and get the existence and uniqueness of a fixed point (A(u,u)=u type) without assuming the operator to be compact or continuous.

Motivated by the work reported in [9–11], the aim of this paper is to discuss the existence and uniqueness of a fixed point (A(u,u,u)=u type) for mixed monotone ternary operators in the context of ordered metric spaces. Our results unify, generalize, and complement various known comparable results from the current literature.

The rest of the paper is organized as follows. In Section 2, we recall some basic definitions and notations which will be used in the sequel. The existence and uniqueness of a fixed point for mixed monotone ternary operators (without assuming the operators to be compact or continuous) are obtained in Section 3. We also present an application in Section 4 to an integral equation to illustrate our results.

2 Preliminaries

In this section, we recall some standard definitions and notations needed in the following section. For the convenience of the reader, we suggest that one refers to [1, 2, 10–14] for details.

Throughout this paper, unless otherwise specified, suppose that (E,∥⋅∥) is a real Banach space which is partially ordered by a cone P⊂E, i.e., x≤y if and only if y−x∈P. If x≤y and x≠y, then we denote x<y or y>x. By θ we denote the zero element of E. Recall that a non-empty closed convex set P⊂E is a cone if it satisfies (i) x∈P, λ≥0⇒λx∈P; (ii) x∈P, −x∈P⇒x=θ.

Further, P is called normal if there exists a constant N>0 such that, for all x,y∈E, θ≤x≤y implies ∥x∥≤N∥y∥; in this case N is called the normality constant of P. If x 1 , x 2 ∈E, the set [ x 1 , x 2 ]={x∈E∣ x 1 ≤x≤ x 2 } is called the order interval between x 1 and x 2 .

Definition 2.1 (see [10])

A:P×P→P is said to be a mixed monotone operator if A(x,y) is monotone non-decreasing in x and monotone non-increasing in y, that is, for any x,y∈P,

x 1 , x 2 ∈ P , x 1 ≤ x 2 ⇒ A ( x 1 , y ) ≤ A ( x 2 , y ) , y 1 , y 2 ∈ P , y 1 ≤ y 2 ⇒ A ( x , y 2 ) ≤ A ( x , y 1 ) .
(2.1)

Definition 2.2 (see [11])

An element x∈P is called a fixed point of A:P×P→P if

A(x,x)=x.

Definition 2.3 (see [10])

A:P×P×P→P is said to be a mixed monotone operator if A(x,y,z) is monotone non-decreasing in x, z and monotone non-increasing in y, that is, for any x,y,z∈P

x 1 , x 2 ∈ P , x 1 ≤ x 2 ⇒ A ( x 1 , y , z ) ≤ A ( x 2 , y , z ) , y 1 , y 2 ∈ P , y 1 ≤ y 2 ⇒ A ( x , y 1 , z ) ≥ A ( x , y 2 , z ) , z 1 , z 2 ∈ P , z 1 ≤ z 2 ⇒ A ( x , y , z 1 ) ≤ A ( x , y , z 2 ) .
(2.2)

Definition 2.4 An element x∈P is called a fixed point of A:P×P×P→P if

A(x,x,x)=x.

3 Main results

In this section we consider the existence and uniqueness of a fixed point for mixed monotone ternary operators in ordered Banach spaces. Our first main result is the following.

Theorem 3.1 Let E be a real Banach space and let P be a normal cone in E. A:P×P×P→P is a mixed monotone ternary operator which satisfies the following:

(H1) for t∈(0,1), x,y∈P, there exists α(t,x,y)∈(1,+∞), such that

A(tx,y,tx)≤ t α ( t , x , y ) A(x,y,x);
(3.1)

(H2) there exist u 0 , v 0 , m 0 ∈P, r∈(0,1), such that

u 0 ≤ r v 0 , m 0 ≤ r v 0 , A ( u 0 , v 0 , m 0 ) ≥ u 0 , A ( v 0 , u 0 , v 0 ) ≤ v 0 , A ( m 0 , v 0 , u 0 ) ≥ m 0 , A ( u 0 , v 0 , u 0 ) ≥ u 0 , A ( m 0 , v 0 , m 0 ) ≥ m 0 .
(3.2)

Then A has a unique fixed point u ∗ in [ u 0 ,r v 0 ]∩[ m 0 ,r v 0 ]. Moreover, constructing successively the sequences

x n = A ( x n − 1 , y n − 1 , z n − 1 ) , y n = A ( y n − 1 , x n − 1 , y n − 1 ) , z n = A ( z n − 1 , y n − 1 , x n − 1 ) , n = 1 , 2 , … ,

for any initial values x 0 , y 0 , z 0 ∈[ u 0 ,r v 0 ]∩[ m 0 ,r v 0 ], we have

∥ x n − u ∗ ∥ →0, ∥ y n − u ∗ ∥ →0, ∥ z n − u ∗ ∥ →0

as n→∞.

Proof Let w 0 =r v 0 , ε= r α ( r , v 0 , u 0 ) − 1 . Then w 0 ≥ u 0 , ε∈(0,1), and

A ( w 0 , u 0 , w 0 ) = A ( r v 0 , u 0 , r v 0 ) ≤ r α ( r , v 0 , u 0 ) A ( v 0 , u 0 , v 0 ) A ( w 0 , u 0 , w 0 ) ≤ r α ( r , v 0 , u 0 ) v 0 = r α ( r , v 0 , u 0 ) − 1 ⋅ r v 0 = ε w 0 ≤ w 0 ,
(3.3)
A( u 0 , w 0 , m 0 )=A( u 0 ,r v 0 , m 0 )≥A( u 0 , v 0 , m 0 )≥ u 0 ,
(3.4)
A( m 0 , w 0 , u 0 )=A( m 0 ,r v 0 , u 0 )≥A( m 0 , v 0 , u 0 )≥ m 0 .
(3.5)

Construct successively the sequences

u n = A ( u n − 1 , w n − 1 , m n − 1 ) , w n = A ( w n − 1 , u n − 1 , w n − 1 ) , m n = A ( m n − 1 , w n − 1 , u n − 1 ) , w n ′ = 1 ε A ( w n − 1 ′ , u n − 1 , w n − 1 ′ ) , w 0 ′ = w 0 , n = 1 , 2 , … .

From (3.3)-(3.5) and the mixed monotonicity of A, we have

u 0 ≤ u 1 ≤ u 2 ≤⋯≤ u n ≤⋯≤ w n ≤⋯≤ w 1 ≤ w 0 ,
(3.6)
m 0 ≤ m 1 ≤ m 2 ≤⋯≤ m n ≤⋯≤ w n ≤⋯≤ w 1 ≤ w 0 .
(3.7)

Next we prove that

u 0 ≤ w n ′ ≤ w 0 .
(3.8)

From (3.2) and (3.3),

w 1 ′ = 1 ε A ( w 0 , u 0 , w 0 ) ≤ 1 ε ⋅ ε w 0 = w 0 , w 1 ′ = 1 ε A ( w 0 , u 0 , w 0 ) ≥ 1 ε A ( u 0 , v 0 , u 0 ) ≥ 1 ε u 0 ≥ u 0 , w 2 ′ = 1 ε A ( w 1 ′ , u 1 , w 1 ′ ) ≤ 1 ε A ( w 0 , u 0 , w 0 ) ≤ 1 ε ⋅ ε w 0 = w 0 , w 2 ′ = 1 ε A ( w 1 ′ , u 1 , w 1 ′ ) ≥ 1 ε A ( u 0 , v 0 , u 0 ) ≥ 1 ε u 0 ≥ u 0 .

Suppose that when n=k, we have

u 0 ≤ w k ′ ≤ w 0 ,

then when n=k+1, note that u k ≤ w 0 =r v 0 ≤ v 0 , we obtain

w k + 1 ′ = 1 ε A ( w k ′ , u k , w k ′ ) ≤ 1 ε A ( w 0 , u 0 , w 0 ) ≤ 1 ε ⋅ ε w 0 = w 0 , w k + 1 ′ = 1 ε A ( w k ′ , u k , w k ′ ) ≥ 1 ε A ( u 0 , v 0 , u 0 ) ≥ 1 ε u 0 ≥ u 0 .

By mathematical induction, we know that (3.8) holds. The same procedure may easily be adapted to obtain

m 0 ≤ w n ′ ≤ w 0 .
(3.9)

On the other hand, from (3.1),

w 1 = A ( w 0 , u 0 , w 0 ) = ε 1 ε A ( w 0 , u 0 , w 0 ) = ε w 1 ′ , w 2 = A ( w 1 , u 1 , w 1 ) = A ( ε w 1 ′ , u 1 , ε w 1 ′ ) ≤ ε α ( ε , w 1 ′ , u 1 ) A ( w 1 ′ , u 1 , w 1 ′ ) w 2 = ε α ( ε , w 1 ′ , u 1 ) + 1 ⋅ 1 ε A ( w 1 ′ , u 1 , w 1 ′ ) w 2 ≤ ε 2 w 2 ′ .

Suppose that when n=k, we have w k ≤ ε k w k ′ . Then when n=k+1, in view of (3.1), we obtain

w k + 1 = A ( w k , u k , w k ) ≤ A ( ε k w k ′ , u k , ε k w k ′ ) ≤ ( ε k ) α ( ε k , w k ′ , u k ) A ( w k ′ , u k , w k ′ ) = ε k α ( ε k , w k ′ , u k ) + 1 ⋅ 1 ε A ( w k ′ , u k , w k ′ ) ≤ ε k + 1 w k + 1 ′ .

By mathematical induction, we have

w n ≤ ε n w n ′ ,n=1,2,….
(3.10)

By (3.6)-(3.10) we get

θ ≤ w n − u n ≤ ε n w n ′ − u n ≤ ε n w n ′ − ε n u n = ε n ( w n ′ − u n ) ≤ ε n ( w 0 − u 0 ) , θ ≤ u n + p − u n ≤ w n − u n , θ ≤ w n − w n + p ≤ w n − u n ; θ ≤ w n − m n ≤ ε n w n ′ − m n ≤ ε n w n ′ − ε n m n = ε n ( w n ′ − m n ) ≤ ε n ( w 0 − m 0 ) , θ ≤ m n + p − m n ≤ w n − m n .

Noting that P is normal and ε∈(0,1), we have

∥ w n − u n ∥ ≤ N ε n ∥ w 0 − u 0 ∥ → 0 ( as  n → ∞ ) , ∥ w n − m n ∥ ≤ N ε n ∥ w 0 − m 0 ∥ → 0 ( as  n → ∞ ) .

Further,

∥ u n + p − u n ∥ ≤ N ∥ w n − u n ∥ → 0 ( as  n → ∞ ) , ∥ w n − w n + p ∥ ≤ N ∥ w n − u n ∥ → 0 ( as  n → ∞ ) , ∥ m n + p − m n ∥ ≤ N ∥ w n − m n ∥ → 0 ( as  n → ∞ ) .

Here N is the normality constant.

So, we can claim that { u n }, { w n }, and { m n } are Cauchy sequences. Since E is complete, there exist u ∗ , w ∗ , m ∗ ∈P such that

u n → u ∗ , w n → w ∗ , m n → m ∗ (as n→∞).

By (3.6), (3.7), respectively, we know that

u 0 ≤ u n ≤ u ∗ ≤ w ∗ ≤ w n ≤ w 0 , m 0 ≤ m n ≤ m ∗ ≤ w ∗ ≤ w n ≤ w 0 ,

and then

θ ≤ w ∗ − u ∗ ≤ w n − u n ≤ ε n ( w 0 − u 0 ) , θ ≤ w ∗ − m ∗ ≤ w n − m n ≤ ε n ( w 0 − m 0 ) .

Further, ∥ w ∗ − u ∗ ∥≤N ε n ∥ w 0 − u 0 ∥→0 (as n→∞), and thus w ∗ = u ∗ . Similarly, we get ∥ w ∗ − m ∗ ∥≤N ε n ∥ w 0 − m 0 ∥→0 (as n→∞), and thus w ∗ = m ∗ . Consequently, w ∗ = u ∗ = m ∗ . Then we obtain

u n + 1 =A( u n , w n , m n )≤A ( u ∗ , u ∗ , u ∗ ) ≤A( w n , u n , w n )= w n + 1 .

Letting n→∞, then we get

A ( u ∗ , u ∗ , u ∗ ) = u ∗ .

That is, u ∗ is a fixed point of A in [ u 0 ,r v 0 ]∩[ m 0 ,r v 0 ].

In the following, we prove that u ∗ is the unique fixed point of A in [ u 0 ,r v 0 ]∩[ m 0 ,r v 0 ]. Suppose that there exists x ∗ ∈[ u 0 ,r v 0 ]∩[ m 0 ,r v 0 ] such that A( x ∗ , x ∗ , x ∗ )= x ∗ . Then u 0 ≤ x ∗ ≤ w 0 and m 0 ≤ x ∗ ≤ w 0 . By mathematical induction and the mixed monotonicity of A, we have

u n + 1 =A( u n , w n , m n )≤ x ∗ =A ( x ∗ , x ∗ , x ∗ ) ≤A( w n , u n , w n )= w n + 1 .

Then from the normality of P, we have x ∗ = u ∗ .

Moreover, constructing successively the sequences

x n = A ( x n − 1 , y n − 1 , z n − 1 ) , y n = A ( y n − 1 , x n − 1 , y n − 1 ) , z n = A ( z n − 1 , y n − 1 , x n − 1 ) , n = 1 , 2 , … ,

for any initial values x 0 , y 0 , z 0 ∈[ u 0 ,r v 0 ]∩[ m 0 ,r v 0 ], we have u n ≤ x n , w n ≥ y n , m n ≤ z n , n=1,2,… . Letting n→∞ yields x n → u ∗ , y n → u ∗ , z n → u ∗ as n→∞. □

Remark 3.1 It is evident from (3.1) that for t∈(0,1), x,y∈P, there exists α(t, 1 t x,y)∈(1,+∞), such that

A ( 1 t x , y , 1 t x ) ≥ 1 t α ( t , 1 t x , y ) A(x,y,x).
(3.11)

Remark 3.2 Let α(t,x,y) be a constant α∈(1,+∞), then Theorem 3.1 also holds.

Corollary 3.2 Let E be a real Banach space and let P be a normal cone in E. A:P×P×P→P is a mixed monotone ternary operator which satisfies (H2) and, for t∈(0,1), x,y∈P, there exists α∈(1,+∞), such that A(tx,y,tx)≤ t α A(x,y,x). Then A has a unique fixed point u ∗ in [ u 0 ,r v 0 ]∩[ m 0 ,r v 0 ]. Moreover, constructing successively the sequences

x n = A ( x n − 1 , y n − 1 , z n − 1 ) , y n = A ( y n − 1 , x n − 1 , y n − 1 ) , z n = A ( z n − 1 , y n − 1 , x n − 1 ) , n = 1 , 2 , … ,

for any initial values x 0 , y 0 , z 0 ∈[ u 0 ,r v 0 ]∩[ m 0 ,r v 0 ], we have u n ≤ x n , w n ≥ y n , m n ≤ z n , n=1,2,… . Letting n→∞ yields x n → u ∗ , y n → u ∗ , z n → u ∗ as n→∞.

Following the lines of the proof of Theorem 3.1, we obtain an immediate consequence.

Corollary 3.3 (see [11])

Let E be a real Banach space and let P be a normal cone in E. A:P×P→P is a mixed monotone operator which satisfies the following:

(H3) for t∈(0,1), x,y∈P, there exists α(t,x,y)∈(1,+∞), such that

A(tx,y)≤ t α ( t , x , y ) A(x,y);

(H4) there exist u 0 , v 0 ∈P, r∈(0,1), such that

u 0 ≤r v 0 ,A( u 0 , v 0 )≥ u 0 ,A( v 0 , u 0 )≤ v 0 .

Then A has a unique fixed point u ∗ in [ u 0 ,r v 0 ]. Moreover, constructing successively the sequences

x n =A( x n − 1 , y n − 1 ), y n =A( y n − 1 , x n − 1 ),n=1,2,…,

for any initial values x 0 , y 0 ∈[ u 0 ,r v 0 ], we have

∥ x n − u ∗ ∥ →0, ∥ y n − u ∗ ∥ →0

as n→∞.

Theorem 3.4 Let E be a real Banach space and let P be a normal cone in E. A:P×P×P→P is a mixed monotone ternary operator which satisfies (3.1) and

(H5) for R∈(1,+∞), x,y,z∈P there exist α( 1 R ,Rx,y,z),α( 1 R ,x,y,Rz)∈(1,+∞) such that

A(Rx,y,z)≥ R α ( 1 R , R x , y , z ) A(x,y,z),
(3.12)
A(x,y,Rz)≥ R α ( 1 R , x , y , R z ) A(x,y,z);
(3.13)

(H6) there exist u 0 , v 0 , m 0 ∈P, R∈(1,+∞), such that

v 0 ≥ R u 0 , v 0 ≥ R m 0 , A ( u 0 , v 0 , m 0 ) ≥ u 0 , A ( v 0 , u 0 , v 0 ) ≤ v 0 , A ( m 0 , v 0 , u 0 ) ≥ m 0 , A ( u 0 , v 0 , u 0 ) ≥ u 0 , A ( m 0 , v 0 , m 0 ) ≥ m 0 .
(3.14)

Then the operator equation A(w,w,w)=bw has a unique solution w ∗ in [R u 0 , v 0 ]∩[R m 0 , v 0 ], where b=min{ R α ( 1 R , R u 0 , v 0 , m 0 ) − 1 , R α ( 1 R , m 0 , v 0 , R u 0 ) − 1 }. Moreover, constructing successively the sequences

x n = b − 1 A ( x n − 1 , y n − 1 , z n − 1 ) , y n = b − 1 A ( y n − 1 , x n − 1 , y n − 1 ) , z n = b − 1 A ( z n − 1 , y n − 1 , x n − 1 ) , n = 1 , 2 , … ,

for any initial values x 0 , y 0 , z 0 ∈[R u 0 , v 0 ]∩[R m 0 , v 0 ], we have

∥ x n − w ∗ ∥ →0, ∥ y n − w ∗ ∥ →0, ∥ z n − w ∗ ∥ →0

as n→∞.

Remark 3.3 Two comments with respect to conditions (3.12) and (3.13) are in order:

  1. (a)

    A sufficient condition on A for (3.12) to be satisfied is that for t∈(0,1), x,y,z∈P, there exists α(t,x,y,z)∈(1,+∞), such that

    A(tx,y,z)≤ t α ( t , x , y , z ) A(x,y,z).
  2. (b)

    A sufficient condition on A for (3.13) to be satisfied is that for t∈(0,1), x,y,z∈P, there exists α(t,x,y,z)∈(1,+∞), such that

    A(x,y,tz)≤ t α ( t , x , y , z ) A(x,y,z).

Proof of Theorem 3.4 Let w 0 =R u 0 . Then v 0 ≥ w 0 . Note that b>1, from (3.12)-(3.14),

A ( w 0 , v 0 , m 0 ) = A ( R u 0 , v 0 , m 0 ) ≥ R α ( 1 R , R u 0 , v 0 , m 0 ) A ( u 0 , v 0 , m 0 ) A ( w 0 , v 0 , m 0 ) = R α ( 1 R , R u 0 , v 0 , m 0 ) − 1 R A ( u 0 , v 0 , m 0 ) ≥ b R u 0 = b w 0 ≥ w 0 ,
(3.15)
A( v 0 , w 0 , v 0 )=A( v 0 ,R u 0 , v 0 )≤A( v 0 , u 0 , v 0 )≤ v 0 ,
(3.16)
A ( m 0 , v 0 , w 0 ) = A ( m 0 , v 0 , R u 0 ) ≥ R α ( 1 R , m 0 , v 0 , R u 0 ) A ( m 0 , v 0 , u 0 ) A ( m 0 , v 0 , w 0 ) = R α ( 1 R , m 0 , v 0 , R u 0 ) − 1 R A ( m 0 , v 0 , u 0 ) ≥ b A ( m 0 , v 0 , u 0 ) ≥ b m 0 ≥ m 0 .
(3.17)

Set B(x,y,z)= b − 1 A(x,y,z), x,y,z∈P. Then from the above inequalities, we have

B ( w 0 , v 0 , m 0 ) = b − 1 A ( w 0 , v 0 , m 0 ) ≥ b − 1 b w 0 = w 0 , B ( v 0 , w 0 , v 0 ) = b − 1 A ( v 0 , w 0 , v 0 ) ≤ b − 1 v 0 ≤ v 0 , B ( m 0 , v 0 , w 0 ) = b − 1 A ( m 0 , v 0 , w 0 ) ≥ b − 1 b m 0 = m 0 .
(3.18)

Also, construct successively the sequences

w n = B ( w n − 1 , v n − 1 , m n − 1 ) , v n = B ( v n − 1 , w n − 1 , v n − 1 ) , m n = B ( m n − 1 , v n − 1 , w n − 1 ) , v n ′ = b B ( v n − 1 ′ , w n − 1 , v n − 1 ′ ) , v 0 ′ = v 0 , n = 1 , 2 , … .

From (3.18) and the mixed monotonicity of A, we have

w 0 ≤ w 1 ≤ w 2 ≤⋯≤ w n ≤⋯≤ v n ≤⋯≤ v 1 ≤ v 0 ,
(3.19)
m 0 ≤ m 1 ≤ m 2 ≤⋯≤ m n ≤⋯≤ v n ≤⋯≤ v 1 ≤ v 0 .
(3.20)

Next we prove that

w 0 ≤ v n ′ ≤ v 0 ,n=1,2,….
(3.21)

By (3.11) and (3.14), we have

A ( w 0 , v 0 , w 0 ) = A ( R u 0 , v 0 , R u 0 ) ≥ R α ( 1 R , R u 0 , v 0 ) A ( u 0 , v 0 , u 0 ) ≥ R A ( u 0 , v 0 , u 0 ) ≥ R u 0 = w 0 .
(3.22)

From (3.15)-(3.17) and (3.22),

v 1 ′ = b B ( v 0 ′ , w 0 , v 0 ′ ) = b B ( v 0 , w 0 , v 0 ) = A ( v 0 , w 0 , v 0 ) ≤ v 0 , v 1 ′ = b B ( v 0 ′ , w 0 , v 0 ′ ) = b B ( v 0 , w 0 , v 0 ) ≥ b B ( w 0 , v 0 , m 0 ) = A ( w 0 , v 0 , m 0 ) ≥ w 0 , v 2 ′ = b B ( v 1 ′ , w 1 , v 1 ′ ) ≤ b B ( v 0 , w 0 , v 0 ) = A ( v 0 , w 0 , v 0 ) ≤ v 0 , v 2 ′ = b B ( v 1 ′ , w 1 , v 1 ′ ) ≥ b B ( w 0 , v 0 , w 0 ) = A ( w 0 , v 0 , w 0 ) = A ( R u 0 , v 0 , R u 0 ) ≥ w 0 .

Suppose that when n=k, we have

w 0 ≤ v k ′ ≤ v 0 ,

then when n=k+1, recalling (3.16) and (3.22), we obtain

v k + 1 ′ = b B ( v k ′ , w k , v k ′ ) ≤ b B ( v 0 , w 0 , v 0 ) = A ( v 0 , w 0 , v 0 ) ≤ v 0 , v k + 1 ′ = b B ( v k ′ , w k , v k ′ ) ≥ b B ( w 0 , v 0 , w 0 ) = A ( w 0 , v 0 , w 0 ) = A ( R u 0 , v 0 , R u 0 ) ≥ w 0 .

By mathematical induction, we know that (3.21) holds. The same procedure may easily be adapted to obtain

m 0 ≤ v n ′ ≤ v 0 ,n=1,2,….
(3.23)

On the other hand, from (3.1),

v 1 = B ( v 0 , w 0 , v 0 ) = 1 b b B ( v 0 , w 0 , v 0 ) = 1 b b B ( v 0 ′ , w 0 , v 0 ′ ) = 1 b v 1 ′ , v 2 = B ( v 1 , w 1 , v 1 ) = B ( 1 b v 1 ′ , w 1 , 1 b v 1 ′ ) ≤ ( 1 b ) α ( 1 b , v 1 ′ , w 1 ) B ( v 1 ′ , w 1 , v 1 ′ ) v 2 = ( 1 b ) α ( 1 b , v 1 ′ , w 1 ) + 1 b B ( v 1 ′ , w 1 , v 1 ′ ) ≤ ( 1 b ) 2 v 2 ′ .

Suppose that when n=k, we have v k ≤ ( 1 b ) k v k ′ . Then when n=k+1, in view of (3.1), we obtain

v k + 1 = B ( v k , w k , v k ) ≤ B ( ( 1 b ) k v k ′ , w k , ( 1 b ) k v k ′ ) ≤ ( ( 1 b ) k ) α ( ( 1 b ) k , v k ′ , w k ) B ( v k ′ , w k , v k ′ ) ≤ ( 1 b ) k α ( ( 1 b ) k , v k ′ , w k ) + 1 b B ( v k ′ , w k , v k ′ ) ≤ ( 1 b ) k + 1 v k + 1 ′ .

By mathematical induction, we have

v n ≤ ( 1 b ) n v n ′ ,n=1,2,….
(3.24)

By (3.19)-(3.24) we get

θ ≤ v n − w n ≤ ( 1 b ) n v n ′ − w n ≤ ( 1 b ) n v n ′ − ( 1 b ) n w n θ = ( 1 b ) n ( v n ′ − w n ) ≤ ( 1 b ) n ( v 0 − w 0 ) , θ ≤ w n + p − w n ≤ v n − w n , θ ≤ v n − v n + p ≤ v n − w n ; θ ≤ v n − m n ≤ ( 1 b ) n v n ′ − m n ≤ ( 1 b ) n v n ′ − ( 1 b ) n m n θ = ( 1 b ) n ( v n ′ − m n ) ≤ ( 1 b ) n ( v 0 − m 0 ) , θ ≤ m n + p − m n ≤ v n − m n , θ ≤ v n − v n + p ≤ v n − m n .

Note that P is normal and b>1, we have

∥ v n − w n ∥ ≤ N ( 1 b ) n ∥ v 0 − w 0 ∥ → 0 ( as  n → ∞ ) , ∥ v n − m n ∥ ≤ N ( 1 b ) n ∥ v 0 − m 0 ∥ → 0 ( as  n → ∞ ) .

Further,

∥ w n + p − w n ∥ ≤ N ∥ v n − w n ∥ → 0 ( as  n → ∞ ) , ∥ v n − v n + p ∥ ≤ N ∥ v n − w n ∥ → 0 ( as  n → ∞ ) , ∥ m n + p − m n ∥ ≤ N ∥ v n − m n ∥ → 0 ( as  n → ∞ ) .

Here N is the normality constant.

So, we can claim that { w n }, { v n }, and { m n } are Cauchy sequences. Since E is complete, there exist w ∗ , v ∗ , m ∗ ∈P such that

w n → w ∗ , v n → v ∗ , m n → m ∗ (as n→∞).

By (3.19), (3.20), respectively, we know that

w 0 ≤ w n ≤ w ∗ ≤ v ∗ ≤ v n ≤ v 0 , m 0 ≤ m n ≤ m ∗ ≤ v ∗ ≤ v n ≤ v 0 ,

and then

θ ≤ v ∗ − w ∗ ≤ v n − w n ≤ ( 1 b ) n ( v 0 − w 0 ) , θ ≤ v ∗ − m ∗ ≤ v n − m n ≤ ( 1 b ) n ( v 0 − m 0 ) .

Further, ∥ v ∗ − w ∗ ∥≤N ( 1 b ) n ∥ v 0 − w 0 ∥→0 (as n→∞), and thus v ∗ = w ∗ . Similarly, we get ∥ v ∗ − m ∗ ∥≤N ( 1 b ) n ∥ v 0 − m 0 ∥→0 (as n→∞), and thus v ∗ = m ∗ . Consequently, w ∗ = v ∗ = m ∗ . Then we obtain

w n + 1 =B( w n , v n , m n )≤B ( w ∗ , w ∗ , w ∗ ) ≤B( v n , w n , v n )= v n + 1 .

Letting n→∞, we get

B ( w ∗ , w ∗ , w ∗ ) = w ∗ .

That is, the operator equation A(w,w,w)=bw has a unique solution w ∗ in [R u 0 , v 0 ]∩[R m 0 , v 0 ].

In the following, we prove that w ∗ is the unique solution of A(w,w,w)=bw in [R u 0 , v 0 ]∩[R m 0 , v 0 ]. Suppose that there exists x ∗ ∈[R u 0 , v 0 ]∩[R m 0 , v 0 ] such that A( x ∗ , x ∗ , x ∗ )=b x ∗ . Then w 0 ≤ x ∗ ≤ v 0 and m 0 ≤ x ∗ ≤ v 0 . By mathematical induction and the mixed monotonicity of A, we have

w n + 1 =B( w n , v n , m n )≤ x ∗ =B ( x ∗ , x ∗ , x ∗ ) ≤B( v n , w n , v n )= v n + 1 .

Then from the normality of P, we have x ∗ = w ∗ .

Moreover, constructing successively the sequences

x n = b − 1 A ( x n − 1 , y n − 1 , z n − 1 ) , y n = b − 1 A ( y n − 1 , x n − 1 , y n − 1 ) , z n = b − 1 A ( z n − 1 , y n − 1 , x n − 1 ) , n = 1 , 2 , … ,

for any initial values x 0 , y 0 , z 0 ∈[R u 0 , v 0 ]∩[R m 0 , v 0 ], we have w n ≤ x n , v n ≥ y n , m n ≤ z n , n=1,2,… . Letting n→∞ yields x n → w ∗ , y n → w ∗ , z n → w ∗ as n→∞. □

From the proof of Theorem 3.4, we can easily obtain the following conclusion.

Corollary 3.5 (see [11])

Let E be a real Banach space and let P be a normal cone in E. A:P×P→P is a mixed monotone operator which satisfies (H3) and

(H7) there exist u 0 , v 0 ∈P, R∈(1,+∞) such that

v 0 ≥R u 0 ,A( u 0 , v 0 )≥ u 0 ,A( v 0 , u 0 )≤ v 0 .

Then the operator equation A(w,w)=bw has a unique solution w ∗ in [R u 0 , v 0 ], where b= R α ( 1 R , R u 0 , v 0 ) − 1 . Moreover, constructing successively the sequences

x n = b − 1 A( x n − 1 , y n − 1 ), y n = b − 1 A( y n − 1 , x n − 1 ),n=1,2,…,

for any initial values x 0 , y 0 ∈[R u 0 , v 0 ], we have

∥ x n − w ∗ ∥ →0, ∥ y n − w ∗ ∥ →0

as n→∞.

4 Application

As application of our results, we investigate the solvability of the following integral equation:

x(τ)= ∫ 0 1 k(τ,s) [ x α 1 ( s ) 1 + x α 2 ( s ) + x α 3 ( s ) ] ds
(4.1)

with α 1 , α 3 >1, α 2 >0.

Put E=C[0,1] (the space of continuous functions defined on [0,1] endowed with supremum norm). Let P={x∈E∣x(t)≥0,∀t∈[0,1]}, then E is a Banach space and P is a normal cone. Suppose that k(τ,s):[0,1]×[0,1]→ R + + ( R + + denotes the positive real numbers) is continuous and 0< ∫ 0 1 k(τ,s)ds≤ 1 2 . In the following, we prove that (4.1) has a unique solution.

Consider the integral operator A:P×P×P→P defined by

A(u,v,m)= ∫ 0 1 k(τ,s) [ u α 1 ( s ) 1 + v α 2 ( s ) + m α 3 ( s ) ] ds

with α 1 , α 3 >1, α 2 >0.

It is clear that A(u,v,m) is a mixed monotone ternary operator. We shall show that A(u,v,m) satisfies (H2) and for t∈(0,1), x,y∈P, there exists α∈(1,+∞), such that A(tx,y,tx)≤ t α A(x,y,x).

In fact, let u 0 (τ)≡0, m 0 (τ)≡0, v 0 (τ)≡1, then

A ( u 0 , v 0 , u 0 ) = 0 ≥ u 0 , A ( v 0 , u 0 , v 0 ) = 2 ∫ 0 1 k ( τ , s ) d s ≤ 1 .

On the other hand, noting that for any t∈(0,1), letting

α=min{ α 1 , α 3 }>1,

we obtain

A ( t x , y , t x ) = ∫ 0 1 k ( τ , s ) [ t α 1 x α 1 ( s ) 1 + y α 2 ( s ) + t α 3 x α 3 ( s ) ] d s ≤ ∫ 0 1 k ( τ , s ) [ t α x α 1 ( s ) 1 + y α 2 ( s ) + t α x α 3 ( s ) ] d s = t α ∫ 0 1 k ( τ , s ) [ x α 1 ( s ) 1 + y α 2 ( s ) + x α 3 ( s ) ] d s = t α A ( x , y , x ) .

Hence, all the hypotheses of Corollary 3.2 are satisfied. The operator

A(u,v,m)= ∫ 0 1 k(τ,s) [ u α 1 ( s ) 1 + v α 2 ( s ) + m α 3 ( s ) ] ds

has a unique fixed point in [ u 0 , v 0 ], i.e., the integral equation (4.1) has a unique solution in [ u 0 , v 0 ].

References

  1. Guo D, Lakskmikantham V: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 1987, 11(5):623–632. 10.1016/0362-546X(87)90077-0

    Article  MathSciNet  Google Scholar 

  2. Bhaskar TG, Lakskmikantham V: Fixed point theory in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  Google Scholar 

  3. Guo D: Existence and uniqueness of positive fixed point for mixed monotone operators with applications. Appl. Anal. 1992, 46: 91–100. 10.1080/00036819208840113

    Article  MathSciNet  Google Scholar 

  4. Zhang Z: New fixed point theorems of mixed monotone operators and applications. J. Math. Anal. Appl. 1996, 204: 307–319. 10.1006/jmaa.1996.0439

    Article  MathSciNet  Google Scholar 

  5. Zhang S, Ma Y: Coupled fixed points for mixed monotone condensing operators and an existence theorem of the solution for a class of functional equations arising in dynamic programming. J. Math. Anal. Appl. 1991, 160: 468–479. 10.1016/0022-247X(91)90319-U

    Article  MathSciNet  Google Scholar 

  6. Sun Y: A fixed point theorem for mixed monotone operator with applications. J. Math. Anal. Appl. 1991, 156: 240–252. 10.1016/0022-247X(91)90394-F

    Article  MathSciNet  Google Scholar 

  7. Lian X, Li Y: Fixed point theorems for a class of mixed monotone operators with applications. Nonlinear Anal. 2007, 67: 2752–2762. 10.1016/j.na.2006.09.040

    Article  MathSciNet  Google Scholar 

  8. Wu Y, Liang Z: Existence and uniqueness of fixed points for mixed monotone operators with applications. Nonlinear Anal. 2006, 65: 1913–1924. 10.1016/j.na.2005.10.045

    Article  MathSciNet  Google Scholar 

  9. Harjani J, Lopez B, Sadarangani K: Fixed point theorems for mixed monotone operators and applications to integral equations. Nonlinear Anal. 2011, 74: 1749–1760. 10.1016/j.na.2010.10.047

    Article  MathSciNet  Google Scholar 

  10. Berinde V, Borcut M: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74(15):4889–4897. 10.1016/j.na.2011.03.032

    Article  MathSciNet  Google Scholar 

  11. Zhai C: Fixed point theorems for a class of mixed monotone operators with convexity. Fixed Point Theory Appl. 2013., 2013: Article ID 119

    Google Scholar 

  12. Lei P, Lin X, Jiang D: Existence and uniqueness of solutions for singular nonlinear elliptic boundary value problems. Nonlinear Anal. 2008, 69: 2773–2779. 10.1016/j.na.2007.08.049

    Article  MathSciNet  Google Scholar 

  13. Guo D, Lakskmikantham V: Nonlinear Problems in Abstract Cones. Academic Press, New York; 1998.

    Google Scholar 

  14. Zhai CB, Guo CM: On α -convex operators. J. Math. Anal. Appl. 2006, 316: 556–565. 10.1016/j.jmaa.2005.04.064

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the Doctoral Fund of Education Ministry of China (20134219120003), the Natural Science Foundation of Hubei Province (2013CFA131), the National Natural Science Foundation of China (71231007) and Hubei Province Key Laboratory of Systems Science in Metallurgical Process (z201302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiang Feng.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, C., Feng, Y. & Li, H. Existence and uniqueness of fixed point for mixed monotone ternary operators with application. Fixed Point Theory Appl 2014, 223 (2014). https://doi.org/10.1186/1687-1812-2014-223

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2014-223

Keywords