Open Access

Some fixed point theorems concerning F-contraction in complete metric spaces

Fixed Point Theory and Applications20142014:210

https://doi.org/10.1186/1687-1812-2014-210

Received: 11 April 2014

Accepted: 10 September 2014

Published: 13 October 2014

Abstract

In this paper, we extend the result of Wardowski (Fixed Point Theory Appl. 2012:94, 2012) by applying some weaker conditions on the self map of a complete metric space and on the mapping F, concerning the contractions defined by Wardowski. With these weaker conditions, we prove a fixed point result for F-Suzuki contractions which generalizes the result of Wardowski.

MSC:74H10, 54H25.

Keywords

fixed pointmetric space F-contraction

1 Introduction and preliminaries

Throughout this article, we denote by the set of all real numbers, by R + the set of all positive real numbers, and by the set of all natural numbers.

In 1922, Polish mathematician Banach [1] proved a very important result regarding a contraction mapping, known as the Banach contraction principle. It is one of the fundamental results in fixed point theory. Due to its importance and simplicity, several authors have obtained many interesting extensions and generalizations of the Banach contraction principle (see [29] and references therein). Subsequently, in 1962, M Edelstein proved the following version of the Banach contraction principle.

Theorem 1.1 [10]

Let (X, d) be a compact metric space and let T : X X be a self-mapping. Assume that d ( T x , T y ) < d ( x , y ) holds for all x , y X with x y . Then T has a unique fixed point in X.

In 2008, Suzuki [2] proved generalized versions of Edelstein’s results in compact metric space as follows.

Theorem 1.2 [2]

Let (X, d) be a compact metric space and let T : X X be a self-mapping. Assume that for all x , y X with x y ,
1 2 d ( x , T x ) < d ( x , y ) d ( T x , T y ) < d ( x , y ) .

Then T has a unique fixed point in X.

In 2012, Wardowski [11] introduce a new type of contractions called F-contraction and prove a new fixed point theorem concerning F-contractions. In this way, Wardowski [11] generalized the Banach contraction principle in a different manner from the well-known results from the literature. Wardowski defined the F-contraction as follows.

Definition 1.3 Let ( X , d ) be a metric space. A mapping T : X X is said to be an F-contraction if there exists τ > 0 such that
x , y X , [ d ( T x , T y ) > 0 τ + F ( d ( T x , T y ) ) F ( d ( x , y ) ) ] ,
(1)
where F : R + R is a mapping satisfying the following conditions:
  1. (F1)

    F is strictly increasing, i.e. for all x , y R + such that x < y , F ( x ) < F ( y ) ;

     
  2. (F2)

    For each sequence { α n } n = 1 of positive numbers, lim n α n = 0 if and only if lim n F ( α n ) = ;

     
  3. (F3)

    There exists k ( 0 , 1 ) such that lim α 0 + α k F ( α ) = 0 .

     

We denote by , the set of all functions satisfying the conditions (F1)-(F3). For examples of the function F the reader is referred to [12] and [11].

Remark 1.4 From (F1) and (1) it is easy to conclude that every F-contraction is necessarily continuous.

Wardowski [11] stated a modified version of the Banach contraction principle as follows.

Theorem 1.5 [11]

Let ( X , d ) be a complete metric space and let T : X X be an F-contraction. Then T has a unique fixed point x X and for every x X the sequence { T n x } n N converges to x .

Very recently, Secelean [12] proved the following lemma.

Lemma 1.6 [12]

Let F : R + R be an increasing mapping and { α n } n = 1 be a sequence of positive real numbers. Then the following assertions hold:
  1. (a)

    if lim n F ( α n ) = , then lim n α n = 0 ;

     
  2. (b)

    if inf F = , and lim n α n = 0 , then lim n F ( α n ) = .

     

By proving Lemma 1.6, Secelean showed that the condition (F2) in Definition 1.3 can be replaced by an equivalent but a more simple condition,

(F2′) inf F =

or, also, by

(F2″) there exists a sequence { α n } n = 1 of positive real numbers such that lim n F ( α n ) = .

Remark 1.7 Define F B : R + R by F B ( α ) = ln α , then F B F . Note that with F = F B the F-contraction reduces to a Banach contraction. Therefore, the Banach contractions are a particular case of F-contractions. Meanwhile there exist F-contractions which are not Banach contractions (see [11, 12]).

In this paper, we use the following condition instead of the condition (F3) in Definition 1.3:

(F3′) F is continuous on ( 0 , ) .

We denote by F the set of all functions satisfying the conditions (F1), (F2′), and (F3′).

Example 1.8 Let F 1 ( α ) = 1 α , F 2 ( α ) = 1 α + α , F 3 ( α ) = 1 1 e α , F 4 ( α ) = 1 e α e α . Then F 1 , F 2 , F 3 , F 4 F .

Remark 1.9 Note that the conditions (F3) and (F3′) are independent of each other. Indeed, for p 1 , F ( α ) = 1 α p satisfies the conditions (F1) and (F2) but it does not satisfy (F3), while it satisfies the condition (F3′). Therefore, F F . Again, for a > 1 , t ( 0 , 1 / a ) , F ( α ) = 1 ( α + [ α ] ) t , where [ α ] denotes the integral part of α, satisfies the conditions (F1) and (F2) but it does not satisfy (F3′), while it satisfies the condition (F3) for any k ( 1 / a , 1 ) . Therefore, F F . Also, if we take F ( α ) = ln α , then F F and F F . Therefore, F F .

In view of Remark 1.9, it is meaningful to consider the result of Wardowski [11] with the mappings F F instead F F . Also, we define the F-Suzuki contraction as follows and we give a new version of Theorem 1.5.

Definition 1.10 Let ( X , d ) be a metric space. A mapping T : X X is said to be an F-Suzuki contraction if there exists τ > 0 such that for all x , y X with T x T y
1 2 d ( x , T x ) < d ( x , y ) τ + F ( d ( T x , T y ) ) F ( d ( x , y ) ) ,

where F F .

2 Main results

Theorem 2.1 Let T be a self-mapping of a complete metric space X into itself. Suppose F F and there exists τ > 0 such that
x , y X , [ d ( T x , T y ) > 0 τ + F ( d ( T x , T y ) ) F ( d ( x , y ) ) ] .

Then T has a unique fixed point x X and for every x 0 X the sequence { T n x 0 } n = 1 converges to x .

Proof Choose x 0 X and define a sequence { x n } n = 1 by
x 1 = T x 0 , x 2 = T x 1 = T 2 x 0 , , x n + 1 = T x n = T n + 1 x 0 , n N .
(2)
If there exists n N such that d ( x n , T x n ) = 0 , the proof is complete. So, we assume that
0 < d ( x n , T x n ) = d ( T x n 1 , T x n ) , n N .
(3)
For any n N we have
τ + F ( d ( T x n 1 , T x n ) ) F ( d ( x n 1 , x n ) ) ,
i.e.,
F ( d ( T x n 1 , T x n ) ) F ( d ( x n 1 , x n ) ) τ .
Repeating this process, we get
F ( d ( T x n 1 , T x n ) ) F ( d ( x n 1 , x n ) ) τ = F ( d ( T x n 2 , T x n 1 ) ) τ F ( d ( x n 2 , x n 1 ) ) 2 τ = F ( d ( T x n 3 , T x n 2 ) ) 2 τ F ( d ( x n 3 , x n 2 ) ) 3 τ F ( d ( x 0 , x 1 ) ) n τ .
(4)
From (4), we obtain lim n F ( d ( T x n 1 , T x n ) ) = , which together with (F2′) and Lemma 1.6 gives lim n d ( T x n 1 , T x n ) = 0 , i.e.,
lim n d ( x n , T x n ) = 0 .
(5)
Now, we claim that { x n } n = 1 is a Cauchy sequence. Arguing by contradiction, we assume that there exist ϵ > 0 and sequences { p ( n ) } n = 1 and { q ( n ) } n = 1 of natural numbers such that
p ( n ) > q ( n ) > n , d ( x p ( n ) , x q ( n ) ) ϵ , d ( x p ( n ) 1 , x q ( n ) ) < ϵ , n N .
(6)
So, we have
ϵ d ( x p ( n ) , x q ( n ) ) d ( x p ( n ) , x p ( n ) 1 ) + d ( x p ( n ) 1 , x q ( n ) ) d ( x p ( n ) , x p ( n ) 1 ) + ϵ = d ( x p ( n ) 1 , T x p ( n ) 1 ) + ϵ .
It follows from (5) and the above inequality that
lim n d ( x p ( n ) , x q ( n ) ) = ϵ .
(7)
On the other hand, from (5) there exists N N , such that
d ( x p ( n ) , T x p ( n ) ) < ϵ 4 and d ( x q ( n ) , T x q ( n ) ) < ϵ 4 , n N .
(8)
Next, we claim that
d ( T x p ( n ) , T x q ( n ) ) = d ( x p ( n ) + 1 , x q ( n ) + 1 ) > 0 , n N .
(9)
Arguing by contradiction, there exists m N such that
d ( x p ( m ) + 1 , x q ( m ) + 1 ) = 0 .
(10)
It follows from (6), (8), and (10) that
ϵ d ( x p ( m ) , x q ( m ) ) d ( x p ( m ) , x p ( m ) + 1 ) + d ( x p ( m ) + 1 , x q ( m ) ) d ( x p ( m ) , x p ( m ) + 1 ) + d ( x p ( m ) + 1 , x q ( m ) + 1 ) + d ( x q ( m ) + 1 , x q ( m ) ) = d ( x p ( m ) , T x p ( m ) ) + d ( x p ( m ) + 1 , x q ( m ) + 1 ) + d ( x q ( m ) , T x q ( m ) ) < ϵ 4 + 0 + ϵ 4 = ϵ 2 .
This contradiction establishes the relation (9). Therefore, it follows from (9) and the assumption of the theorem that
τ + F ( d ( T x p ( n ) , T x q ( n ) ) ) F ( d ( x p ( n ) , x q ( n ) ) ) , n N .
(11)
From (F3′), (7), and (11), we get τ + F ( ϵ ) F ( ϵ ) . This contradiction shows that { x n } n = 1 is a Cauchy sequence. By completeness of ( X , d ) , { x n } n = 1 converges to some point x in X. Finally, the continuity of T yields
d ( T x , x ) = lim n d ( T x n , x n ) = lim n d ( x n + 1 , x n ) = d ( x , x ) = 0 .
Now, let us to show that T has at most one fixed point. Indeed, if x , y X be two distinct fixed points of T, that is, T x = x y = T y . Therefore,
d ( T x , T y ) = d ( x , y ) > 0 ,
then we get
F ( d ( x , y ) ) = F ( d ( T x , T y ) ) < τ + F ( d ( T x , T y ) ) F ( d ( x , y ) ) ,

which is a contradiction. Therefore, the fixed point is unique. □

Theorem 2.2 Let ( X , d ) be a complete metric space and T : X X be an F-Suzuki contraction. Then T has a unique fixed point x X and for every x 0 X the sequence { T n x 0 } n = 1 converges to x .

Proof Choose x 0 X and define a sequence { x n } n = 1 by
x 1 = T x 0 , x 2 = T x 1 = T 2 x 0 , , x n + 1 = T x n = T n + 1 x 0 , n N .
(12)
If there exists n N such that d ( x n , T x n ) = 0 , the proof is complete. So, we assume that
0 < d ( x n , T x n ) , n N .
Therefore,
1 2 d ( x n , T x n ) < d ( x n , T x n ) , n N .
(13)
For any n N we have
τ + F ( d ( T x n , T 2 x n ) ) F ( d ( x n , T x n ) ) ,
i.e.,
F ( d ( x n + 1 , T x n + 1 ) ) F ( d ( x n , T x n ) ) τ .
Repeating this process, we get
F ( d ( x n , T x n ) ) F ( d ( x n 1 , T x n 1 ) ) τ F ( d ( x n 2 , T x n 2 ) ) 2 τ F ( d ( x n 3 , T x n 3 ) ) 3 τ F ( d ( x 0 , T x 0 ) ) n τ .
(14)
From (14), we obtain lim m F ( d ( x n , T x n ) ) = , which together with (F2′) and Lemma 1.6 gives
lim m d ( x n , T x n ) = 0 .
(15)
Now, we claim that { x n } n = 1 is a Cauchy sequence. Arguing by contradiction, we assume that there exist ϵ > 0 and sequences { p ( n ) } n = 1 and { q ( n ) } n = 1 of natural numbers such that
p ( n ) > q ( n ) > n , d ( x p ( n ) , x q ( n ) ) ϵ , d ( x p ( n ) 1 , x q ( n ) ) < ϵ , n N .
(16)
So, we have
ϵ d ( x p ( n ) , x q ( n ) ) d ( x p ( n ) , x p ( n ) 1 ) + d ( x p ( n ) 1 , x q ( n ) ) d ( x p ( n ) , x p ( n ) 1 ) + ϵ = d ( x p ( n ) 1 , T x p ( n ) 1 ) + ϵ .
It follows from (15) and the above inequality that
lim n d ( x p ( n ) , x q ( n ) ) = ϵ .
(17)
From (15) and (17), we can choose a positive integer N N such that
1 2 d ( x p ( n ) , T x p ( n ) ) < 1 2 ϵ < d ( x p ( n ) , x q ( n ) ) , n N .
So, from the assumption of the theorem, we get
τ + F ( d ( T x p ( n ) , T x q ( n ) ) ) F ( d ( x p ( n ) , x q ( n ) ) ) , n N .
It follows from (12) that
τ + F ( d ( x p ( n ) + 1 , T x q ( n ) + 1 ) ) F ( d ( x p ( n ) , x q ( n ) ) ) , n N .
(18)
From (F3′), (15), and (18), we get τ + F ( ϵ ) F ( ϵ ) . This contradiction shows that { x n } n = 1 is a Cauchy sequence. By completeness of ( X , d ) , { x n } n = 1 converges to some point x in X. Therefore,
lim n d ( x n , x ) = 0 .
(19)
Now, we claim that
1 2 d ( x n , T x n ) < d ( x n , x ) or 1 2 d ( T x n , T 2 x n ) < d ( T x n , x ) , n N .
(20)
Again, assume that there exists m N such that
1 2 d ( x m , T x m ) d ( x m , x ) and 1 2 d ( T x m , T 2 x m ) d ( T x m , x ) .
(21)
Therefore,
2 d ( x m , x ) d ( x m , T x m ) d ( x m , x ) + d ( x , T x m ) ,
which implies that
d ( x m , x ) d ( x , T x m ) .
(22)
It follows from (21) and (22) that
d ( x m , x ) d ( x , T x m ) 1 2 d ( T x m , T 2 x m ) .
(23)
Since 1 2 d ( x m , T x m ) < d ( x m , T x m ) , by the assumption of the theorem, we get
τ + F ( d ( T x m , T 2 x m ) ) F ( d ( x m , T x m ) ) .
Since τ > 0 , this implies that
F ( d ( T x m , T 2 x m ) ) < F ( d ( x m , T x m ) ) .
So, from (F1), we get
d ( T x m , T 2 x m ) < d ( x m , T x m ) .
(24)
It follows from (21), (23), and (24) that
d ( T x m , T 2 x m ) < d ( x m , T x m ) d ( x m , x ) + d ( x , T x m ) 1 2 d ( T x m , T 2 x m ) + 1 2 d ( T x m , T 2 x m ) = d ( T x n , T 2 x n ) .
This is a contradiction. Hence, (20) holds. So, from (20), for every n N , either
τ + F ( d ( T x n , T x ) ) F ( d ( x n , x ) ) ,
or
τ + F ( d ( T 2 x n , T x ) ) F ( d ( T x n , x ) ) = F ( d ( x n + 1 , x ) )
holds. In the first case, from (19), (F2′), and Lemma 1.6, we obtain
lim n F ( d ( T x n , T x ) ) = .
It follows from (F2′) and Lemma 1.6 that lim n d ( T x n , T x ) = 0 . Therefore,
d ( x , T x ) = lim n d ( x n + 1 , T x ) = lim n d ( T x n , T x ) = 0 .
Also, in the second case, from (19), (F2′), and Lemma 1.6, we obtain
lim n F ( d ( T 2 x n , T x ) ) = .
It follows from (F2′) and Lemma 1.6 that lim n d ( T x n , T x ) = 0 . Therefore,
d ( x , T x ) = lim n d ( x n + 2 , T x ) = lim n d ( T 2 x n , T x ) = 0 .
Hence, x is a fixed point of T. Now let us show that T has at most one fixed point. Indeed, if x , y X are two distinct fixed points of T, that is, T x = x y = T y , then d ( x , y ) > 0 . So, we have 0 = 1 2 d ( x , T x ) < d ( x , y ) and from the assumption of the theorem, we obtain
F ( d ( x , y ) ) = F ( d ( T x , T y ) ) < τ + F ( d ( T x , T y ) ) F ( d ( x , y ) ) ,

which is a contradiction. Thus, the fixed point is unique. □

Example 2.3 Consider the sequence { S n } n N as follows:
S 1 = 1 × 2 , S 2 = 1 × 2 + 2 × 3 , , S n = 1 × 2 + 2 × 3 + + n ( n + 1 ) = n ( n + 1 ) ( n + 2 ) 3 , .
Let X = { S n : n N } and d ( x , y ) = | x y | . Then ( X , d ) is complete metric space. Define the mapping T : X X by T ( S 1 ) = S 1 and T ( S n ) = S n 1 for every n > 1 . Since
lim n d ( T ( S n ) , T ( S 1 ) ) d ( S n , S 1 ) = lim n S n 1 2 S n 2 = ( n 1 ) n ( n + 1 ) 6 n ( n + 1 ) ( n + 2 ) 6 = 1 ,
T is not a Banach contraction and a Suzuki contraction. On the other hand taking F ( α ) = 1 α + α F , we obtain the result that T is an F-contraction with τ = 6 . To see this, let us consider the following calculation. First observe that
1 2 d ( S n , T S n ) < d ( S n , S m ) [ ( 1 = n < m ) ( 1 m < n ) ( 1 < n < m ) ] .
For 1 = n < m , we have
| T ( S m ) T ( S 1 ) | = | S m 1 S 1 | = 2 × 3 + 3 × 4 + + ( m 1 ) m , | S m S 1 | = 2 × 3 + 3 × 4 + + m ( m + 1 ) .
(25)
Since m > 1 and 1 2 × 3 + 3 × 4 + + ( m 1 ) m < 1 2 × 3 + 3 × 4 + + m ( m + 1 ) , we have
6 1 2 × 3 + 3 × 4 + + ( m 1 ) m + [ 2 × 3 + 3 × 4 + + ( m 1 ) m ] < 6 1 2 × 3 + 3 × 4 + + m ( m + 1 ) + [ 2 × 3 + 3 × 4 + + ( m 1 ) m ] 1 2 + 3 + + m + [ 2 × 3 + 3 × 4 + + ( m 1 ) m ] + m ( m + 1 ) = 1 2 + 3 + + m + [ 2 × 3 + 3 × 4 + + ( m 1 ) m + m ( m + 1 ) ] .
So, from (25), we get
6 1 | T ( S m ) T ( S 1 ) | + | T ( S m ) T ( S 1 ) | < 1 | S m S 1 | + | S m S 1 | .
For 1 m < n , similar to 1 = n < m , we have
6 1 | T ( S m ) T ( S 1 ) | + | T ( S m ) T ( S 1 ) | < 1 | S m S 1 | + | S m S 1 | .
For 1 < n < m , we have
| T ( S m ) T ( S n ) | = n ( n + 1 ) + ( n + 1 ) ( n + 2 ) + + ( m 1 ) m , | S m S n | = ( n + 1 ) ( n + 2 ) + ( n + 2 ) ( n + 3 ) + + m ( m + 1 ) .
(26)
Since m > n > 1 , we have
( m + 1 ) m ( n + 2 ) ( n + 1 ) = n ( n + 1 ) + 2 ( n + 1 ) n ( n + 1 ) + 6 .
We know that 1 n ( n + 1 ) + ( n + 1 ) ( n + 2 ) + + ( m 1 ) m < 1 ( n + 1 ) ( n + 2 ) + ( n + 2 ) ( n + 3 ) + + m ( m + 1 ) . Therefore
6 1 n ( n + 1 ) + ( n + 1 ) ( n + 2 ) + + ( m 1 ) m + [ n ( n + 1 ) + ( n + 1 ) ( n + 2 ) + + ( m 1 ) m ] < 6 1 ( n + 1 ) ( n + 2 ) + ( n + 2 ) ( n + 3 ) + + m ( m + 1 ) + [ n ( n + 1 ) + ( n + 1 ) ( n + 2 ) + + ( m 1 ) m ] = 1 ( n + 1 ) ( n + 2 ) + ( n + 2 ) ( n + 3 ) + m ( m + 1 ) + 6 + n ( n + 1 ) + [ ( n + 1 ) ( n + 2 ) + + ( m 1 ) m ] 1 ( n + 1 ) ( n + 2 ) + ( n + 2 ) ( n + 3 ) + + m ( m + 1 ) + m ( m + 1 ) + [ ( n + 1 ) ( n + 2 ) + + ( m 1 ) m ] = 1 ( n + 1 ) ( n + 2 ) + ( n + 2 ) ( n + 3 ) + + m ( m + 1 ) + [ ( n + 1 ) ( n + 2 ) + + ( m 1 ) m ] .
So from (26), we get
6 1 | T ( S m ) T ( S n ) | + | T ( S m ) T ( S n ) | < 1 | S m S n | + | S m S n | .

Therefore τ + F ( d ( T ( S m ) , T ( S n ) ) ) d ( S m , S n ) for all m , n N . Hence T is an F-contraction and T ( S 1 ) = S 1 .

For F 1 ( α ) = ln ( α ) , F 2 ( α ) = ln ( α ) + α , F 3 ( α ) = 1 α + α , and F 4 ( α ) = 1 α + [ α ] + α in the above example, we compare the rate of convergence of the Banach contraction ( F 1 -contraction) and F-contractions for F 2 F F , F 3 ( F F ) , and F 4 ( F F ) in Table 1.
Table 1

The generated iterations start from a point x 0 = S 30 . C F denotes F ( d ( S 1 , S n ) ) F ( d ( T ( S 1 ) , T ( S n ) ) )

n

x n

C F 1

C F 2

C F 3

C F 4

3

7308

1.098612

13.09861

12.111111

12.12201

4

6552

0.727214

20.74721

20.02924

20.05196

5

5850

0.581922

30.58192

30.01161

30.02896

27

20

0.109231

756.1092

756.0000

756.0005

28

8

0.105388

812.1054

812.0000

812.0004

29

2

0.101807

870.1018

870.0000

870.0004

30

2

0.09846093

930.0983

930

930.0004

31

2

0.0923895

1056.092

1056

1056

32

2

0.08962648

1122.09

1122

1122

33

2

0.08702411

1190.087

1190

1190

314

2

0.00953902

98910.01

98910

98910

315

2

0.00950879

99540.01

99540

99540

316

2

0.00947875

100172

100172

100172

317

2

0.00944889

100806

100806

100806

318

2

0.00941922

101442

101442

101442

3 × 103

2

0.00099983

9003000

9003000

9003000

n→∞

T(2)=2

tends to 0

τ = 1

τ = 1

τ = 1

Declarations

Acknowledgements

The second author was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (Under NUR Project ‘Theoretical and Computational fixed points for Optimization problems’ No. 57000621).

Authors’ Affiliations

(1)
Department of Mathematics, University of Bonab
(2)
Department of Mathematics, Faculty of Science, King Mongkutís University of Technology Thonburi (KMUTT)

References

  1. Banach B: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3: 133–181.Google Scholar
  2. Suzuki T: A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2009, 71: 5313–5317. 10.1016/j.na.2009.04.017View ArticleMathSciNetGoogle Scholar
  3. Suzuki T: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 2001, 253: 440–458. 10.1006/jmaa.2000.7151View ArticleMathSciNetGoogle Scholar
  4. Suzuki T: Several fixed point theorems concerning τ -distance. Fixed Point Theory Appl. 2004, 2004: 195–209.View ArticleGoogle Scholar
  5. Tataru D: Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 1992, 163: 345–392. 10.1016/0022-247X(92)90256-DView ArticleMathSciNetGoogle Scholar
  6. Vályi I: A general maximality principle and a fixed point theorem in uniform space. Period. Math. Hung. 1985, 16: 127–134. 10.1007/BF01857592View ArticleGoogle Scholar
  7. Włodarczyk K, Plebaniak R: Quasigauge spaces with generalized quasipseudodistances and periodic points of dissipative set-valued dynamic systems. Fixed Point Theory Appl. 2011., 2011: Article ID 712706Google Scholar
  8. Włodarczyk K, Plebaniak P: Kannan-type contractions and fixed points in uniform spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 90Google Scholar
  9. Włodarczyk K, Plebaniak R: Contractivity of Leader type and fixed points in uniform spaces with generalized pseudodistances. J. Math. Anal. Appl. 2012, 387: 533–541. 10.1016/j.jmaa.2011.09.006View ArticleMathSciNetGoogle Scholar
  10. Edelstein M: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1962, 37: 74–79.View ArticleMathSciNetGoogle Scholar
  11. Wardowski D: Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 94Google Scholar
  12. Secelean NA: Iterated function systems consisting of F -contractions. Fixed Point Theory Appl. 2013., 2013: Article ID 277 10.1186/1687-1812-2013-277Google Scholar

Copyright

© Piri and Kumam; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.