Skip to main content

Strong convergence for asymptotically nonexpansive mappings in the intermediate sense

Abstract

In this paper, let C be a nonempty closed convex subset of a strictly convex Banach space. Then we prove strong convergence of the modified Ishikawa iteration process when T is an ANI self-mapping such that T(C) is contained in a compact subset of C, which generalizes the result due to Takahashi and Kim (Math. Jpn. 48:1-9, 1998).

MSC:47H05, 47H10.

1 Introduction

Let C be a nonempty closed convex subset of a Banach space E, and let T be a mapping of C into itself. Then T is said to be asymptotically nonexpansive [1] if there exists a sequence { k n }, k n ≥1, with lim n → ∞ k n =1, such that

∥ T n x − T n y ∥ ≤ k n ∥x−y∥

for all x,y∈C and n≥1. In particular, if k n =1 for all n≥1, T is said to be nonexpansive. T is said to be uniformly L-Lipschitzian if there exists a constant L>0 such that

∥ T n x − T n y ∥ ≤L∥x−y∥

for all x,y∈C and n≥1. T is said to be asymptotically nonexpansive in the intermediate sense (in brief, ANI) [2] provided T is uniformly continuous and

lim sup n → ∞ sup x , y ∈ C ( ∥ T n x − T n y ∥ − ∥ x − y ∥ ) ≤0.

We denote by F(T) the set of all fixed points of T, i.e., F(T)={x∈C:Tx=x}. We define the modulus of convexity for a convex subset of a Banach space; see also [3]. Let C be a nonempty bounded convex subset of a Banach space E with d(C)>0, where d(C) is the diameter of C. Then we define δ(C,ϵ) with 0≤ϵ≤1 as follows:

δ(C,ϵ)= 1 r inf { max ( ∥ x − z ∥ , ∥ y − z ∥ ) − ∥ z − x + y 2 ∥ : x , y , z ∈ C , ∥ x − y ∥ ≥ r ϵ } ,

where r=d(C). When { x n } is a sequence in E, then x n →x will denote strong convergence of the sequence { x n } to x. For a mappings T of C into itself, Rhoades [4] considered the following modified Ishikawa iteration process (cf. Ishikawa [5]) in C defined by x 1 ∈C:

x n + 1 = α n T n y n +(1− α n ) x n , y n = β n T n x n +(1− β n ) x n ,
(1.1)

where { α n } and { β n } are two real sequences in [0,1]. If β n =0 for all n≥1, then the iteration process (1.1) reduces to the modified Mann iteration process [6] (cf. Mann [7]).

Takahashi and Kim [8] proved the following result: Let E be a strictly convex Banach space and C be a nonempty closed convex subset of E and T:C→C be a nonexpansive mapping such that T(C) is contained in a compact subset of C. Suppose x 1 ∈C, and the sequence { x n } is defined by x n + 1 = α n T[ β n T x n +(1− β n ) x n ]+(1− α n ) x n , where { α n } and { β n } are chosen so that α n ∈[a,b] and β n ∈[0,b] or α n ∈[a,1] and β n ∈[a,b] for some a, b with 0<a≤b<1. Then { x n } converges strongly to a fixed point of T. In 2000, Tsukiyama and Takahashi [9] generalized the result due to Takahashi and Kim [8] to a nonexpansive mapping under much less restrictions on the iterative parameters { α n } and { β n }.

In this paper, let C be a nonempty closed convex subset of a strictly convex Banach space. We prove that if T:C→C is an ANI mapping such that T(C) is contained in a compact subset of C, then the iteration { x n } defined by (1.1) converges strongly to a fixed point of T, which generalizes the result due to Takahashi and Kim [8].

2 Strong convergence theorem

We first begin with the following lemma.

Lemma 2.1 [9]

Let C be a nonempty compact convex subset of a Banach space E with r=d(C)>0. Let x,y,z∈C and suppose ∥x−y∥≥ϵr for some ϵ with 0≤ϵ≤1. Then, for all λ with 0≤λ≤1,

∥ λ ( x − z ) + ( 1 − λ ) ( y − z ) ∥ ≤max ( ∥ x − z ∥ , ∥ y − z ∥ ) −2λ(1−λ)rδ(C,ϵ).

Lemma 2.2 [9]

Let C be a nonempty compact convex subset of a strictly convex Banach space E with r=d(C)>0. If lim n → ∞ δ(C, ϵ n )=0, then lim n → ∞ ϵ n =0.

Lemma 2.3 [10]

Let { a n } and { b n } be two sequences of nonnegative real numbers such that ∑ n = 1 ∞ b n <∞ and

a n + 1 ≤ a n + b n

for all n≥1. Then lim n → ∞ a n exists.

Lemma 2.4 Let C be a nonempty compact convex subset of a Banach space E, and let T:C→C be an ANI mapping. Put

c n = sup x , y ∈ C ( ∥ T n x − T n y ∥ − ∥ x − y ∥ ) ∨0,

so that ∑ n = 1 ∞ c n <∞. Suppose that the sequence { x n } is defined by (1.1). Then lim n → ∞ ∥ x n −z∥ exists for any z∈F(T).

Proof The existence of a fixed point of T follows from Schauder’s fixed theorem [11]. For a fixed z∈F(T), since

∥ T n y n − z ∥ ≤ ∥ y n − z ∥ + c n = ∥ β n T n x n + ( 1 − β n ) x n − z ∥ + c n ≤ β n ∥ T n x n − z ∥ + ( 1 − β n ) ∥ x n − z ∥ + c n ≤ β n ∥ x n − z ∥ + c n + ( 1 − β n ) ∥ x n − z ∥ + c n ≤ ∥ x n − z ∥ + 2 c n ,

we obtain

∥ x n + 1 − z ∥ = ∥ α n T n y n + ( 1 − α n ) x n − z ∥ ≤ α n ∥ T n y n − z ∥ + ( 1 − α n ) ∥ x n − z ∥ ≤ α n ( ∥ x n − z ∥ + 2 c n ) + ( 1 − α n ) ∥ x n − z ∥ ≤ ∥ x n − z ∥ + 2 c n .

By Lemma 2.3, we readily see that lim n → ∞ ∥ x n −z∥ exists. □

Theorem 2.5 Let C be a nonempty compact convex subset of a strictly convex Banach space E with r=d(C)>0. Let T:C→C be an ANI mapping. Put

c n = sup x , y ∈ C ( ∥ T n x − T n y ∥ − ∥ x − y ∥ ) ∨0,

so that ∑ n = 1 ∞ c n <∞. Suppose x 1 ∈C, and the sequence { x n } defined by (1.1) satisfies α n ∈[a,b] and lim sup n → ∞ β n =b<1 or lim inf n → ∞ α n >0 and β n ∈[a,b] for some a, b with 0<a≤b<1. Then lim n → ∞ ∥ x n −T x n ∥=0.

Proof The existence of a fixed point of T follows from Schauder’s fixed theorem [11]. For any fixed z∈F(T), we first show that if α n ∈[a,b] and lim sup n → ∞ β n =b<1 for some a,b∈(0,1), then we obtain lim n → ∞ ∥T x n − x n ∥=0. In fact, let ϵ n = ∥ T n y n − x n ∥ r . Then we have 0≤ ϵ n ≤1 since ∥ T n y n − x n ∥≤r. As in the proof of Lemma 2.4, we obtain

∥ T n y n − z ∥ ≤∥ x n −z∥+2 c n .
(2.1)

Since

∥ T n y n − x n ∥ =r ϵ n ,

and by (2.1) and Lemma 2.1, we have

∥ x n + 1 − z ∥ = ∥ α n ( T n y n − z ) + ( 1 − α n ) ( x n − z ) ∥ ≤ ∥ x n − z ∥ + 2 c n − 2 α n ( 1 − α n ) r δ ( C , ϵ n ) .

Thus

2 α n (1− α n )rδ(C, ϵ n )≤∥ x n −z∥−∥ x n + 1 −z∥+2 c n .

Since

2r ∑ n = 1 ∞ a(1−b)δ ( C , ∥ T n y n − x n ∥ r ) <∞,

we obtain

lim n → ∞ δ ( C , ∥ T n y n − x n ∥ r ) =0.

By using Lemma 2.2, we obtain

lim n → ∞ ∥ T n y n − x n ∥ =0.
(2.2)

Since

∥ T n x n − x n ∥ ≤ ∥ T n x n − T n y n ∥ + ∥ T n y n − x n ∥ ≤ ∥ x n − y n ∥ + c n + ∥ T n y n − x n ∥ = β n ∥ T n x n − x n ∥ + c n + ∥ T n y n − x n ∥ ,

we obtain

(1− β n ) ∥ T n x n − x n ∥ ≤ c n + ∥ T n y n − x n ∥ .
(2.3)

Since lim sup n → ∞ β n =b<1, we have

lim inf n → ∞ (1− β n )=1−b>0.
(2.4)

From (2.2), (2.3) and (2.4), we obtain

lim n → ∞ ∥ T n x n − x n ∥ =0.
(2.5)

Since

∥ x n + 1 − x n ∥ = ∥ ( 1 − α n ) x n + α n T n y n − x n ∥ = α n ∥ T n y n − x n ∥ ≤ b ∥ T n y n − x n ∥ ,

and by (2.2), we obtain

lim n → ∞ ∥ x n + 1 − x n ∥=0.
(2.6)

Since

∥ x n − T x n ∥ ≤ ∥ x n − x n + 1 ∥ + ∥ x n + 1 − T n + 1 x n + 1 ∥ + ∥ T n + 1 x n + 1 − T n + 1 x n ∥ + ∥ T n + 1 x n − T x n ∥ ≤ 2 ∥ x n − x n + 1 ∥ + c n + 1 + ∥ x n + 1 − T n + 1 x n + 1 ∥ + ∥ T n + 1 x n − T x n ∥

and by the uniform continuity of T, (2.5) and (2.6), we have

lim n → ∞ ∥ x n −T x n ∥=0.
(2.7)

Next, we show that if lim inf n → ∞ α n >0 and β n ∈[a,b], then we also obtain (2.7). In fact, let ϵ n = ∥ T n x n − x n ∥ r . Then we have 0≤ ϵ n ≤1. From lim inf n → ∞ α n >0, there are some positive integer n 0 and a positive number a such that α n >a>0 for all n≥ n 0 . Since

∥ x n + 1 − z ∥ = ∥ α n ( T n y n − z ) + ( 1 − α n ) ( x n − z ) ∥ ≤ α n ∥ T n y n − z ∥ + ( 1 − α n ) ∥ x n − z ∥ ≤ α n ∥ y n − z ∥ + α n c n + ( 1 − α n ) ∥ x n − z ∥ ,

and hence

∥ x n + 1 − z ∥ − ∥ x n − z ∥ α n ≤∥ y n −z∥−∥ x n −z∥+ c n .

So, we obtain

∥ x n − z ∥ − ∥ y n − z ∥ ≤ ∥ x n − z ∥ − ∥ x n + 1 − z ∥ α n + c n ≤ ∥ x n − z ∥ − ∥ x n + 1 − z ∥ a + c n .
(2.8)

Since

∥ T n x n − z ∥ ≤∥ x n −z∥+ c n ,

from Lemma 2.1, we obtain

∥ y n − z ∥ = ∥ β n T n x n + ( 1 − β n ) x n − z ∥ = ∥ β n ( T n x n − z ) + ( 1 − β n ) ( x n − z ) ∥ ≤ ∥ x n − z ∥ + c n − 2 β n ( 1 − β n ) r δ ( C , ϵ n ) .
(2.9)

By using (2.8) and (2.9), we obtain

2 β n ( 1 − β n ) r δ ( C , ϵ n ) ≤ ∥ x n − z ∥ − ∥ y n − z ∥ + c n ≤ ∥ x n − z ∥ − ∥ x n + 1 − z ∥ a + 2 c n .

Hence

2r ∑ n = 1 ∞ a(1−b)δ ( C , ∥ T n x n − x n ∥ r ) <∞.

We also obtain

lim n → ∞ ∥ x n − T n x n ∥ =0
(2.10)

similarly to the argument above. Since

∥ y n − x n ∥ = ∥ β n T n x n + ( 1 − β n ) x n − x n ∥ ≤ β n ∥ T n x n − x n ∥ ≤ b ∥ T n x n − x n ∥ ,

and by using (2.10), we obtain

lim n → ∞ ∥ x n − y n ∥=0.
(2.11)

Since

∥ T n y n − x n ∥ ≤ ∥ T n y n − T n x n ∥ + ∥ T n x n − x n ∥ ≤ ∥ y n − x n ∥ + c n + ∥ T n x n − x n ∥ ,

by using (2.10) and (2.11), we obtain

lim n → ∞ ∥ T n y n − x n ∥ =0.
(2.12)

Since

∥ T n y n − y n ∥ ≤ ∥ T n y n − x n ∥ +∥ x n − y n ∥,

by using (2.11) and (2.12), we obtain

lim n → ∞ ∥ T n y n − y n ∥ =0.
(2.13)

Since

∥ x n − x n − 1 ∥ = ∥ ( 1 − α n − 1 ) x n − 1 + α n − 1 T n − 1 y n − 1 − x n − 1 ∥ = α n − 1 ∥ T n − 1 y n − 1 − x n − 1 ∥ ≤ ∥ T n − 1 y n − 1 − y n − 1 ∥ + ∥ y n − 1 − x n − 1 ∥ ,

by (2.11) and (2.13), we get

lim n → ∞ ∥ x n − x n − 1 ∥=0.
(2.14)

From

∥ T n − 1 x n − x n ∥ ≤ ∥ T n − 1 x n − T n − 1 x n − 1 ∥ + ∥ T n − 1 x n − 1 − x n − 1 ∥ + ∥ x n − 1 − x n ∥ ≤ 2 ∥ x n − x n − 1 ∥ + c n − 1 + ∥ T n − 1 x n − 1 − x n − 1 ∥

and by (2.10) and (2.14), we obtain

lim n → ∞ ∥ T n − 1 x n − x n ∥ =0.
(2.15)

Since

∥ x n − T x n ∥ ≤ ∥ x n − y n ∥ + ∥ y n − T n y n ∥ + ∥ T n y n − T n x n ∥ + ∥ T n x n − T x n ∥ ≤ ∥ y n − T n y n ∥ + 2 ∥ x n − y n ∥ + c n + ∥ T n x n − T x n ∥

and by the uniform continuity of T, (2.11), (2.13) and (2.15), we have

lim n → ∞ ∥ x n −T x n ∥=0.

 □

Our Theorem 2.6 carries over Theorem 3 of Takahashi and Kim [8] to an ANI mapping.

Theorem 2.6 Let C be a nonempty closed convex subset of a strictly convex Banach space E, and let T:C→C be an ANI mapping, and let T(C) be contained in a compact subset of C. Put

c n = sup x , y ∈ C ( ∥ T n x − T n y ∥ − ∥ x − y ∥ ) ∨0,

so that ∑ n = 1 ∞ c n <∞. Suppose x 1 ∈C, and the sequence { x n } defined by (1.1) satisfies α n ∈[a,b] and lim sup n → ∞ β n =b<1 or lim inf n → ∞ α n >0 and β n ∈[a,b] for some a, b with 0<a≤b<1. Then { x n } converges strongly to a fixed point of T.

Proof By Mazur’s theorem [12], A:= c o ¯ ({ x 1 }∪T(C)) is a compact subset of C containing { x n } which is invariant under T. So, without loss of generality, we may assume that C is compact and { x n } is well defined. The existence of a fixed point of T follows from Schauder’s fixed theorem [11]. If d(C)=0, then the conclusion is obvious. So, we assume d(C)>0. From Theorem 2.5, we obtain

lim n → ∞ ∥ x n −T x n ∥=0.
(2.16)

Since C is compact, there exist a subsequence { x n k } of the sequence { x n } and a point p∈C such that x n k →p. Thus we obtain p∈F(T) by the continuity of T and (2.16). Hence we obtain lim n → ∞ ∥ x n −p∥=0 by Lemma 2.4. □

Corollary 2.7 Let C be a nonempty closed convex subset of a strictly convex Banach space E, and let T:C→C be an asymptotically nonexpansive mapping with { k n } satisfying k n ≥1, ∑ n = 1 ∞ ( k n −1)<∞, and let T(C) be contained in a compact subset of C. Suppose x 1 ∈C, and the sequence { x n } defined by (1.1) satisfies α n ∈[a,b] and lim sup n → ∞ β n =b<1 or lim inf n → ∞ α n >0 and β n ∈[a,b] for some a, b with 0<a≤b<1. Then { x n } converges strongly to a fixed point of T.

Proof Note that

∑ n = 1 ∞ c n = ∑ n = 1 ∞ ( k n −1)diam(C)<∞,

where diam(C)= sup x , y ∈ C ∥x−y∥<∞. The conclusion now follows easily from Theorem 2.6. □

We give an example which satisfies all assumptions of T in Theorem 2.6, i.e., T:C→C is an ANI mapping which is not Lipschitzian and hence not asymptotically nonexpansive.

Example 2.8 Let E:=R and C:=[0,2]. Define T:C→C by

Tx= { 1 , x ∈ [ 0 , 1 ] ; 2 − x , x ∈ [ 1 , 2 ] .

Note that T n x=1 for all x∈C and n≥2 and F(T)={1}. Clearly, T is uniformly continuous, ANI on C, but T is not Lipschitzian. Indeed, suppose not, i.e., there exists L>0 such that

|Tx−Ty|≤L|x−y|

for all x,y∈C. If we take y:=2 and x:=2− 1 ( L + 1 ) 2 >1, then

2 − x ≤L(2−x)⇔ 1 L 2 ≤2−x= 1 ( L + 1 ) 2 ⇔L+1≤L.

This is a contradiction.

We also give an example of an ANI mapping which is not a Lipschitz function.

Example 2.9 Let E=R and C=[−3π,3π] and let |h|<1. Let T:C→C be defined by

Tx=hxsinnx

for each x∈C and for all n∈N, where ℕ denotes the set of all positive integers. Clearly F(T)={0}. Since

T ( x ) = h x sin n x , T 2 x = h 2 x sin n x sin n h x sin n ( sin n x ) ⋯ ,

we obtain { T n x}→0 uniformly on C as n→∞. Thus

lim sup n → ∞ { ∥ T n x − T n y ∥ − ∥ x − y ∥ ∨ 0 } =0

for all x,y∈C. Hence T is an ANI mapping, but it is not a Lipschitz function. In fact, suppose that there exists h>0 such that |Tx−Ty|≤h|x−y| for all x,y∈C. If we take x= 5 π 2 n and y= 3 π 2 n , then

|Tx−Ty|= | h 5 π 2 n sin n 5 π 2 n − h 3 π 2 n sin n 3 π 2 n | = 4 h π n ,

whereas

h|x−y|=h | 5 π 2 n − 3 π 2 n | = h π n .

References

  1. Goebel K, Kirk WA: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 1972, 35: 171–174. 10.1090/S0002-9939-1972-0298500-3

    Article  MathSciNet  Google Scholar 

  2. Bruck RE, Kuczumow T, Reich S: Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Colloq. Math. 1993, 65: 169–179.

    MathSciNet  Google Scholar 

  3. Ishihara H, Takahashi W: Modulus of convexity, characteristic of convexity and fixed point theorems. Kodai Math. J. 1987, 10: 197–208. 10.2996/kmj/1138037414

    Article  MathSciNet  Google Scholar 

  4. Rhoades BE: Fixed point iterations for certain nonlinear mappings. J. Math. Anal. Appl. 1994, 183: 118–120. 10.1006/jmaa.1994.1135

    Article  MathSciNet  Google Scholar 

  5. Ishikawa S: Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44: 147–150. 10.1090/S0002-9939-1974-0336469-5

    Article  MathSciNet  Google Scholar 

  6. Schu J: Iterative contraction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 1991, 158: 407–413. 10.1016/0022-247X(91)90245-U

    Article  MathSciNet  Google Scholar 

  7. Mann WR: Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4: 506–510. 10.1090/S0002-9939-1953-0054846-3

    Article  Google Scholar 

  8. Takahashi W, Kim GE: Approximating fixed points of nonexpansive mappings in Banach spaces. Math. Jpn. 1998, 48: 1–9.

    MathSciNet  Google Scholar 

  9. Tsukiyama N, Takahashi W: Approximating fixed points of nonexpansive mappings with compact domains. Commun. Appl. Nonlinear Anal. 2000, 7(4):39–47.

    MathSciNet  Google Scholar 

  10. Tan KK, Xu HK: Approximating fixed points of nonexpansive mappings by the Ishikawa Iteration process. J. Math. Anal. Appl. 1993, 178: 301–308. 10.1006/jmaa.1993.1309

    Article  MathSciNet  Google Scholar 

  11. Schauder J: Der Fixpunktsatz in Funktionalräumen. Stud. Math. 1930, 2: 171–180.

    Google Scholar 

  12. Dunford N, Schwartz JT: Linear Operators, Part I. Interscience, New York; 1958.

    Google Scholar 

Download references

Acknowledgements

The author would like to express their sincere appreciation to the anonymous referee for useful suggestions which improved the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Eun Kim.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G.E. Strong convergence for asymptotically nonexpansive mappings in the intermediate sense. Fixed Point Theory Appl 2014, 162 (2014). https://doi.org/10.1186/1687-1812-2014-162

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2014-162

Keywords