# Coincidence theorems via alpha cuts of *L*-fuzzy sets with applications

- Maliha Rashid
^{1}, - Marwan Amin Kutbi
^{2}and - Akbar Azam
^{3}Email author

**2014**:212

https://doi.org/10.1186/1687-1812-2014-212

© Rashid et al.; licensee Springer. 2014

**Received: **20 June 2014

**Accepted: **24 September 2014

**Published: **14 October 2014

## Abstract

In the present paper, existence theorems of coincidence points of a crisp mapping and a sequence of *L*-fuzzy mappings have been established in a complete metric space under contractive type conditions in connection with newly defined notions of ${D}_{{\alpha}_{L}}$ and ${d}_{L}^{\mathrm{\infty}}$ distances on the class of *L*-fuzzy sets. Furthermore, we obtain some fixed point theorems for *L*-fuzzy set-valued mappings to extend a variety of recent results on fixed points for fuzzy mappings and multivalued mappings in the literature. As applications, first we obtain coincidence points of a sequence of multivalued mappings with a self mapping and next established an existence and uniqueness theorem of the solution for a generalized class of nonlinear integral equations.

**MSC:**46S40, 47H10, 54H25.

## Keywords

*L*-fuzzy mappingfuzzy mappingintegral equation

## 1 Introduction

Since his creation, man has always been making sincere efforts in understanding nature intelligently and then developing a powerful connection between life and its requirements. These efforts consist of three phases: understanding of the surrounding environment, acknowledgement of new things, and then planning for the future. In this search so many issues like linguistic interpretation, inaccurate judgment, characterization of interrelated phenomena into proper classifications, use of restricted techniques, vague analysis of results and many others, highly affect the accuracy of the results. The above mentioned hurdles related with interpretation of data can be tackled to a great extent by considering fuzzy sets (due to their flexible nature) in place of crisp sets.

After the discovery of fuzzy set by Zadeh [1] a great revolution arose in the field of analysis. The potential of the introduced notion was realized by research workers of different fields of science and technology. By introducing a contraction condition for fuzzy mappings Heilpern [2] generalized the Banach principle and established a fixed point theorem for fuzzy mappings in complete metric linear spaces. Afterwards, many authors, *e.g.*, [3–16] generalized and extended this result in various directions. In [17] Edelstein extended the Banach contraction principle by using the idea of locally and globally contractive mappings. Subsequently, many authors, *e.g.*, [18–22] utilized this concept to prove numerous results. In 1967, Goguen [23] initiated an interesting generalization of fuzzy sets namely called *L*-fuzzy sets. The concept of *L*-fuzzy set is superior to fuzzy sets as *L* is a lattice which is not necessarily a totally ordered set. Recently, Rashid *et al.* [24] introduced the concept of *L*-fuzzy mappings and proved a common fixed point theorem via ${\beta}_{{F}_{L}}$-admissible pair of *L*-fuzzy mappings.

In this article we introduce the notions of ${D}_{{\alpha}_{L}}$ and ${d}_{L}^{\mathrm{\infty}}$ distances for *L*-fuzzy sets to identify a contractive relation between *L*-fuzzy mappings and crisp mappings. Making use of this contractive relation on a complete metric space a coincidence point is obtained of a sequence of *L*-fuzzy mappings and a single valued crisp mapping. Analogous coincidence theorems for fuzzy mappings and multivalued mappings have been obtained as corollaries. These corollaries regarding coincidence point of fuzzy mappings and multivalued mappings have not been seen in the literature and therefore most of them are still original and new results. However, some imaginative fixed point theorems [3, 9, 11, 13, 17, 18, 25, 26] in the literature can be obtained as corollaries.

We also present some applications of the main theorem in two directions, one for obtaining fixed points and coincidence points of formal multivalued mappings and the other is for solutions of a generalized class of nonlinear integral equations to enhance the validity of our result.

## 2 Preliminaries

This section lists some preliminary notions and results. Let $(X,d)$ be a metric space, denote:

$CB(X)=\{A:A\text{is nonempty closed and bounded subset of}X\}$,

$C(X)=\{A:A\text{is nonempty compact subset of}X\}$.

*H*on $CB(X)$ induced by

*d*is defined as

*X*is a function with domain

*X*and values in $[0,1]$. If

*A*is a fuzzy set and $x\in X$, then the function values $A(x)$ is called the grade of membership of

*x*in

*A*. The

*α*-level set of

*A*is denoted by ${[A]}_{\alpha}$ and is defined as follows:

A fuzzy set *A* in a metric linear space *V* is said to be an approximate quantity if and only if ${[A]}_{\alpha}$ is compact and convex in *V* for each $\alpha \in [0,1]$ and ${sup}_{x\in V}A(x)=1$. The collection of all approximate quantities in *V* is denoted by $W(V)$.

**Lemma 2.1** [26]

*Let*$(X,d)$

*be a metric space and*$A,B\in CB(X)$,

*then for each*$a\in A$

**Lemma 2.2** [26]

*Let*$(X,d)$

*be a metric space and*$A,B\in CB(X)$,

*then for each*$a\in A$, $\u03f5>0$,

*there exists an element*$b\in B$

*such that*

**Definition 2.3** [23]

- (i)
a lattice, if $a\vee b\in L$, $a\wedge b\in L$ for any $a,b\in L$;

- (ii)
a complete lattice, if $\vee A\in L$, $\wedge A\in L$ for any $A\subseteq L$;

- (iii)
distributive if $a\vee (b\wedge c)=(a\vee b)\wedge (a\vee c)$, $a\wedge (b\vee c)=(a\wedge b)\vee (a\wedge c)$ for any $a,b,c\in L$.

**Definition 2.4** [23]

Let *L* be a lattice with top element ${1}_{L}$ and bottom element ${0}_{L}$ and let $a,b\in L$. Then *b* is called a complement of *a*, if $a\vee b={1}_{L}$, and $a\wedge b={0}_{L}$. If $a\in L$ has a complement element, then it is unique. It is denoted by $\stackrel{\xb4}{a}$.

**Definition 2.5** [23]

A *L*-fuzzy set *A* on a nonempty set *X* is a function $A:X\to L$, where *L* is complete distributive lattice with ${1}_{L}$ and ${0}_{L}$.

**Remark 2.6** The class of *L*-fuzzy sets is larger than the class of fuzzy sets as an *L*-fuzzy set is a fuzzy set if $L=[0,1]$.

*L*-fuzzy subsets of

*X*will be denoted by ${F}_{L}(X)$. The ${\alpha}_{L}$-level set of

*L*-fuzzy set

*A*, is denoted by ${A}_{{\alpha}_{L}}$, and is defined as follows:

Here $\overline{B}$ denotes the closure of the set *B*.

**Definition 2.7** [24]

Let *X* be an arbitrary set, *Y* be a metric space. A mapping *T* is called *L*-fuzzy mapping if *T* is a mapping from *X* into ${F}_{L}(Y)$ (class of *L*-fuzzy subsets of *Y*). A *L*-fuzzy mapping *T* is a *L*-fuzzy subset on $X\times Y$ with membership function $T(x)(y)$. The function $T(x)(y)$ is the grade of membership of *y* in $T(x)$.

**Definition 2.8** [24]

Let $(X,d)$ be a metric space and *S*, *T* be *L*-fuzzy mappings from *X* into ${F}_{L}(X)$. A point $z\in X$ is called a *L*-fuzzy fixed point of *T* if $z\in {[Tz]}_{{\alpha}_{L}}$, for some ${\alpha}_{L}\in L\mathrm{\setminus}\{{\mathit{0}}_{L}\}$. The point $z\in X$ is called a common *L*-fuzzy fixed point of *S* and *T* if $z\in {[Sz]}_{{\alpha}_{L}}\cap {[Tz]}_{{\alpha}_{L}}$. When ${\alpha}_{L}={1}_{L}$, it is called a common fixed point of *L*-fuzzy mappings.

**Definition 2.9** Let $\epsilon \in (0,\mathrm{\infty}]$, and $\lambda \in (0,1)$. A metric space $(X,d)$ is said to be *ε*-chainable if given $u,v\in X$, there exists an *ε*-chain from *u* to *v* (*i.e.*, a finite set of points $u={u}_{0}$, ${u}_{1},{u}_{2},\dots ,{u}_{l}=v$ such that $d({u}_{t-1},{u}_{t})<\epsilon $ for all $t=1,2,\dots ,l$).

**Definition 2.10** [8]

*MT*-function if it satisfies the following condition:

Clearly, if $\phi :[0,+\mathrm{\infty})\to [0,1)$ is a nondecreasing function or a nonincreasing function, then it is a *MT*-function. So the set of *MT*-functions is a rich class.

**Proposition 2.11** [8]

*Let*$\phi :[0,+\mathrm{\infty})\to [0,1)$

*be a function*.

*Then the following statements are equivalent*.

- (i)
*φ**is a**MT*-*function*. - (ii)
*For each*$t\in [0,\mathrm{\infty})$,*there exist*${r}_{t}^{(1)}\in [0,1)$*and*${\epsilon}_{t}^{(1)}>0$*such that*$\phi (s)\le {r}_{t}^{(1)}$*for all*$s\in (t,t+{\epsilon}_{t}^{(1)})$. - (iii)
*For each*$t\in [0,\mathrm{\infty})$,*there exist*${r}_{t}^{(2)}\in [0,1)$*and*${\epsilon}_{t}^{(2)}>0$*such that*$\phi (s)\le {r}_{t}^{(2)}$*for all*$s\in [t,t+{\epsilon}_{t}^{(2)}]$. - (iv)
*For each*$t\in [0,\mathrm{\infty})$,*there exist*${r}_{t}^{(3)}\in [0,1)$*and*${\epsilon}_{t}^{(3)}>0$*such that*$\phi (s)\le {r}_{t}^{(3)}$*for all*$s\in (t,t+{\epsilon}_{t}^{(3)}]$. - (v)
*For each*$t\in [0,\mathrm{\infty})$,*there exist*${r}_{t}^{(4)}\in [0,1)$*and*${\epsilon}_{t}^{(4)}>0$*such that*$\phi (s)\le {r}_{t}^{(4)}$*for all*$s\in [t,t+{\epsilon}_{t}^{(4)})$. - (vi)
*For any nonincreasing sequence*${\{{x}_{n}\}}_{n\in \mathbb{N}}$*in*$[0,\mathrm{\infty})$,*we have*$0\le {sup}_{n\in \mathbb{N}}\phi ({x}_{n})<1$. - (vii)
*φ**is a function of contractive factor*[27],*that is*,*for any strictly decreasing sequence*${\{{x}_{n}\}}_{n\in \mathbb{N}}$*in*$[0,\mathrm{\infty})$,*we have*$0\le {sup}_{n\in \mathbb{N}}\phi ({x}_{n})<1$.

## 3 Coincidence theorems for *L*-fuzzy mappings

*L*-fuzzy mappings. For a metric space $(X,d)$, we define

whenever $A,B\in {F}_{L}(X)$ and ${A}_{{\alpha}_{L}},{B}_{{\alpha}_{L}}\in CB(X)$ for each ${\alpha}_{L}\in L\mathrm{\setminus}\{{\mathit{0}}_{L}\}$.

**Definition 3.1** A mapping $T:X\to X$ is called an $(\epsilon ,\lambda )$ uniformly locally contractive mapping if $u,v\in X$ and $0<d(u,v)<\epsilon $ implies $d(Tu,Tv)\le \lambda d(u,v)$. A mapping $T:X\to {F}_{L}(X)$ is called an $(\epsilon ,\lambda )$ uniformly locally contractive *L*-fuzzy mapping if $u,v\in X$ and $0<d(u,v)<\epsilon $, then ${d}_{L}^{\mathrm{\infty}}(T(u),T(v))\le \lambda d(u,v)$.

**Theorem 3.2**

*Let*$\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$

*be a complete*

*ε*-

*chainable metric space*, ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*a sequence of mappings from*

*X*

*into*${F}_{L}(X)$,

*and*$S:X\to X$

*a surjection such that for each*$u\in X$

*and*$q\in \mathbb{N}$, ${[{T}_{q}(u)]}_{{\alpha}_{L}}\in CB(X)$,

*for some*${\alpha}_{L}\in L\mathrm{\setminus}\{{0}_{L}\}$.

*If*$u,v\in X$

*such that*$0<d(Su,Sv)<\epsilon $

*implies*

*for all* $q,r\in \mathbb{N}$, *where* $\mu :[0,\epsilon )\to [0,1)$ *is a* *MT*-*function*, *then* *S* *and the sequence* ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *have a coincidence point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* $S{v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}{[{T}_{q}({v}^{\ast})]}_{{\alpha}_{L}}$.

*Proof*Let ${v}_{0}$ be an arbitrary, but fixed element of

*X*. Find ${v}_{1}\in X$ such that $S{v}_{1}\in {[{T}_{1}({v}_{0})]}_{{\alpha}_{L}}$. Let

be an arbitrary *ε*-chain from $S{v}_{0}$ to $S{v}_{1}$. (Without any loss of generality, we assume that $S{u}_{(1,q)}\ne S{u}_{(1,r)}$ for each $q,r\in \{0,1,2,\dots ,l\}$ with $q\ne r$.)

*X*such that $S{u}_{(2,0)}\in {[{T}_{1}({u}_{(1,0)})]}_{{\alpha}_{L}}$ and $S{u}_{(2,t)}\in {[{T}_{2}({u}_{(1,t)})]}_{{\alpha}_{L}}$ for $t=1,2,\dots ,l$, with

for $t=0,1,2,\dots ,l-1$.

*ε*-chain from $S{v}_{1}$ to $S{v}_{2}$. Rename $S{v}_{2}$ as $S{u}_{(3,0)}$. Then by the same procedure we obtain an

*ε*-chain

for $t=0,1,2,\dots ,l-1$.

*X*with

for all $h\in \mathbb{N}$.

By assumption, $lim{sup}_{t\to {l}_{t}^{+}}\mu (t)<1$, so there exists ${h}_{t}\in \mathbb{N}$ such that $\mu (d(S{u}_{(h,t)},S{u}_{(h,t+1)}))<\omega ({l}_{t})$ (a non-negative real number) for all $h\ge {h}_{t}$ where $lim{sup}_{t\to {l}_{t}^{+}}\mu (t)<\omega ({l}_{t})<1$.

whenever $p>h>N+1$.

Since ${\mathrm{\Theta}}_{t}<1$ for all $t\in \{0,1,2,\dots ,l-1\}$, it follows that $\{S{v}_{h}=S{u}_{(h,l)}\}$ is a Cauchy sequence. Since $(X,d)$ is complete, there is ${v}^{\ast}\in X$ such that $S{v}_{h}\to S{v}^{\ast}$. Hence there exists an integer $M>0$ such that $h>M$ implies $d(S{v}_{h},S{v}^{\ast})<\epsilon $. This from the point of view of inequality (1) implies ${D}_{{\alpha}_{L}}({T}_{h+1}({v}_{h}),{T}_{q}({v}^{\ast}))<\epsilon $ for all $q\in \mathbb{N}$.

Letting $h\to \mathrm{\infty}$ in the above inequality, we get $d(S{v}^{\ast},{[{T}_{q}({v}^{\ast})]}_{{\alpha}_{L}})\to 0$, which implies $S{v}^{\ast}\in {[{T}_{q}({v}^{\ast})]}_{{\alpha}_{L}}$ for all $q\in \mathbb{N}$. Hence, $S{v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}{[{T}_{q}({v}^{\ast})]}_{{\alpha}_{L}}$. □

**Corollary 3.3**

*Let*$\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$

*a complete*

*ε*-

*chainable metric space*, ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*a sequence of mappings from*

*X*

*into*${F}_{L}(X)$

*and*$S:X\to X$

*a surjection such that for each*$u\in X$

*and*$q\in \mathbb{N}$, ${[{T}_{q}(u)]}_{{\alpha}_{L}}\in CB(X)$,

*for some*${\alpha}_{L}\in L\mathrm{\setminus}\{{0}_{L}\}$.

*If*$u,v\in X$

*such that*$0<d(Su,Sv)<\epsilon $,

*implies*

*for all* $q,r\in \mathbb{N}$, *where* $\rho \in (0,1)$, *then* *S* *and sequence* ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *have a coincidence point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* $S{v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}{[{T}_{q}({v}^{\ast})]}_{{\alpha}_{L}}$.

*Proof* Apply Theorem 3.2 where *μ* is the *MT*-function defined as $\mu (t)=\rho $ for all $t\in [0,\epsilon )$. □

In the following we furnish an example to support Theorem 3.2.

**Example 3.4**Let $\epsilon \in (0,\mathrm{\infty}]$, $X=[0,1]$, and $d(u,v)=|u-v|$, whenever $u,v\in X$, then $(X,d)$ is a complete

*ε*-chainable metric space. Let $L=\{\zeta ,\eta ,\xi ,\varsigma \}$ with $\zeta {\precsim}_{L}\eta {\precsim}_{L}\varsigma $, $\zeta {\precsim}_{L}\xi {\precsim}_{L}\varsigma $,

*η*and

*ξ*are not comparable, then $(L,{\precsim}_{L})$ is a complete distributive lattice. Suppose ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$ to be a sequence of mappings defined from

*X*into ${F}_{L}(X)$ as

*S*and the sequence ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$,

*i.e.*

for some ${\alpha}_{L}\in L\mathrm{\setminus}\{{0}_{L}\}$.

## 4 Coincidence theorems for *L*-fuzzy mappings via ${d}_{L}^{\mathrm{\infty}}$-distance

This section deals with the study of coincidence theorems in connection with the notion of ${d}_{L}^{\mathrm{\infty}}$-distance. The results proved in this section are also new.

**Theorem 4.1**

*Let*$\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$

*a complete*

*ε*-

*chainable metric space*, ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*a sequence of*

*L*-

*fuzzy mappings from*

*X*

*into*${F}_{L}(X)$

*and*$S:X\to X$

*a surjection such that for each*$u\in X$

*and*$q\in \mathbb{N}$, ${[{T}_{q}(u)]}_{{\alpha}_{L}}\in CB(X)$,

*for some*${\alpha}_{L}\in L\mathrm{\setminus}\{{0}_{L}\}$.

*If*$u,v\in X$

*such that*$0<d(Su,Sv)<\epsilon $

*implies*

*for all* $q,r\in \mathbb{N}$, *where* $\mu :[0,\epsilon )\to [0,1)$ *is a* *MT*-*function*, *then* *S* *and sequence* ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *have a coincidence point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* $S{v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}{[{T}_{q}({v}^{\ast})]}_{{\alpha}_{L}}$.

*Proof* Since ${D}_{{\alpha}_{L}}({T}_{q}(u),{T}_{r}(v))\le {d}_{L}^{\mathrm{\infty}}({T}_{q}(u),{T}_{r}(v))$ for all $q,r\in \mathbb{N}$, the result follows immediately from Theorem 3.2. □

By taking $S=I$ and in Theorem 4.1 we obtain the following result.

**Corollary 4.2**

*Let*$\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$

*a complete*

*ε*-

*chainable metric space and*${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*a sequence of*

*L*-

*fuzzy mappings from*

*X*

*into*${F}_{L}(X)$

*such that for each*$u\in X$

*and*$q\in \mathbb{N}$, ${[{T}_{q}(u)]}_{{\alpha}_{L}}\in CB(X)$,

*for some*${\alpha}_{L}\in L\mathrm{\setminus}\{{0}_{L}\}$.

*If*$u,v\in X$

*such that*$0<d(u,v)<\epsilon $,

*implies*

*for all* $q,r\in \mathbb{N}$, *where* $\mu :[0,\epsilon )\to [0,1)$ *is a* *MT*-*function*, *then the sequence* ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *has a common fixed point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* ${v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}{[{T}_{q}({v}^{\ast})]}_{\alpha}$.

## 5 Coincidence theorems for fuzzy mappings

In the present section, by considering $L=[0,1]$ in Theorem 3.2, some further new results for fuzzy mappings are obtained.

**Theorem 5.1**

*Let*$\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$

*a complete*

*ε*-

*chainable metric space*, ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*a sequence of fuzzy mappings from*

*X*

*into*${I}^{X}$

*and*$S:X\to X$

*a surjection such that for each*$u\in X$

*and*$q\in \mathbb{N}$, ${[{T}_{q}(u)]}_{\alpha}\in CB(X)$,

*for some*$\alpha \in (0,1]$.

*If*$u,v\in X$

*such that*$0<d(Su,Sv)<\epsilon $,

*implies*

*for all* $q,r\in \mathbb{N}$, *where* $\mu :[0,\epsilon )\to [0,1)$ *is a* *MT*-*function*, *then* *S* *and sequence* ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *have a coincidence point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* $S{v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}{[{T}_{q}({v}^{\ast})]}_{\alpha}$.

**Corollary 5.2**

*Let*$\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$

*a complete*

*ε*-

*chainable metric linear space*, ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*a sequence of fuzzy mappings from*

*X*

*into*$W(X)$

*and*$S:X\to X$

*a surjection such that for each*$u\in X$

*and*$q\in \mathbb{N}$, ${[{T}_{q}(u)]}_{\alpha}\in CB(X)$,

*for some*$\alpha \in (0,1]$.

*If*$u,v\in X$

*such that*$0<d(Su,Sv)<\epsilon $,

*implies*

*for all* $q,r\in \mathbb{N}$, *where* $\mu :[0,\epsilon )\to [0,1)$ *is a* *MT*-*function*, *then* *S* *and sequence* ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *have a coincidence point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* $S{v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}{[{T}_{q}({v}^{\ast})]}_{\alpha}$.

*Proof* Since $W(X)\subseteq CB(X)$ and ${D}_{\alpha}({T}_{q}(u),{T}_{r}(v))\le {d}_{\mathrm{\infty}}({T}_{q}(u),{T}_{r}(v))$ for all $q,r\in \mathbb{N}$, the result follows immediately from Theorem 5.1. □

## 6 Fixed point theorems for *L*-fuzzy mappings

In this section some new fixed point results are deduced from the above mentioned coincidence results. If we take $S=I$ in Theorem 3.2 we get the following result.

**Theorem 6.1**

*Let*$\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$

*a complete*

*ε*-

*chainable metric space and*${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*a sequence of mappings from*

*X*

*into*${F}_{L}(X)$

*such that for each*$u\in X$

*and*$q\in \mathbb{N}$, ${[{T}_{q}(u)]}_{{\alpha}_{L}}\in CB(X)$,

*for some*${\alpha}_{L}\in L\mathrm{\setminus}\{{0}_{L}\}$.

*If*$u,v\in X$

*such that*$0<d(u,v)<\epsilon $

*implies*

*for all* $q,r\in \mathbb{N}$, *where* $\mu :[0,\epsilon )\to [0,1)$ *is a* *MT*-*function*, *then the sequence* ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *has a common fixed point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* ${v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}{[{T}_{q}({v}^{\ast})]}_{{\alpha}_{L}}$.

If we take $S=I$ in Theorem 5.1 we get the following result.

**Corollary 6.2**

*Let*$\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$

*a complete*

*ε*-

*chainable metric space and*${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*a sequence of mappings from*

*X*

*into*${I}^{X}$

*such that for each*$u\in X$

*and*$q\in \mathbb{N}$, ${[{T}_{q}(u)]}_{\alpha}\in CB(X)$,

*for some*$\alpha \in (0,1]$.

*If*$u,v\in X$

*such that*$0<d(u,v)<\epsilon $,

*implies*

*for all* $q,r\in \mathbb{N}$, *where* $\mu :[0,\epsilon )\to [0,1)$ *is a* *MT*-*function*, *then the sequence* ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *has a common fixed point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* ${v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}{[{T}_{q}({v}^{\ast})]}_{\alpha}$.

By considering $\alpha =1$ in the above corollary we deduce the main result and hence all the corollaries of [18].

## 7 Applications to multivalued maps

Multivalued mapping is a left-total relation, arise in optimal control theory and game theory. In mathematics, multivalued mappings play an increasingly important role. For example fixed point results for multivalued mappings have been applied to prove existence of Nash equilibrium, the solutions of integral and differential inclusions *etc*. In this section, we will apply our main result to prove some coincidence results for multivalued mappings and then obtain some practical fixed point theorems in the existing literature.

**Theorem 7.1**

*Let*$\epsilon \in (0,\mathrm{\infty})$, $(X,d)$

*a complete*

*ε*-

*chainable metric space*, ${\{{J}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*be a sequence of multivalued mappings from*

*X*

*into*$CB(X)$

*and*$S:X\to X$

*a surjection such that*$0<d(Su,Sv)<\epsilon $,

*implies*

$u,v\in X$, *where* $\mu :[0,\epsilon )\to [0,1)$ *is a* *MT*-*function*, *then* *S* *and the sequence* ${\{{J}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *have a coincidence point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* $S{v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}\{{J}_{q}({v}^{\ast})\}$.

*Proof*Define a sequence of

*L*-fuzzy mappings ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$ from

*X*into ${F}_{L}(X)$ as, for some ${\alpha}_{L}\in L\mathrm{\setminus}\{{0}_{L}\}$, ${T}_{q}(v)(t)={\alpha}_{L}$ if $t\in {J}_{q}(v)$ and ${T}_{q}(v)(t)={0}_{L}$, otherwise. Then ${[{T}_{q}(v)]}_{{\alpha}_{L}}={J}_{q}(v)$ for all $v\in X$, so ${[{T}_{q}(v)]}_{{\alpha}_{L}}\in CB(X)$ for all $v\in X$. Since

for all $u,v\in X$, we deduce that condition (1) of Theorem 3.2 is satisfied for ${\{{T}_{q}\}}_{q=1}^{\mathrm{\infty}}$. Hence there exists a point ${v}^{\ast}$ in *X*, such that $S{v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}{[{T}_{q}({v}^{\ast})]}_{{\alpha}_{L}}$. From this we conclude that $S{v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}\{{J}_{q}({v}^{\ast})\}$. This completes the proof. □

**Corollary 7.2**

*Let*$\epsilon \in (0,\mathrm{\infty})$, $(X,d)$

*a complete*

*ε*-

*chainable metric space*, ${\{{J}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*be a sequence of multivalued mappings from*

*X*

*into*$CB(X)$

*and*$S:X\to X$

*a surjection such that*$0<d(Su,Sv)<\epsilon $,

*implies*

$u,v\in X$, *where* $\rho \in (0,1)$, *then* *S* *and the sequence* ${\{{J}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *have a coincidence point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* $S{v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}\{{J}_{q}({v}^{\ast})\}$.

By taking $S=I$ in Theorem 7.1 we get the following.

**Corollary 7.3** [25]

*Let*$\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$

*be a complete*

*ε*-

*chainable metric space*,

*and*${\{{J}_{q}\}}_{q=1}^{\mathrm{\infty}}$

*be a sequence of multivalued mappings from*

*X*

*into*$CB(X)$

*such that*$0<d(u,v)<\epsilon $,

*implies*

$u,v\in X$, *where* $\mu :[0,\epsilon )\to [0,1)$ *is a* *MT*-*function*, *then the sequence* ${\{{J}_{q}\}}_{q=1}^{\mathrm{\infty}}$ *has a common fixed point*, *i*.*e*., *there exists* ${v}^{\ast}\in X$ *such that* ${v}^{\ast}\in {\bigcap}_{q\in \mathbb{N}}\{{J}_{q}({v}^{\ast})\}$.

*Let*$(X,d)$

*be a complete metric space*,

*J*

*a multivalued mapping from*

*X*

*into*$CB(X)$,

*and*$\mu :[0,\mathrm{\infty})\to [0,1)$

*a*

*MT*-

*function such that*

*for all* $u,v\in X$. *Then* *J* *has a fixed point in* *X*.

*Proof* Taking $q=r=1$ with $\epsilon =\mathrm{\infty}$, in the above corollary we get the required result. □

**Corollary 7.5** [26]

*Let*$\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$

*a complete*

*ε*-

*chainable metric space and*

*J*

*be a multivalued mapping from*

*X*

*into*$CB(X)$

*such that*$0<d(u,v)<\epsilon $,

*implies*

$u,v\in X$, *where* $\rho \in (0,1)$. *Then* *J* *has a fixed point*.

By considering *J* to be a single valued mapping in the above corollary we deduce the following result.

**Corollary 7.6** [17]

*Let* $\epsilon \in (0,\mathrm{\infty}]$, $(X,d)$ *a complete* *ε*-*chainable metric space and* $T:X\to X$ *be a* $(\epsilon ,\lambda )$ *uniformly locally contractive single valued mapping*. *Then* *T* *has a fixed point*.

## 8 Applications to integral and differential equations

where $x:[a,b]\to \mathbb{R}$ is unknown, and $h:\mathbb{R}\to \mathbb{R}$ is given, *η* is a parameter. If $h=I$ (the identity mapping on ℝ), then (3) is known as the Volterra integral equation.

**Theorem 8.1**

*Let*${L}_{0}:[a,b]\to \mathbb{R}$, $L:[a,b]\times \mathbb{R}\to \mathbb{R}$

*be continuous mappings and*$h:\mathbb{R}\to \mathbb{R}$

*a continuous surjection*.

*If there exists*$K<\frac{1}{b-a}$

*such that for*$r,s\in \mathbb{R}$,

*then the integral equation*

*has a solution in* $(C[a,b],\mathbb{R})$.

*Proof*Let $X=(C[a,b],\mathbb{R})$; then

*X*is a complete

*ε*-chainable metric space for $\epsilon \in (0,\mathrm{\infty})$. Let ${\phi}_{L}:X\to L\mathrm{\setminus}\{{0}_{L}\}$ be an arbitrary mapping. Define $d:X\times X\to \mathbb{R}$ as $d(x,y)={max}_{t\in [a,b]}|x(t)-y(t)|$. Assume that, for $x\in X$,

Note that $|hx(t)-hy(t)|<\epsilon $ for all $t\in [a,b]\u27fad(Sx,Sy)<\epsilon $.

Take ${\alpha}_{L}={\phi}_{L}(x)$. Moreover, for some $f\in {[Tx]}_{{\alpha}_{L}}$, we obtain, $T(x)(f)={\phi}_{L}(x)$. Then, by the assumptions, for every $f\in X$ there exists $y\in X$ such that $f=Sy=h\circ y$.

Hence, if for a *MT*-function $\mu :[0,\epsilon )\to [0,1)$, $\mu (d(Sx,Sy))=K(b-a)$, all conditions of Theorem 3.2 are satisfied to find a continuous function $u:[a,b]\to \mathbb{R}$ such that $Su\in {[T(u)]}_{{\alpha}_{L}}$. That is, $h\circ u={\tau}_{u}$ and *u* will be a solution of the integral equation (4). □

**Corollary 8.2**

*Let*${K}_{0}\in \mathbb{R}$, $L:[a,b]\times \mathbb{R}\to \mathbb{R}$

*are a continuous mapping and*$h:\mathbb{R}\to \mathbb{R}$

*a continuous surjection*.

*If there exists*$K<\frac{1}{b-a}$

*such that for*$r,s\in \mathbb{R}$,

*then the initial value problem*

*has a solution in* $(C[a,b],\mathbb{R})$.

*Proof*Considering the integral equation:

we get the required result by Theorem 8.1 for ${L}_{0}(t)={K}_{0}$. □

## 9 An illustrative example

*u*, by constructing the iterative sequences:

and ${x}_{3}(t)={(tant+\frac{17{t}^{3}}{3}+\frac{5{t}^{2}}{2}+(\frac{17{t}^{5}}{3.5}+\frac{5{t}^{4}}{2.4}+\frac{(tant){t}^{2}}{2})+(\frac{17{t}^{7}}{3.5.7}+\frac{5{t}^{6}}{2.4.6}+\frac{(tant){t}^{4}}{2.4}))}^{\frac{1}{7}}$.

is a solution of integral equation (6).

## Declarations

### Acknowledgements

Authors are grateful to the referees for their valuable suggestions and critical remarks for improving this paper.

## Authors’ Affiliations

## References

- Zadeh LA: Fuzzy sets.
*Inf. Control*1965, 8: 338–353. 10.1016/S0019-9958(65)90241-XView ArticleMathSciNetGoogle Scholar - Heilpern S: Fuzzy mappings and fixed point theorems.
*J. Math. Anal. Appl.*1981, 83: 566–569. 10.1016/0022-247X(81)90141-4View ArticleMathSciNetGoogle Scholar - Azam A, Beg I: Common fixed points of fuzzy maps.
*Math. Comput. Model.*2009, 49: 1331–1336. 10.1016/j.mcm.2008.11.011View ArticleMathSciNetGoogle Scholar - Azam A, Arshad M, Beg I: Fixed points of fuzzy contractive and fuzzy locally contractive maps.
*Chaos Solitons Fractals*2009, 42: 2836–2841. 10.1016/j.chaos.2009.04.026View ArticleMathSciNetGoogle Scholar - Azam A, Arshad M, Vetro P: On a pair of fuzzy
*ϕ*-contractive mappings.*Math. Comput. Model.*2010, 52: 207–214. 10.1016/j.mcm.2010.02.010View ArticleMathSciNetGoogle Scholar - Azam A, Arshad M: A note on ‘Fixed point theorems for fuzzy mappings’ by P Vijayaraju and M Marudai.
*Fuzzy Sets Syst.*2010, 161: 1145–1149. 10.1016/j.fss.2009.10.016View ArticleMathSciNetGoogle Scholar - Azam A, Waseem M, Rashid M: Fixed point theorems for fuzzy contractive mappings in quasi-pseudo-metric spaces.
*Fixed Point Theory Appl.*2013., 2013: Article ID 27 10.1186/1687-1812-2013-27Google Scholar - Du WS: On coincidence point and fixed point theorems for nonlinear multivalued maps.
*Topol. Appl.*2012, 159: 49–56. 10.1016/j.topol.2011.07.021View ArticleGoogle Scholar - Hu T: Fixed point theorems for multivalued mappings.
*Can. Math. Bull.*1980, 23: 193–197. 10.4153/CMB-1980-026-2View ArticleGoogle Scholar - Kamran T: Common fixed points theorems for fuzzy mappings.
*Chaos Solitons Fractals*2008, 38: 1378–1382. 10.1016/j.chaos.2008.04.031View ArticleMathSciNetGoogle Scholar - Mizoguchi N, Takahashi W: Fixed point theorems for multi-valued mappings on complete metric spaces.
*J. Math. Anal. Appl.*1989, 188: 141–177.MathSciNetGoogle Scholar - Paul S, Tripathy BC, Das NR: A fixed point theorem in a generalized fuzzy metric space.
*Bol. Soc. Parana. Mat.*2013, 32(2):221–227.View ArticleMathSciNetGoogle Scholar - Suzuki T: Mizoguchi-Takahashi’s fixed point theorem is a real generalization of Nadler’s.
*J. Math. Anal. Appl.*2008, 340: 752–755. 10.1016/j.jmaa.2007.08.022View ArticleMathSciNetGoogle Scholar - Tripathy BC, Baruah A, Et M, Gungor M: On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers.
*Iran. J. Sci. Technol., Trans. A, Sci.*2012, 36(2):147–155.MathSciNetGoogle Scholar - Tripathy BC, Ray GC: On mixed fuzzy topological spaces and countability.
*Soft Comput.*2012, 16: 1691–1695. 10.1007/s00500-012-0853-1View ArticleGoogle Scholar - Tripathy BC, Paul S, Das NR: Banach’s and Kannan’s fixed point results in fuzzy 2-metric spaces.
*Proyecciones*2013, 32(4):363–379.Google Scholar - Edelstein M: An extension of Banach’s contraction principle.
*Proc. Am. Math. Soc.*1961, 12: 7–12.MathSciNetGoogle Scholar - Ahmad J, Azam A, Romaguera S: On locally contractive fuzzy set-valued mappings.
*J. Inequal. Appl.*2014., 2014: Article ID 74Google Scholar - Arshad M, Azam A: Fixed points solutions of sequence of locally contractive fuzzy mappings via iterative process.
*International Conference of Mathematical Sciences*2012. (ICM 2012), 11–14 March, Al Ain, UAEGoogle Scholar - Hu T, Rosen H: Locally contractive and expansive mappings.
*Proc. Am. Math. Soc.*1982, 86: 656–662.MathSciNetGoogle Scholar - Ko HM, Tasi YH: Fixed point theorems for localized property.
*Tamkang J. Math.*1977, 8: 81–85.MathSciNetGoogle Scholar - Kuhfitting PK: Fixed point of locally contractive and nonexpansive set valued mappings.
*Pac. J. Math.*1976, 65: 399–403. 10.2140/pjm.1976.65.399View ArticleGoogle Scholar - Goguen JA:
*L*-Fuzzy sets.*J. Math. Anal. Appl.*1967, 18: 145–174. 10.1016/0022-247X(67)90189-8View ArticleMathSciNetGoogle Scholar - Rashid M, Azam A, Mehmood N:
*L*-Fuzzy fixed points theorems for*L*-fuzzy mappings via${\beta}_{{\mathcal{F}}_{L}}$-admissible pair.*Sci. World J.*2014. 10.1155/2014/853032Google Scholar - Beg I, Azam A: Fixed points of multivalued locally contractive mappings.
*Boll. Unione Mat. Ital., A (7)*1990, 4: 227–233.MathSciNetGoogle Scholar - Nadler SB: Multivalued contraction mappings.
*Pac. J. Math.*1969, 30: 475–488. 10.2140/pjm.1969.30.475View ArticleMathSciNetGoogle Scholar - Du WS: Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi-Takahashi’s condition in quasi-ordered metric spaces.
*Fixed Point Theory Appl.*2010., 2010: Article ID 876372 10.1155/2010/876372Google Scholar - Aubin JP, Cellina A:
*Differential Inclusions*. Springer, Berlin; 1984.View ArticleGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.