Skip to main content

Some coupled fixed-point theorems in two quasi-partial metric spaces

Abstract

The purpose of this paper is to prove some new coupled common fixed-point theorems for mappings defined on a set equipped with two quasi-partial metrics. We also provide illustrative examples in support of our new results.

MSC:47H10, 54H25.

1 Introduction and preliminaries

In 1994, Matthews [1] introduced the notion of partial metric spaces as follows.

Definition 1.1 [1]

A partial metric on a nonempty set X is a function p:X×X⟶ R + such that for all x,y,z∈X:

(p1) x=y⇔p(x,x)=p(x,y)=p(y,y),

(p2) p(x,x)≤p(x,y),

(p3) p(x,y)=p(y,x),

(p4) p(x,y)≤p(x,z)+p(z,y)−p(z,z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric on X.

In [1], Matthews extended the Banach contraction principle from metric spaces to partial metric spaces. Based on the notion of partial metric spaces, several authors (for example, [2–32]) obtained some fixed-point results for mappings satisfying different contractive conditions. Very recently, Haghi et al. [33] showed in their interesting paper that some fixed-point theorems in partial metric spaces can be obtained from metric spaces.

Karapınar et al. [34] introduced the concept of quasi-partial metric spaces and studied some fixed-point problems on quasi-partial metric spaces. The notion of a quasi-partial metric space is defined as follows.

Definition 1.2 [34]

A quasi-partial metric on nonempty set X is a function q:X×X→ R + which satisfies:

(QPM1) If q(x,x)=q(x,y)=q(y,y), then x=y,

(QPM2) q(x,x)≤q(x,y),

(QPM3) q(x,x)≤q(y,x), and

(QPM4) q(x,y)+q(z,z)≤q(x,z)+q(z,y)

for all x,y,z∈X.

A quasi-partial metric space is a pair (X,q) such that X is a nonempty set and q is a quasi-partial metric on X.

Let q be a quasi-partial metric on set X. Then

d q (x,y)=q(x,y)+q(y,x)−q(x,x)−q(y,y)

is a metric on X.

Definition 1.3 [34]

Let (X,q) be a quasi-partial metric space. Then

  1. (i)

    A sequence { x n } converges to a point x∈X if and only if

    q(x,x)= lim n → ∞ q(x, x n )= lim n → ∞ q( x n ,x).
  2. (ii)

    A sequence { x n } is called a Cauchy sequence if lim n , m → ∞ q( x n , x m ) and lim n , m → ∞ q( x m , x n ) exist (and are finite).

  3. (iii)

    The quasi-partial metric space (X,q) is said to be complete if every Cauchy sequence { x n } in X converges, with respect to τ q , to a point x∈X such that

    q(x,x)= lim n , m → ∞ q( x n , x m )= lim n , m → ∞ q( x n , x m ).

Bhaskar and Lakshmikantham [35] introduced the concept of a coupled fixed point and studied some nice coupled fixed-point theorems. Later, Lakshmikantham and Ćirić [36] introduced the notion of a coupled coincidence point of mappings. For some works on a coupled fixed point, we refer the reader to [37–62].

Definition 1.4 [35]

Let X be a nonempty set. We call an element (x,y)∈X×X a coupled fixed point of the mapping F:X×X→X if F(x,y)=x and F(y,x)=y.

Definition 1.5 [36]

An element (x,y)∈X×X is called

  1. (i)

    a coupled coincidence point of the mapping F:X×X→X and g:X→X if F(x,y)=gx and F(y,x)=gy; in this case (gx,gy) is called coupled point of coincidence of mappings F and g;

  2. (ii)

    a common coupled fixed point of mappings F:X×X→X and g:X→X if F(x,y)=gx=x and F(y,x)=gy=y;

  3. (iii)

    a common coupled fixed point of mappings F:X×X→X and g:X→X if F(x,y)=gx=x and F(y,x)=gy=y.

Abbas et al. [37] introduced the concept of w-compatible mappings as follows.

Definition 1.6 [37]

Let X be a nonempty set. We say that the mappings F:X×X→X and g:X→X are w-compatible if gF(x,y)=F(gx,gy) whenever gx=F(x,y) and gy=F(y,x).

Very recently, Shatanawi and Pitea [38] obtained some common coupled fixed-point results for a pair of mappings in quasi-partial metric space.

Theorem 1.1 (see [[38], Theorem 2.1])

Let (X,q) be a quasi-partial metric space, g:X→X and F:X×X→X be two mappings. Suppose that there exist k 1 , k 2 , and k 3 in [0,1) with k 1 + k 2 + k 3 <1 such that the condition

q ( F ( x , y ) , F ( u , v ) ) + q ( F ( y , x ) , F ( v , u ) ) ≤ k 1 [ q ( g x , g u ) + q ( g y , g v ) ] + k 2 [ q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) ] + k 3 [ q ( g u , F ( u , v ) ) + q ( g v , F ( v , u ) ) ]
(1.1)

holds for all x,y,u,v∈X. Also, suppose we have the following hypotheses:

  1. (i)

    F(X×X)⊂g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x,y) satisfying gx=F(x,y) and gy=F(y,x).

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the form (x,x).

The aim of this article is to prove some new coupled common fixed-point theorems for mappings defined on a set equipped with two quasi-partial metrics.

The following lemma is crucial in our work.

Lemma 1.1 [38]

Let (X,q) be a quasi-partial metric space. Then the following statements hold true:

  1. (i)

    If q(x,y)=0, then x=y.

  2. (ii)

    If x≠y, then q(x,y)>0 and q(y,x)>0.

In this manuscript, we generalize, improve, enrich, and extend the above coupled common fixed-point results. We also state some examples to illustrate our results. This paper can be considered as a continuation of the remarkable works of Aydi [12], Karapınar et al. [34], and Shatanawi and Pitea [38].

2 Main results

Now we shall prove our main results.

Theorem 2.1 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and let F:X×X→X, g:X→X be two mappings. Suppose that there exist k 1 , k 2 , k 3 , k 4 , and k 5 in [0,1) with

k 1 + k 2 + k 3 +2 k 4 + k 5 <1
(2.1)

such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) + q 1 ( F ( y , x ) , F ( v , u ) ) ≤ k 1 [ q 2 ( g x , g u ) + q 2 ( g y , g v ) ] + k 2 [ q 2 ( g x , F ( x , y ) ) + q 2 ( g y , F ( y , x ) ) ] + k 3 [ q 2 ( g u , F ( u , v ) ) + q 2 ( g v , F ( v , u ) ) ] + k 4 [ q 2 ( g x , F ( u , v ) ) + q 2 ( g y , F ( v , u ) ) ] + k 5 [ q 2 ( g u , F ( x , y ) ) + q 2 ( g v , F ( y , x ) ) ]
(2.2)

holds for all x,y,u,v∈X. Also, suppose we have the following hypotheses:

  1. (i)

    F(X×X)⊂g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a coincidence point (x,y) satisfying gx=F(x,y)=F(y,x)=gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the form (u,u).

Proof Let x 0 , y 0 ∈X. Since F(X×X)⊂g(X), we can choose x 1 , y 1 ∈X such that g x 1 =F( x 0 , y 0 ) and g y 1 =F( y 0 , x 0 ). Similarly, we can choose x 2 , y 2 ∈X such that g x 2 =F( x 1 , y 1 ) and g y 2 =F( y 1 , x 1 ). Continuing in this way we construct two sequences { x n } and { y n } in X such that

g x n + 1 =F( x n , y n )andg y n + 1 =F( y n , x n ),∀n≥0.
(2.3)

It follows from (2.2) and (QPM4) that

q 1 ( g x n , g x n + 1 ) + q 1 ( g y n , g y n + 1 ) = q 1 ( F ( x n − 1 , y n − 1 ) , F ( x n , y n ) ) + q 1 ( F ( y n − 1 , x n − 1 ) , F ( y n , x n ) ) ≤ k 1 [ q 2 ( g x n − 1 , g x n ) + q 2 ( g y n − 1 , g y n ) ] + k 2 [ q 2 ( g x n − 1 , F ( x n − 1 , y n − 1 ) + q 2 ( g y n − 1 , F ( y n − 1 , x n − 1 ) ) ) ] + k 3 [ q 2 ( g x n , F ( x n , y n ) ) + q 2 ( g y n , F ( y n , x n ) ) ] + k 4 [ q 2 ( g x n − 1 , F ( x n , y n ) ) + q 2 ( g y n − 1 , F ( y n , x n ) ) ] + k 5 [ q 2 ( g x n , F ( x n − 1 , y n − 1 ) ) + q 2 ( g y n , F ( y n − 1 , x n − 1 ) ) ] = ( k 1 + k 2 ) [ q 2 ( g x n − 1 , g x n ) + q 2 ( g y n − 1 , g y n ) ] + k 3 [ q 2 ( g x n , g x n + 1 ) + q 2 ( g y n , g y n + 1 ) ] + k 4 [ q 2 ( g x n − 1 , g x n + 1 ) + q 2 ( g y n − 1 , g y n + 1 ) ] + k 5 [ q 2 ( g x n , g x n ) + q 2 ( g y n , g y n ) ] ≤ ( k 1 + k 2 ) [ q 2 ( g x n − 1 , g x n ) + q 2 ( g y n − 1 , g y n ) ] + k 3 [ q 2 ( g x n , g x n + 1 ) + q 2 ( g y n , g y n + 1 ) ] + k 4 [ q 2 ( g x n − 1 , g x n ) + q 2 ( g x n , g x n + 1 ) − q 2 ( g x n , g x n ) + q 2 ( g y n − 1 , g y n ) + q 2 ( g y n , g y n + 1 ) − q 2 ( g y n , g y n ) ] + k 5 [ q 2 ( g x n , g x n + 1 ) + q 2 ( g y n , g y n + 1 ) ] ≤ ( k 1 + k 2 + k 4 ) [ q 2 ( g x n − 1 , g x n ) + q 2 ( g y n − 1 , g y n ) ] + ( k 3 + k 4 + k 5 ) [ q 2 ( g x n , g x n + 1 ) + q 2 ( g y n , g y n + 1 ) ] ≤ ( k 1 + k 2 + k 4 ) [ q 1 ( g x n − 1 , g x n ) + q 1 ( g y n − 1 , g y n ) ] + ( k 3 + k 4 + k 5 ) [ q 1 ( g x n , g x n + 1 ) + q 1 ( g y n , g y n + 1 ) ] ,

which implies that

q 1 (g x n ,g x n + 1 )+ q 1 (g y n ,g y n + 1 )≤ k 1 + k 2 + k 4 1 − k 3 − k 4 − k 5 [ q 1 ( g x n − 1 , g x n ) + q 1 ( g y n − 1 , g y n ) ] .
(2.4)

Put k= k 1 + k 2 + k 4 1 − k 3 − k 4 − k 5 . Obviously, 0≤k<1. By repetition of the above inequality (2.4) n times, we get

q 1 (g x n ,g x n + 1 )+ q 1 (g y n ,g y n + 1 )≤ k n [ q 1 ( g x 0 , g x 1 ) + q 1 ( g y 0 , g y 1 ) ] .
(2.5)

Next, we shall prove that {g x n } and {g y n } are Cauchy sequences in g(X).

In fact, for each n,m∈N, m>n, from (QPM4) and (2.5) we have

q 1 ( g x n , g x m ) + q 1 ( g y n , g y m ) ≤ ∑ i = n m − 1 [ q 1 ( g x i , g x i + 1 ) + q 1 ( g y i , g y i + 1 ) ] ≤ ∑ i = n m − 1 k i [ q 1 ( g x 0 , g x 1 ) + q 1 ( g y 0 , g y 1 ) ] ≤ k n 1 − k [ q 1 ( g x 0 , g x 1 ) + q 1 ( g y 0 , g y 1 ) ] .
(2.6)

This implies that

lim n , m → ∞ [ q 1 ( g x n , g x m ) + q 1 ( g y n , g y m ) ] =0,

and so

lim n , m → ∞ q 1 (g x n ,g x m )=0and lim n , m → ∞ q 1 (g y n ,g y m )=0.
(2.7)

By similar arguments as above, we can show that

lim n , m → ∞ q 1 (g x m ,g x n )=0and lim n , m → ∞ q 1 (g y m ,g y n )=0.
(2.8)

Hence {g x n } and {g y n } are Cauchy sequences in (gX, q 1 ). Since (gX, q 1 ) is complete, there exist gx,gy∈g(X) such that {g x n } and {g y n } converge to gx and gy with respect to τ q 1 , that is,

q 1 ( g x , g x ) = lim n → ∞ q 1 ( g x , g x n ) = lim n → ∞ q 1 ( g x n , g x ) = lim n , m → ∞ q 1 ( g x m , g x n ) = lim n , m → ∞ q 1 ( g x n , g x m )
(2.9)

and

q 1 ( g y , g y ) = lim n → ∞ q 1 ( g y , g y n ) = lim n → ∞ q 1 ( g y n , g y ) = lim n , m → ∞ q 1 ( g y m , g y n ) = lim n , m → ∞ q 1 ( g y n , g y m ) .
(2.10)

Combining (2.7)-(2.10), we have

q 1 ( g x , g x ) = lim n → ∞ q 1 ( g x , g x n ) = lim n → ∞ q 1 ( g x n , g x ) = lim n , m → ∞ q 1 ( g x m , g x n ) = lim n , m → ∞ q 1 ( g x n , g x m ) = 0
(2.11)

and

q 1 ( g y , g y ) = lim n → ∞ q 1 ( g y , g y n ) = lim n → ∞ q 1 ( g y n , g y ) = lim n , m → ∞ q 1 ( g y m , g y n ) = lim n , m → ∞ q 1 ( g y n , g y m ) = 0 .
(2.12)

By (QPM4) we obtain

q 1 ( g x n + 1 , F ( x , y ) ) ≤ q 1 ( g x n + 1 , g x ) + q 1 ( g x , F ( x , y ) ) − q 1 ( g x , g x ) ≤ q 1 ( g x n + 1 , g x ) + q 1 ( g x , F ( x , y ) ) ≤ q 1 ( g x n + 1 , g x ) + q 1 ( g x , g x n + 1 ) + q 1 ( g x n + 1 , F ( x , y ) ) − q 1 ( g x n + 1 , g x n + 1 ) ≤ q 1 ( g x n + 1 , g x ) + q 1 ( g x , g x n + 1 ) + q 1 ( g x n + 1 , F ( x , y ) ) .

Letting n→∞ in the above inequalities and using (2.11), we have

lim n → ∞ q 1 ( g x n + 1 , F ( x , y ) ) ≤ q 1 ( g x , F ( x , y ) ) ≤ lim n → ∞ q 1 ( g x n + 1 , F ( x , y ) ) .

That is,

lim n → ∞ q 1 ( g x n + 1 , F ( x , y ) ) = q 1 ( g x , F ( x , y ) ) .
(2.13)

Similarly, using (2.12) we have

lim n → ∞ q 1 ( g y n + 1 , F ( y , x ) ) = q 1 ( g y , F ( y , x ) ) .
(2.14)

Now we prove that F(x,y)=gx and F(y,x)=gy. In fact, it follows from (2.2) and (2.3) that

q 1 ( g x n + 1 , F ( x , y ) ) + q 1 ( g y n + 1 , F ( y , x ) ) = q 1 ( F ( x n , y n ) , F ( x , y ) ) + q 1 ( F ( y n , x n ) ) ≤ k 1 [ q 2 ( g x n , g x ) + q 2 ( g y n , g y ) ] + k 2 [ q 2 ( g x n , F ( x n , y n ) ) + q 2 ( g y n , F ( y n , x n ) ) ] + k 3 [ q 2 ( g x , F ( x , y ) ) + q 2 ( g y , F ( y , x ) ) ] + k 4 [ q 2 ( g x n , F ( x , y ) ) + q 2 ( g y n , F ( y , x ) ) ] + k 5 [ q 2 ( g x , F ( x n , y n ) ) + q 2 ( g y , F ( y n , x n ) ) ] = k 1 [ q 2 ( g x n , g x ) + q 2 ( g y n , g y ) ] + k 2 [ q 2 ( g x n , g x n + 1 ) + q 2 ( g y n , g y n + 1 ) ] + k 3 [ q 2 ( g x , F ( x , y ) ) + q 2 ( g y , F ( y , x ) ) ] + k 4 [ q 2 ( g x n , F ( x , y ) ) + q 2 ( g y n , F ( y , x ) ) ] + k 5 [ q 2 ( g x , g x n + 1 ) + q 2 ( g y , g y n + 1 ) ] ≤ k 1 [ q 1 ( g x n , g x ) + q 1 ( g y n , g y ) ] + k 2 [ q 1 ( g x n , g x n + 1 ) + q 1 ( g y n , g y n + 1 ) ] + k 3 [ q 1 ( g x , F ( x , y ) ) + q 1 ( g y , F ( y , x ) ) ] + k 4 [ q 1 ( g x n , F ( x , y ) ) + q 1 ( g y n , F ( y , x ) ) ] + k 5 [ q 1 ( g x , g x n + 1 ) + q 1 ( g y , g y n + 1 ) ] .

Letting n→∞ in the above inequality, using (2.11)-(2.14), we obtain

q 1 ( g x , F ( x , y ) ) + q 1 ( g y , F ( y , x ) ) ≤( k 3 + k 4 ) [ q 1 ( g x , F ( x , y ) ) + q 1 ( g y , F ( y , x ) ) ] .
(2.15)

By (2.1) we have k 3 + k 4 <1. Hence, it follows from (2.15) that q 1 (gx,F(x,y))= q 1 (gy,F(y,x))=0. By Lemma 1.1, we get F(x,y)=gx and F(y,x)=gy. Hence, (gx,gy) is a coupled point of coincidence of mappings F and g.

Next, we will show that the coupled point of coincidence is unique. Suppose that ( x ∗ , y ∗ )∈X×X with F( x ∗ , y ∗ )=g x ∗ and F( y ∗ , x ∗ )=g y ∗ . Using (2.2), (2.11), (2.12), and (QPM3), we obtain

q 1 ( g x , g x ∗ ) + q 1 ( g y , g y ∗ ) = q 1 ( F ( x , y ) , F ( x ∗ , y ∗ ) ) + q 1 ( F ( y , x ) , F ( y ∗ , x ∗ ) ) ≤ k 1 [ q 2 ( g x , g x ∗ ) + q 2 ( g y , g y ∗ ) ] + k 2 [ q 2 ( g x , F ( x , y ) ) + q 2 ( g y , F ( y , x ) ) ] + k 3 [ q 2 ( g x ∗ , F ( x ∗ , y ∗ ) ) + q 2 ( g y ∗ , F ( y ∗ , x ∗ ) ) ] + k 4 [ q 2 ( g x , F ( x ∗ , y ∗ ) ) + q 2 ( g y , F ( y ∗ , x ∗ ) ) ] + k 5 [ q 2 ( g x ∗ , F ( x , y ) ) + q 2 ( g y ∗ , F ( y , x ) ) ] = k 1 [ q 2 ( g x , g x ∗ ) + q 2 ( g y , g y ∗ ) ] + k 2 [ q 2 ( g x , g x ) + q 2 ( g y , g y ) ] + k 3 [ q 2 ( g x ∗ , g x ∗ ) + q 2 ( g y ∗ , g y ∗ ) ] + k 4 [ q 2 ( g x , g x ∗ ) + q 2 ( g y , g y ∗ ) ] + k 5 [ q 2 ( g x ∗ , g x ) + q 2 ( g y ∗ , g y ) ] ≤ ( k 1 + k 4 ) [ q 1 ( g x , g x ∗ ) + q 1 ( g y , g y ∗ ) ] + k 2 [ q 1 ( g x , g x ) + q 1 ( g y , g y ) ] + k 3 [ q 1 ( g x ∗ , g x ∗ ) + q 1 ( g y ∗ , g y ∗ ) ] + k 5 [ q 1 ( g x ∗ , g x ) + q 1 ( g y ∗ , g y ) ] ≤ ( k 1 + k 3 + k 4 ) [ q 1 ( g x , g x ∗ ) + q 1 ( g y , g y ∗ ) ] + k 5 [ q 1 ( g x ∗ , g x ) + q 1 ( g y ∗ , g y ) ] .

This implies that

q 1 ( g x , g x ∗ ) + q 1 ( g y , g y ∗ ) ≤ k 5 1 − k 1 − k 3 − k 4 ⋅ [ q 1 ( g x ∗ , g x ) + q 1 ( g y ∗ , g y ) ] .
(2.16)

Similarly, we have

q 1 ( g x ∗ , g x ) + q 1 ( g y ∗ , g y ) ≤ k 5 1 − k 1 − k 3 − k 4 ⋅ [ q 1 ( g x , g x ∗ ) + q 1 ( g y , g y ∗ ) ] .
(2.17)

Substituting (2.17) into (2.16), we obtain

q 1 ( g x , g x ∗ ) + q 1 ( g y , g y ∗ ) ≤ ( k 5 1 − k 1 − k 3 − k 4 ) 2 ⋅ [ q 1 ( g x , g x ∗ ) + q 1 ( g y , g y ∗ ) ] .
(2.18)

Since k 5 1 − k 1 − k 3 − k 4 <1, from (2.18), we must have q 1 (gx,g x ∗ )= q 1 (gy,g y ∗ )=0. By Lemma 1.1, we get gx=g x ∗ and gy=g y ∗ , which implies the uniqueness of the coupled point of coincidence of F and g, that is, (gx,gy).

Next, we will show that gx=gy. In fact, from (2.2), (2.11), and (2.12) we have

q 1 ( g x , g y ) + q 1 ( g y , g x ) = q 1 ( F ( x , y ) , F ( y , x ) ) + q 1 ( F ( y , x ) , F ( x , y ) ) ≤ k 1 [ q 2 ( g x , g y ) + q 2 ( g y , g x ) ] + k 2 [ q 2 ( g x , F ( x , y ) ) + q 2 ( g y , F ( y , x ) ) ] + k 3 [ q 2 ( g y , F ( y , x ) ) + q 2 ( g x , F ( x , y ) ) ] + k 4 [ q 2 ( g x , F ( y , x ) ) + q 2 ( g y , F ( x , y ) ) ] + k 5 [ q 2 ( g y , F ( x , y ) ) + q 2 ( g x , F ( y , x ) ) ] = k 1 [ q 2 ( g x , g y ) + q 2 ( g y , g x ) ] + k 2 [ q 2 ( g x , g x ) + q 2 ( g y , g y ) ] + k 3 [ q 2 ( g y , g y ) + q 2 ( g x , g x ) ] + k 4 [ q 2 ( g x , g y ) + q 2 ( g y , g x ) ] + k 5 [ q 2 ( g y , g x ) + q 2 ( g x , g y ) ] ≤ k 1 [ q 1 ( g x , g y ) + q 1 ( g y , g x ) ] + k 2 [ q 1 ( g x , g x ) + q 1 ( g y , g y ) ] + k 3 [ q 1 ( g y , g y ) + q 1 ( g x , g x ) ] + k 4 [ q 1 ( g x , g y ) + q 1 ( g y , g x ) ] + k 5 [ q 1 ( g y , g x ) + q 1 ( g x , g y ) ] = ( k 1 + k 4 + k 5 ) [ q 1 ( g x , g y ) + q 1 ( g y , g x ) ] .
(2.19)

Since k 1 + k 4 + k 5 <1, we have q 1 (gx,gy)= q 1 (gy,gx)=0. By Lemma 1.1, we get gx=gy.

Finally, assume that g and F are w-compatible. Let u=gx, then we have u=gx=F(x,y)=gy=F(y,x), so that

gu=ggx=g ( F ( x , y ) ) =F(gx,gy)=F(u,u).
(2.20)

Consequently, (u,u) is a coupled coincidence point of F and g, and therefore (gu,gu) is a coupled point of coincidence of F and g, and by its uniqueness, we get gu=gx. Thus, we obtain F(u,u)=gu=u. Therefore, (u,u) is the unique common coupled fixed point of F and g. This completes the proof of Theorem 2.1. □

In Theorem 2.1, if we take q 1 (x,y)= q 2 (x,y) for all x,y∈X, then we get the following.

Corollary 2.1 Let (X,q) be a quasi-partial metric space, F:X×X→X and g:X→X be two mappings. Suppose that there exist k 1 , k 2 , k 3 , k 4 and k 5 in [0,1) with k 1 + k 2 + k 3 +2 k 4 + k 5 <1 such that the condition

q ( F ( x , y ) , F ( u , v ) ) + q ( F ( y , x ) , F ( v , u ) ) ≤ k 1 [ q ( g x , g u ) + q ( g y , g v ) ] + k 2 [ q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) ] + k 3 [ q ( g u , F ( u , v ) ) + q ( g v , F ( v , u ) ) ] + k 4 [ q ( g x , F ( u , v ) ) + q ( g y , F ( v , u ) ) ] + k 5 [ q ( g u , F ( x , y ) ) + q ( g v , F ( y , x ) ) ]
(2.21)

holds for all x,y,u,v∈X. Also, suppose we have the following hypotheses:

  1. (i)

    F(X×X)⊂g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x,y) satisfying gx=F(x,y)=F(y,x)=gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the form (u,u).

Remark 2.1 Corollary 2.1 improve and extend Theorem 2.1 of Shatanawi and Pitea [38]; the contractive condition defined by (1.1) is replaced by the new contractive condition defined by (2.23).

Corollary 2.2 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X, g:X→X be two mappings. Suppose that there exist a i ∈[0,1) (i=1,2,3,…,10) with

a 1 + a 2 + a 3 + a 4 + a 5 + a 6 +2( a 7 + a 8 )+ a 9 + a 10 <1
(2.22)

such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) ≤ a 1 q 2 ( g x , g u ) + a 2 q 2 ( g y , g v ) + a 3 q 2 ( g x , F ( x , y ) ) + a 4 q 2 ( g y , F ( y , x ) ) + a 5 q 2 ( g u , F ( u , v ) ) + a 6 q 2 ( g v , F ( v , u ) ) + a 7 q 2 ( g x , F ( u , v ) ) + a 8 q 2 ( g y , F ( v , u ) ) + a 9 q 2 ( g u , F ( x , y ) ) + a 10 q 2 ( g v , F ( y , x ) )
(2.23)

holds for all x,y,u,v∈X. Also, suppose we have the following hypotheses:

  1. (i)

    F(X×X)⊂g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a coincidence point (x,y) satisfying gx=F(x,y)=F(y,x)=gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the form (u,u).

Proof Given x,y,u,v∈X. It follows from (2.23) that

q 1 ( F ( x , y ) , F ( u , v ) ) ≤ a 1 q 2 ( g x , g u ) + a 2 q 2 ( g y , g v ) + a 3 q 2 ( g x , F ( x , y ) ) + a 4 q 2 ( g y , F ( y , x ) ) + a 5 q 2 ( g u , F ( u , v ) ) + a 6 q 2 ( g v , F ( v , u ) ) + a 7 q 2 ( g x , F ( u , v ) ) + a 8 q 2 ( g y , F ( v , u ) ) + a 9 q 2 ( g u , F ( x , y ) ) + a 10 q 2 ( g v , F ( y , x ) )
(2.24)

and

q 1 ( F ( y , x ) , F ( v , u ) ) ≤ a 1 q 2 ( g y , g v ) + a 2 q 2 ( g x , g u ) + a 3 q 2 ( g y , F ( y , x ) ) + a 4 q 2 ( g x , F ( x , y ) ) + a 5 q 2 ( g v , F ( v , u ) ) + a 6 q 2 ( g u , F ( u , v ) ) + a 7 q 2 ( g y , F ( v , u ) ) + a 8 q 2 ( g x , F ( u , v ) ) + a 9 q 2 ( g v , F ( y , x ) ) + a 10 q 2 ( g u , F ( x , y ) ) .
(2.25)

Adding inequality (2.24) to inequality (2.25), we get

q 1 ( q 1 ( F ( x , y ) , F ( u , v ) ) + F ( y , x ) , F ( v , u ) ) ≤ ( a 1 + a 2 ) [ q 2 ( g x , g u ) + q 2 ( g y , g v ) ] + ( a 3 + a 4 ) [ q 2 ( g x , F ( x , y ) ) + q 2 ( g y , F ( y , x ) ) ] + ( a 5 + a 6 ) [ q 2 ( g u , F ( u , v ) ) + q 2 ( g v , F ( v , u ) ) ] + ( a 7 + a 8 ) [ q 2 ( g x , F ( u , v ) ) + q 2 ( g y , F ( v , u ) ) ] + ( a 9 + a 10 ) [ q 2 ( g u , F ( x , y ) ) + q 2 ( g v , F ( y , x ) ) ] .
(2.26)

Therefore, the result follows from Theorem 2.1. □

Remark 2.2 If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X and a 7 = a 8 = a 9 = a 10 =0, then Corollary 2.2 is reduced to Corollary 2.1 of Shatanawi and Pitea [38].

Corollary 2.3 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X, g:X→X be two mappings. Suppose that there exists k∈[0,1) such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) +q ( F ( y , x ) , F ( v , u ) ) ≤k [ q 2 ( g x , g u ) + q 2 ( g y , g v ) ]
(2.27)

holds for all x,y,u,v∈X. Also, suppose we have the following hypotheses:

  1. (i)

    F(X×X)⊂g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a coincidence point (x,y) satisfying gx=F(x,y)=F(y,x)=gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the form (u,u).

Remark 2.3 If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X, then Corollary 2.3 is reduced to Corollary 2.2 of Shatanawi and Pitea [38].

Corollary 2.4 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X, g:X→X be two mappings. Suppose that there exists k∈[0,1) such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) +q ( F ( y , x ) , F ( v , u ) ) ≤k [ q 2 ( g x , F ( x , y ) ) + q 2 ( g y , F ( y , x ) ) ]
(2.28)

holds for all x,y,u,v∈X. Also, suppose we have the following hypotheses:

  1. (i)

    F(X×X)⊂g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a coincidence point (x,y) satisfying gx=F(x,y)=F(y,x)=gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the form (u,u).

Remark 2.4 If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X, then Corollary 2.4 is reduced to Corollary 2.3 of Shatanawi and Pitea [38].

Corollary 2.5 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X, g:X→X be two mappings. Suppose that there exists k∈[0,1) such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) +q ( F ( y , x ) , F ( v , u ) ) ≤k [ q 2 ( g u , F ( u , v ) ) + q 2 ( g v , F ( v , u ) ) ]
(2.29)

holds for all x,y,u,v∈X. Also, suppose we have the following hypotheses:

  1. (i)

    F(X×X)⊂g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a coincidence point (x,y) satisfying gx=F(x,y)=F(y,x)=gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the form (u,u).

Remark 2.5 If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X, then Corollary 2.5 is reduced to Corollary 2.4 of Shatanawi and Pitea [38].

Corollary 2.6 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X, g:X→X be two mappings. Suppose that there exists k∈[0, 1 2 ) such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) +q ( F ( y , x ) , F ( v , u ) ) ≤k [ q 2 ( g x , F ( u , v ) ) + q 2 ( g y , F ( v , u ) ) ]
(2.30)

holds for all x,y,u,v∈X. Also, suppose we have the following hypotheses:

  1. (i)

    F(X×X)⊂g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a coincidence point (x,y) satisfying gx=F(x,y)=F(y,x)=gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the form (u,u).

Corollary 2.7 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X, g:X→X be two mappings. Suppose that there exists k∈[0,1) such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) +q ( F ( y , x ) , F ( v , u ) ) ≤k [ q 2 ( g u , F ( x , y ) ) + q 2 ( g v , F ( y , x ) ) ]
(2.31)

holds for all x,y,u,v∈X. Also, suppose we have the following hypotheses:

  1. (i)

    F(X×X)⊂g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a coincidence point (x,y) satisfying gx=F(x,y)=F(y,x)=gy.

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the form (u,u).

Let g= I X (the identity mapping) in Theorem 2.1 and Corollaries 2.1-2.7. Then we have the following results.

Corollary 2.8 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X be a mapping. Suppose that there exist k 1 , k 2 , k 3 , k 4 , and k 5 in [0,1) with k 1 + k 2 + k 3 +2 k 4 + k 5 <1 such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) + q 1 ( F ( y , x ) , F ( v , u ) ) ≤ k 1 [ q 2 ( x , u ) + q 2 ( y , v ) ] + k 2 [ q 2 ( x , F ( x , y ) ) + q 2 ( y , F ( y , x ) ) ] + k 3 [ q 2 ( u , F ( u , v ) ) + q 2 ( v , F ( v , u ) ) ] + k 4 [ q 2 ( x , F ( u , v ) ) + q 2 ( y , F ( v , u ) ) ] + k 5 [ q 2 ( u , F ( x , y ) ) + q 2 ( v , F ( y , x ) ) ]
(2.32)

holds for all x,y,u,v∈X. If (X, q 1 ) is a complete quasi-partial metric space, then the mapping F has a unique coupled fixed point of the form (u,u).

Corollary 2.9 Let (X,q) be a complete quasi-partial metric space, F:X×X→X be a mapping. Suppose that there exist k 1 , k 2 , k 3 , k 4 , and k 5 in [0,1) with k 1 + k 2 + k 3 +2 k 4 + k 5 <1 such that the condition

q ( F ( x , y ) , F ( u , v ) ) + q ( F ( y , x ) , F ( v , u ) ) ≤ k 1 [ q ( x , u ) + q ( y , v ) ] + k 2 [ q ( x , F ( x , y ) ) + q ( y , F ( y , x ) ) ] + k 3 [ q ( u , F ( u , v ) ) + q ( v , F ( v , u ) ) ] + k 4 [ q ( x , F ( u , v ) ) + q ( y , F ( v , u ) ) ] + k 5 [ q ( u , F ( x , y ) ) + q ( v , F ( y , x ) ) ]
(2.33)

holds for all x,y,u,v∈X. Then F has a unique coupled fixed point of the form (u,u).

Remark 2.6 Corollary 2.9 improve and extend Corollary 2.5 of Shatanawi and Pitea [38], the contractive condition is replaced by the new contractive condition defined by (2.35).

Corollary 2.10 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X be a mapping. Suppose that there exist a i ∈[0,1) (i=1,2,3,…,10) with

a 1 + a 2 + a 3 + a 4 + a 5 + a 6 +2( a 7 + a 8 )+ a 9 + a 10 <1
(2.34)

such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) ≤ a 1 q 2 ( x , u ) + a 2 q 2 ( y , v ) + a 3 q 2 ( x , F ( x , y ) ) + a 4 q 2 ( y , F ( y , x ) ) + a 5 q 2 ( u , F ( u , v ) ) + a 6 q 2 ( v , F ( v , u ) ) + a 7 q 2 ( x , F ( u , v ) ) + a 8 q 2 ( y , F ( v , u ) ) + a 9 q 2 ( u , F ( x , y ) ) + a 10 q 2 ( v , F ( y , x ) )
(2.35)

holds for all x,y,u,v∈X. If (X, q 1 ) is a complete quasi-partial metric space. Then the mapping F has a unique coupled fixed point of the form (u,u).

Remark 2.7

  1. (1)

    If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X and a 7 = a 8 = a 9 = a 10 =0, then Corollary 2.10 is reduced to Corollary 2.6 of Shatanawi and Pitea [38].

  2. (2)

    If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X and a i =0 (i=3,4,5,…,10), then Corollary 2.10 extends Theorem 2.1 of Aydi [12] on the class of quasi-partial metric spaces.

  3. (3)

    If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X, a 1 = a 2 and a i =0 (i=3,4,5,…,10), then Corollary 2.10 extends the Corollary 2.2 of Aydi [12] on the class of quasi-partial metric spaces.

  4. (4)

    If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X and a i =0 (i=1,2,4,6,7,8,9,10), then Corollary 2.10 extends Theorem 2.4 of Aydi [12] on the class of quasi-partial metric spaces.

  5. (5)

    If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X and a i =0 (i=1,2,3,4,5,6,8,10), then Corollary 2.10 extends Theorem 2.5 of Aydi [12] on the class of quasi-partial metric spaces.

  6. (6)

    If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X, a 3 = a 9 and a i =0 (i=1,2,4,5,6,7,8,10), then Corollary 2.10 extends Corollary 2.6 of Aydi [12] on the class of quasi-partial metric spaces.

  7. (7)

    If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X, a 7 = a 9 and a i =0 (i=1,2,3,4,5,6,8,10), then Corollary 2.10 extends Corollary 2.7 of Aydi [12] on the class of quasi-partial metric spaces.

Corollary 2.11 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X be a mapping. Suppose that there exists k∈[0,1) such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) +q ( F ( y , x ) , F ( v , u ) ) ≤k [ q 2 ( x , u ) + q 2 ( y , v ) ]
(2.36)

holds for all x,y,u,v∈X. If (X, q 1 ) is a complete quasi-partial metric space. Then the mapping F has a unique coupled fixed point of the form (u,u).

Remark 2.8 If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X, then Corollary 2.11 is reduced to Corollary 2.7 of Shatanawi and Pitea [38].

Corollary 2.12 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X be a mapping. Suppose that there exists k∈[0,1) such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) +q ( F ( y , x ) , F ( v , u ) ) ≤k [ q 2 ( x , F ( x , y ) ) + q 2 ( y , F ( y , x ) ) ]
(2.37)

holds for all x,y,u,v∈X. If (X, q 1 ) is a complete quasi-partial metric space, then the mapping F has a unique coupled fixed point of the form (u,u).

Remark 2.9 If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X, then Corollary 2.12 is reduced to Corollary 2.8 of Shatanawi and Pitea [38].

Corollary 2.13 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X be a mapping. Suppose that there exists k∈[0,1) such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) +q ( F ( y , x ) , F ( v , u ) ) ≤k [ q 2 ( u , F ( u , v ) ) + q 2 ( v , F ( v , u ) ) ]
(2.38)

holds for all x,y,u,v∈X. If (X, q 1 ) is a complete quasi-partial metric space, then the mapping F has a unique coupled fixed point of the form (u,u).

Remark 2.10 If we take q 1 (x,y)= q 2 (x,y) for all x,y∈X, then Corollary 2.13 is reduced to Corollary 2.9 of Shatanawi and Pitea [38].

Corollary 2.14 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X be a mapping. Suppose that there exists k∈[0, 1 2 ) such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) +q ( F ( y , x ) , F ( v , u ) ) ≤k [ q 2 ( x , F ( u , v ) ) + q 2 ( y , F ( v , u ) ) ]
(2.39)

holds for all x,y,u,v∈X. If (X, q 1 ) is a complete quasi-partial metric space, then the mapping F has a unique coupled fixed point of the form (u,u).

Corollary 2.15 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y)≤ q 1 (x,y), for all x,y∈X, and F:X×X→X be a mapping. Suppose that there exists k∈[0,1) such that the condition

q 1 ( F ( x , y ) , F ( u , v ) ) +q ( F ( y , x ) , F ( v , u ) ) ≤k [ q 2 ( u , F ( x , y ) ) + q 2 ( v , F ( y , x ) ) ]
(2.40)

holds for all x,y,u,v∈X. If (X, q 1 ) is a complete quasi-partial metric space, then the mapping F has a unique coupled fixed point of the form (u,u).

Now, we introduce an example to support our results.

Example 2.1 Let X=[0,1], and two quasi-partial metrics q 1 , q 2 on X be given as

q 1 (x,y)=|x−y|+xand q 2 (x,y)= 1 2 ( | x − y | + x )

for all x,y∈X. Also, define F:X×X→X and g:X→X as

F(x,y)= x + y 16 andgx= x 2

for all x,y∈X. Then

  1. (1)

    (X, q 1 ) is a complete quasi-partial metric space.

  2. (2)

    F(X×X)⊂X.

  3. (3)

    F and g is w-compatible.

  4. (4)

    For any x,y,u,v∈X, we have

    q 1 ( F ( x , y ) , F ( u , v ) ) + q 1 ( F ( y , x ) + F ( v , u ) ) ≤ 1 2 ( q 2 ( g x , g u ) + q 2 ( g y , g v ) ) .

Proof The proofs of (1), (2), and (3) are clear. Next we show that (4). In fact, for x,y,u,v∈X, we have

q 1 ( F ( x , y ) , F ( u , v ) ) + q 1 ( F ( y , x ) + F ( v , u ) ) = q 1 ( x + y 16 , u + v 16 ) + q 1 ( y + x 16 , v + u 16 ) = 1 8 ( | x + y − ( u + v ) | + ( x + y ) ) = 1 4 ( | 1 2 ( x + y ) − 1 2 ( u + v ) | + 1 2 ( x + y ) ) ≤ 1 4 ( | 1 2 x − 1 2 u | + 1 2 x + | 1 2 y − 1 2 v | + 1 2 y ) = 1 2 ( q 2 ( g x , g u ) + q 2 ( g y , g v ) ) .

Thus, F and g satisfy all the hypotheses of Corollary 2.3. So, F and g have a unique common coupled fixed point. Here (0,0) is the unique common coupled fixed point of F and g. □

References

  1. Matthews SG: Partial metric topology. 728. In General Topology and Its Applications. Ann. New York Acad. Sci., New York; 1994:183–197. Proc. 8th Summer Conf. Queen’s College, 1992

    Google Scholar 

  2. Abdeljawad T, Karapınar E, Taş K: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 2011, 24(11):1900–1904. 10.1016/j.aml.2011.05.014

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdeljawad T, Karapınar E, Taş K: A generalized contraction principle with control functions on partial metric spaces. Comput. Math. Appl. 2012, 63(3):716–719. 10.1016/j.camwa.2011.11.035

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdeljawad T: Fixed points and generalized weakly contractive mappings in partial metric spaces. Math. Comput. Model. 2011, 54(11–12):2923–2927. 10.1016/j.mcm.2011.07.013

    Article  MathSciNet  MATH  Google Scholar 

  5. Altun I, Acar Ö: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol. Appl. 2012, 159: 2642–2648. 10.1016/j.topol.2012.04.004

    Article  MathSciNet  MATH  Google Scholar 

  6. Altun I, Erduran A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 508730 10.1155/2011/508730

    Google Scholar 

  7. Altun I, Simsek H: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 2008, 1(1–2):1–8.

    MathSciNet  MATH  Google Scholar 

  8. Altun I, Sola F, Simsek H: Generalized contractions on partial metric spaces. Topol. Appl. 2010, 157(18):2778–2785. 10.1016/j.topol.2010.08.017

    Article  MathSciNet  MATH  Google Scholar 

  9. Altun I, Sadarangani K: Corrigendum to ‘Generalized contractions on partial metric spaces’ [Topology Appl. 157(18), 2778–2785 (2010)]. Topol. Appl. 2011, 158(13):1738–1740. 10.1016/j.topol.2011.05.023

    Article  MathSciNet  MATH  Google Scholar 

  10. Amiri P, Rezapour S: Fixed point of multi-valued operators on partial metric spaces. Anal. Theory Appl. 2013, 29(2):158–168. 10.4208/ata.2013.v29.n2.7

    MathSciNet  MATH  Google Scholar 

  11. Aydi H: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl. 2011, 4(2):1–12.

    MathSciNet  MATH  Google Scholar 

  12. Aydi H: Some coupled fixed point results on partial metric spaces. Int. J. Math. Sci. 2011., 2011: Article ID 647091

    Google Scholar 

  13. Aydi H: Fixed point theorems for generalized weakly contractive in ordered partial metric spaces. J. Nonlinear Anal. Optim., Theory Appl. 2011, 2(2):269–284.

    MathSciNet  Google Scholar 

  14. Aydi H, Karapınar E, Shatanawi W:Coupled fixed point results for(ψ,φ)-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 2011, 62: 4449–4460. 10.1016/j.camwa.2011.10.021

    Article  MathSciNet  MATH  Google Scholar 

  15. Bari CD, Milojević M, Radenović S, Vetro P: Common fixed points for self-mappings on partial metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 140 10.1186/1687-1812-2012-140

    Google Scholar 

  16. Klin-eam C: Modified proof of Caristi’s fixed point theorem on partial metric spaces. J. Inequal. Appl. 2013., 2013: Article ID 210 10.1186/1029-242X-2013-210

    Google Scholar 

  17. Chen C, Zhu C: Fixed point theorems for weakly C -contractive mappings in partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 107 10.1186/1687-1812-2013-107

    Google Scholar 

  18. Ćirić L, Samet B, Aydi H, Vetro C: Common fixed point results of generalized contractions on partial metric spaces and application. Appl. Math. Comput. 2011, 218: 2398–2406. 10.1016/j.amc.2011.07.005

    Article  MathSciNet  MATH  Google Scholar 

  19. Golubović Z, Kadelburg Z, Radenović S: Coupled coincidence points of mappings in ordered partial metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 192581 10.1155/2012/192581

    Google Scholar 

  20. Karapınar E, Erhan I: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24: 1894–1899. 10.1016/j.aml.2011.05.013

    Article  MathSciNet  MATH  Google Scholar 

  21. Nashine HK, Kadelburg Z, Radenović S: Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces. Math. Comput. Model. 2013, 57: 2355–2365. 10.1016/j.mcm.2011.12.019

    Article  MATH  Google Scholar 

  22. Oltra S, Valero O: Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 2004, 36(1–2):17–26.

    MathSciNet  MATH  Google Scholar 

  23. Romaguera S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 493298 10.1155/2010/493298

    Google Scholar 

  24. Romaguera S: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 2010, 159: 194–199.

    Article  MathSciNet  Google Scholar 

  25. Samet B, Rajović M, Lazović R, Stoijković R: Common fixed point results for nonlinear contractions in ordered partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 71 10.1186/1687-1812-2011-71

    Google Scholar 

  26. Shatanawi W, Nashine HK: A generalization of Banach’s contraction principle of nonlinear contraction in a partial metric spaces. J. Nonlinear Sci. Appl. 2012, 5: 37–43.

    MathSciNet  MATH  Google Scholar 

  27. Shatanawi W, Nashine HK, Tahat N: Generalization of some coupled fixed point results on partial metric spaces. Int. J. Math. Math. Sci. 2012., 2012: Article ID 686801

    Google Scholar 

  28. Shatanawi W, Samet B, Abbas M: Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math. Comput. Model. 2012, 55: 680–687. 10.1016/j.mcm.2011.08.042

    Article  MathSciNet  MATH  Google Scholar 

  29. Shatanawi W, Postolache M: Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 54 10.1186/1687-1812-2013-54

    Google Scholar 

  30. Radenović S: Remarks on some coupled fixed point results in partial metric spaces. Nonlinear Funct. Anal. Appl. 2013, 18(1):39–50.

    MATH  Google Scholar 

  31. Nashine HK, Kadelburg Z, Radenović S: Fixed point theorems via various cyclic contractive conditions in partial metric spaces. Publ. Inst. Math. 2013, 93(107):69–93. 10.2298/PIM1307069N

    Article  Google Scholar 

  32. Valero O: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 2005, 6(2):229–240.

    Article  MathSciNet  MATH  Google Scholar 

  33. Haghi RH, Rezapour S, Shahzad N: Be careful on partial metric fixed point results. Topol. Appl. 2013, 160: 450–454. 10.1016/j.topol.2012.11.004

    Article  MathSciNet  MATH  Google Scholar 

  34. Karapınar E, Erhan İ, Öztürk A: Fixed point theorems on quasi-partial metric spaces. Math. Comput. Model. 2013, 57: 2442–2448. 10.1016/j.mcm.2012.06.036

    Article  MATH  Google Scholar 

  35. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  MATH  Google Scholar 

  36. Lakshmikantham V, Ćirić L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020

    Article  MathSciNet  MATH  Google Scholar 

  37. Abbas M, Khan MA, Radenović S: Common coupled fixed point theorem in cone metric space for w -compatible mappings. Appl. Math. Comput. 2010, 217: 195–202. 10.1016/j.amc.2010.05.042

    Article  MathSciNet  MATH  Google Scholar 

  38. Shatanawi W, Pitea A: Some coupled fixed point theorems in quasi-partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 153 10.1186/1687-1812-2013-153

    Google Scholar 

  39. Abbas M, Khan AR, Nazir T: Coupled common fixed point results in two generalized metric spaces. Appl. Math. Comput. 2011, 217: 6328–6336. 10.1016/j.amc.2011.01.006

    Article  MathSciNet  MATH  Google Scholar 

  40. Abbas M, Nazir T, Radenović S: Common fixed point of generalized weakly contractive maps in partially ordered G -metric spaces. Appl. Math. Comput. 2012, 218(18):9383–9395. 10.1016/j.amc.2012.03.022

    Article  MathSciNet  MATH  Google Scholar 

  41. Abbas M, Sintunavarat W, Kumam P: Coupled fixed point of generalized contractive mappings on partially ordered G -metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 31 10.1186/1687-1812-2012-31

    Google Scholar 

  42. Altun I, Simsek H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl. 2010., 2010: Article ID 621469 10.1155/2010/621469

    Google Scholar 

  43. Aydi H, Damjanović B, Samet B, Shatanawi W: Coupled fixed point theorems for nonlinear contractions in partially ordered G -metric spaces. Math. Comput. Model. 2011, 54(9–10):2443–2450. 10.1016/j.mcm.2011.05.059

    Article  MATH  Google Scholar 

  44. Aydi H, Postolache M, Shatanawi W: Coupled fixed point results for(ψ,φ)-weakly contractive mappings in ordered G -metric spaces. Comput. Math. Appl. 2012, 63(1):298–309. 10.1016/j.camwa.2011.11.022

    Article  MathSciNet  MATH  Google Scholar 

  45. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012., 2012: Article ID 8 10.1186/1687-1812-2012-8

    Google Scholar 

  46. Choudhury BS, Maity P: Coupled fixed point results in generalized partially ordered G -metric spaces. Math. Comput. Model. 2011, 54: 73–79. 10.1016/j.mcm.2011.01.036

    Article  MathSciNet  MATH  Google Scholar 

  47. Choudhury BS, Metiya N, Postolache M: A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. 2013., 2013: Article ID 152 10.1186/1687-1812-2013-152

    Google Scholar 

  48. Gu F, Yin Y: A new common coupled fixed point theorem in generalized metric space and applications to integral equations. Fixed Point Theory Appl. 2013., 2013: Article ID 266 10.1186/1687-1812-2013-266

    Google Scholar 

  49. Gu F, Zhou S: Coupled common fixed point theorems for a pair of commuting mappings in partially ordered G -metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 64 10.1186/1687-1812-2013-64

    Google Scholar 

  50. Hong S: Fixed points of multivalued operators in ordered metric spaces with applications. Nonlinear Anal. 2010, 72(11):3929–3942. 10.1016/j.na.2010.01.013

    Article  MathSciNet  MATH  Google Scholar 

  51. Karapınar E: Coupled fixed point theorems for nonlinear contractions in cone metric spaces. Comput. Math. Appl. 2010, 59: 3656–3668. 10.1016/j.camwa.2010.03.062

    Article  MathSciNet  MATH  Google Scholar 

  52. Luong NV, Thuan NX: Coupled fixed point theorems in partially ordered G -metric spaces. Math. Comput. Model. 2012, 55(3–4):1601–1609. 10.1016/j.mcm.2011.10.058

    Article  MathSciNet  MATH  Google Scholar 

  53. Mustafa Z, Aydi H, Karapınar E: Mixed g -monotone property and quadruple fixed point theorems in partially ordered metric space. Fixed Point Theory Appl. 2012., 2012: Article ID 71 10.1186/1687-1812-2012-71

    Google Scholar 

  54. Qiu Z, Hong S: Coupled fixed points for multivalued mappings in fuzzy metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 162 10.1186/1687-1812-2013-162

    Google Scholar 

  55. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 2010, 72: 4508–4517. 10.1016/j.na.2010.02.026

    Article  MathSciNet  MATH  Google Scholar 

  56. Saadati R, Vaezpour SM, Vetro P, Rhoades BE: Fixed point theorems in generalized partially ordered G -metric spaces. Math. Comput. Model. 2010, 52(5–6):797–810. 10.1016/j.mcm.2010.05.009

    Article  MathSciNet  MATH  Google Scholar 

  57. Sabetghadam F, Masiha HP, Sanatpour AH: Some coupled fixed point theorems in cone metric spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 125426 10.1155/2009/125426

    Google Scholar 

  58. Sedghi S, Altun I, Shobe N: Coupled fixed point theorems for contractions in fuzzy metric spaces. Nonlinear Anal. 2010, 72: 1298–1304. 10.1016/j.na.2009.08.018

    Article  MathSciNet  MATH  Google Scholar 

  59. Shatanawi W: On w -compatible mappings and common coupled coincidence point in cone metric spaces. Appl. Math. Lett. 2012, 25: 925–931. 10.1016/j.aml.2011.10.037

    Article  MathSciNet  MATH  Google Scholar 

  60. Shatanawi W: Fixed point theorems for nonlinear weakly C -contractive mappings in metric spaces. Math. Comput. Model. 2011, 54(11–12):2816–2826. 10.1016/j.mcm.2011.06.069

    Article  MathSciNet  MATH  Google Scholar 

  61. Shatanawi W, Abbas M, Nazir T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 80 10.1186/1687-1812-2011-80

    Google Scholar 

  62. Shatanawi W, Samet B, Abbas M: Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math. Comput. Model. 2012, 55: 680–687. 10.1016/j.mcm.2011.08.042

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11271105, 11361070), the Natural Science Foundation of Zhejiang Province (Y6110287, LY12A01030), and the Natural Science Foundation of Shandong Province (ZR2013AL015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally to this work. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Gu, F., Wang, L. Some coupled fixed-point theorems in two quasi-partial metric spaces. Fixed Point Theory Appl 2014, 19 (2014). https://doi.org/10.1186/1687-1812-2014-19

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2014-19

Keywords