Skip to main content

Existence and approximations of fixed points for contractive mappings of integral type

Abstract

The existence, uniqueness, and iterative approximations of fixed points for four classes of contractive mappings of integral type in complete metric spaces are established. The results presented in this paper generalize indeed several results of Branciari (J. Math. Math. Sci. 29(9):531-536, 2002), Rhoades (Int. J. Math. Math. Sci. 2003(63):4007-4013, 2003) and Liu et al. (Fixed Point Theory Appl. 2011:64, 2011). Four illustrative examples with uncountably many points are also included.

MSC:54H25.

1 Introduction

Over the past decade the researchers [118] introduced a lot of contractive mappings of integral type and discussed the existence of fixed points and common fixed points for these mappings in metric spaces and modular spaces, respectively. Branciari [5] was the first to study the existence of fixed points for the contractive mapping of integral type and proved the following result, which extends the Banach fixed point theorem.

Theorem 1.1 ([5])

Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtc 0 d ( x , y ) φ(t)dt,x,yX,

where c(0,1) is a constant and φΦ = {φ:φ: R + R + is Lebesgue integrable, summable on each compact subset of R + and 0 ε φ(t)dt>0 for each ε>0}.

Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Rhoades [16] and Liu et al. [10] extended the result of Branciari and proved the following fixed point theorems.

Theorem 1.2 ([16])

Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtc 0 max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } φ(t)dt,x,yX,

where c(0,1) is a constant and φΦ. Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Theorem 1.3 ([16])

Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtc 0 max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) } φ(t)dt,x,yX,

where c(0,1) is a constant and φΦ. Assume that f has a bounded orbit at some point xX. Then f has a unique fixed point aX such that lim n f n x=a.

Theorem 1.4 ([10])

Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtα ( d ( x , y ) ) 0 d ( x , y ) φ(t)dt,x,yX,

where φΦ and α: R + [0,1) is a function with

lim sup s t α(s)<1,t>0.

Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Theorem 1.5 ([10])

Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtα ( d ( x , y ) ) 0 d ( x , f x ) φ(t)dt+β ( d ( x , y ) ) 0 d ( y , f y ) φ(t)dt,x,yX,

where φΦ and α,β: R + [0,1) are two functions with

α(t)+β(t)<1,t R + , lim sup s 0 + β(s)<1, lim sup s t + α ( s ) 1 β ( s ) <1,t>0.

Then f has a unique fixed point aX such that lim n f n x=a for each xX.

The purposes of this paper are both to study the existence, uniqueness, and iterative approximations of fixed points for four new classes of contractive mappings of integral type, which include the contractive mappings of integral type in [5, 10, 16] as special cases, and to construct four examples with uncountably many points to illustrate that the results obtained properly generalize Theorems 1.1-1.5 or are different from these theorems.

2 Preliminaries

Throughout this paper, we assume that R=(,+), R + =[0,+), N 0 ={0}N, where denotes the set of all positive integers. Let (X,d) be a metric space. For f:XX, AX and (x,y,n) X 2 × N 0 , put

O f (x,n)={ f i x:0in}, O f (x)={ f i x:i N 0 },

d n =d( f n x, f n + 1 x), δ(A)=sup{d(u,v):u,vA},

m 1 (x,y)=max{d(x,y),d(x,fx),d(y,fy), 1 2 [d(x,fy)+d(y,fx)]},

m 2 (x,y)=max{d(x,y),d(x,fx),d(y,fy),d(x,fy),d(y,fx)}.

The O f (x) and O f (x,n) are called the orbit and n th orbit of f at x, respectively.

Let

Ψ 1 ={α:α: R + [0,1) is a function with  lim sup s t α(s)<1,t R + },

Ψ 2 ={α:α: R + [0,1) is a function with  lim sup s t α(s)<1,t>0},

Ψ 3 = {α:α: R + [0,1) is a function such that sup{α(s):sB}<1 for each nonempty bounded subset B in R + }.

The following lemma plays an important role in this paper.

Lemma 2.1 ([10])

Let φΦ and { r n } n N be a nonnegative sequence with lim n r n =a. Then

lim n 0 r n φ(t)dt= 0 a φ(t)dt.

3 Four fixed point theorems

In this section we show the existence, uniqueness and iterative approximations of fixed points for four classes of contractive mappings of integral type.

Theorem 3.1 Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtα ( d ( x , y ) ) 0 m 1 ( x , y ) φ(t)dt,x,yX,
(3.1)

where (φ,α)Φ× Ψ 1 . Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Proof Let x be an arbitrary point in X. Note that

m 1 ( f n 1 x , f n x ) = max { d ( f n 1 x , f n x ) , d ( f n 1 x , f n x ) , d ( f n x , f n + 1 x ) , 1 2 [ d ( f n 1 x , f n + 1 x ) + d ( f n x , f n x ) ] } = max { d ( f n 1 x , f n x ) , d ( f n x , f n + 1 x ) } = max { d n 1 , d n } , n N .
(3.2)

It follows from (3.1) and (3.2) that

0 d n φ ( t ) d t = 0 d ( f n x , f n + 1 x ) φ ( t ) d t α ( d ( f n 1 x , f n x ) ) 0 m 1 ( f n 1 x , f n x ) φ ( t ) d t α ( d n 1 ) 0 max { d n 1 , d n } φ ( t ) d t , n N .
(3.3)

Now we prove that

d n d n 1 ,nN.
(3.4)

Suppose that (3.4) does not hold. That is, there exists some n 0 N satisfying

d n 0 > d n 0 1 .
(3.5)

Since φΦ and α( R + )[0,1), it follows from (3.3) and (3.5) that

0< 0 d n 0 φ(t)dtα( d n 0 1 ) 0 max { d n 0 1 , d n 0 } φ(t)dt< 0 d n 0 φ(t)dt,

which is a contradiction and hence (3.4) holds. Clearly, (3.4) implies that there exists a constant c with lim n d n =c0.

Next we prove that c=0. Otherwise c>0. Taking the upper limit in (3.3) and using Lemma 2.1 and φΦ, we conclude that

0 < 0 c φ ( t ) d t = lim sup n 0 d n φ ( t ) d t lim sup n ( α ( d n 1 ) 0 max { d n 1 , d n } φ ( t ) d t ) lim sup n α ( d n 1 ) lim sup n 0 d n 1 φ ( t ) d t ( lim sup s c α ( s ) ) 0 c φ ( t ) d t < 0 c φ ( t ) d t ,

which is absurd. Therefore, c=0, that is,

lim n d n =0.
(3.6)

Now we claim that { f n x } n N is a Cauchy sequence. Suppose that { f n x } n N is not a Cauchy sequence, which means that there is a constant ε>0 such that for each positive integer k, there are positive integers m(k) and n(k) with m(k)>n(k)>k such that

d ( f m ( k ) x , f n ( k ) x ) >ε.

For each positive integer k, let m(k) denote the least integer exceeding n(k) and satisfying the above inequality. It follows that

d ( f m ( k ) x , f n ( k ) x ) >εandd ( f m ( k ) 1 x , f n ( k ) x ) ε,kN.
(3.7)

Note that

d ( f m ( k ) x , f n ( k ) x ) d ( f n ( k ) x , f m ( k ) 1 x ) + d m ( k ) 1 , k N ; | d ( f m ( k ) x , f n ( k ) + 1 x ) d ( f m ( k ) x , f n ( k ) x ) | d n ( k ) , k N ; | d ( f m ( k ) + 1 x , f n ( k ) + 1 x ) d ( f m ( k ) x , f n ( k ) + 1 x ) | d m ( k ) , k N ; | d ( f m ( k ) + 1 x , f n ( k ) + 1 x ) d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) | d n ( k ) + 1 , k N ; | d ( f m ( k ) x , f n ( k ) + 2 x ) d ( f m ( k ) x , f n ( k ) + 1 x ) | d n ( k ) + 1 , k N .
(3.8)

Making use of (3.6)-(3.8), we obtain

ε = lim k d ( f n ( k ) x , f m ( k ) x ) = lim k d ( f m ( k ) x , f n ( k ) + 1 x ) = lim k d ( f m ( k ) + 1 x , f n ( k ) + 1 x ) = lim k d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) = lim k d ( f m ( k ) x , f n ( k ) + 2 x ) .
(3.9)

It follows from (3.6) and (3.9) that

m 1 ( f m ( k ) x , f n ( k ) + 1 x ) = max { d ( f m ( k ) x , f n ( k ) + 1 x ) , d ( f m ( k ) x , f m ( k ) + 1 x ) , d ( f n ( k ) + 1 x , f n ( k ) + 2 x ) , 1 2 [ d ( f m ( k ) x , f n ( k ) + 2 x ) + d ( f n ( k ) + 1 x , f m ( k ) + 1 x ) ] } max { ε , 0 , 0 , ε } = ε as  k ,

which together with (3.1), Lemma 2.1, and (φ,α)Φ× Ψ 1 gives

0 < 0 ε φ ( t ) d t = lim sup k 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t lim sup k ( α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) 0 m 1 ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) lim sup k α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) lim sup k 0 m 1 ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ( lim sup s ε α ( s ) ) 0 ε φ ( t ) d t < 0 ε φ ( t ) d t ,

which is a contradiction. Thus { f n x } n N is a Cauchy sequence. Since (X,d) is a complete metric space, it follows that there exists a point aX such that lim n f n x=a. Suppose that faa. It is clear that (3.6) implies that

m 1 ( f n x , a ) = max { d ( f n x , a ) , d ( f n x , f n + 1 x ) , d ( a , f a ) , 1 2 [ d ( f n x , f a ) + d ( a , f n + 1 x ) ] } d ( a , f a ) as  n ,

which together with (3.1), Lemma 2.1, and (φ,α)Φ× Ψ 1 yields

0 < 0 d ( a , f a ) φ ( t ) d t = lim sup n 0 d ( f n + 1 x , f a ) φ ( t ) d t lim sup n ( α ( d ( f n x , a ) ) 0 m 1 ( f n x , a ) φ ( t ) d t ) lim sup n α ( d ( f n x , a ) ) lim sup n 0 m 1 ( f n x , a ) φ ( t ) d t ( lim sup s 0 α ( s ) ) 0 d ( a , f a ) φ ( t ) d t < 0 d ( a , f a ) φ ( t ) d t as  n ,

which is a contradiction. That is, a=fa.

Finally, we prove that a is a unique fixed point of f in X. Suppose that f has another fixed point bX{a}. Note that

m 1 (a,b)=max { d ( a , b ) , d ( a , f a ) , d ( b , f b ) , 1 2 [ d ( a , f b ) + d ( b , f a ) ] } =d(a,b).

It follows from (3.1), α( R + )[0,1) and φΦ that

0< 0 d ( a , b ) φ(t)dt= 0 d ( f a , f b ) φ(t)dtα ( d ( a , b ) ) 0 m 1 ( a , b ) φ(t)dt< 0 d ( a , b ) φ(t)dt,

which is a contradiction. This completes the proof. □

Theorem 3.2 Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtα ( d ( x , y ) ) 0 m 2 ( x , y ) φ(t)dt,x,yX,
(3.10)

where (φ,α)Φ× Ψ 3 . Assume that f has a bounded orbit at some point uX. Then f has a unique fixed point aX such that lim n f n u=a.

Proof Without loss of generality we assume that ufu. Now we prove that

for each nN there exists kN such that kn and δ ( O f ( u , n ) ) =d ( u , f k u ) .
(3.11)

Let nN. It is clear that there exist i,j N 0 such that 0i<jn and δ( O f (u,n))=d( f i u, f j u). Suppose that δ( O f (u,n))=d( f i u, f j u) for some i,jN with 0<i<jn. In light of (3.10) and (φ,α)Φ× Ψ 3 , we infer that

0 < 0 δ ( O f ( u , n ) ) φ ( t ) d t = 0 d ( f i u , f j u ) φ ( t ) d t α ( d ( f i 1 u , f j 1 u ) ) 0 m 2 ( f i 1 u , f j 1 u ) φ ( t ) d t α ( d ( f i 1 u , f j 1 u ) ) 0 δ ( O f ( u , n ) ) φ ( t ) d t < 0 δ ( O f ( u , n ) ) φ ( t ) d t ,

which is a contradiction. Thus (3.11) holds.

Next we prove that O f (u) is a Cauchy sequence. Suppose that O f (u) is not a Cauchy sequence. It follows that there exist an ε>0 and two strictly increasing sequences { m ( p ) } p N and { n ( p ) } p N with m(p)>n(p)>p for each pN satisfying

d ( f m ( p ) u , f n ( p ) u ) >ε,pN.
(3.12)

Put r=δ( O f (u)) and B=[0,r]. Clearly 0<r<+. Observe that (φ,α)Φ× Ψ 3 ensures that

lim p ( sup { α ( s ) : s B } ) n ( p ) 0 r φ(t)dt=0,

which implies that there exists some pN with

( sup { α ( s ) : s B } ) n ( p ) 0 r φ(t)dt< 0 ε φ(t)dt.
(3.13)

Using (3.10)-(3.13) and (φ,α)Φ× Ψ 3 , we know that there exist 0< k 1 m(p)n(p)+1, 0< k 2 m(p)n(p)+2, , and 0< k n ( p ) 1 m(p)1 satisfying

0 ε φ ( t ) d t 0 d ( f n ( p ) u , f m ( p ) u ) φ ( t ) d t α ( d ( f n ( p ) 1 u , f m ( p ) 1 u ) ) 0 m 2 ( f n ( p ) 1 u , f m ( p ) 1 u ) φ ( t ) d t α ( d ( f n ( p ) 1 u , f m ( p ) 1 u ) ) 0 δ ( O f ( f n ( p ) 1 u , m ( p ) n ( p ) + 1 ) ) φ ( t ) d t = α ( d ( f n ( p ) 1 u , f m ( p ) 1 u ) ) 0 d ( f n ( p ) 1 u , f k 1 + n ( p ) 1 u ) φ ( t ) d t α ( d ( f n ( p ) 1 u , f m ( p ) 1 u ) ) α ( d ( f n ( p ) 2 u , f k 1 + n ( p ) 2 u ) ) × 0 δ ( O f ( f n ( p ) 2 u , k 1 + 1 ) ) φ ( t ) d t = α ( d ( f n ( p ) 1 u , f m ( p ) 1 u ) ) α ( d ( f n ( p ) 2 u , f k 1 + n ( p ) 2 u ) ) × 0 d ( f n ( p ) 2 u , f k 2 + n ( p ) 2 u ) φ ( t ) d t α ( d ( f n ( p ) 1 u , f m ( p ) 1 u ) ) α ( d ( f n ( p ) 2 u , f k 1 + n ( p ) 2 u ) ) α ( d ( u , f k n ( p ) 1 u ) ) × 0 δ ( O f ( u , m ( p ) ) ) φ ( t ) d t ( sup { α ( s ) : s B } ) n ( p ) 0 r φ ( t ) d t < 0 ε φ ( t ) d t ,

which is impossible. Thus { f n u } n N is a Cauchy sequence. Since (X,d) is complete, it follows that there exists aX satisfying lim n f n u=a. Suppose that d(a,fa)>0. Note that

lim n m 2 ( f n u , a ) = lim n max { d ( f n u , a ) , d ( f n u , f n + 1 u ) , d ( a , f a ) , d ( f n u , f a ) , d ( a , f n + 1 u ) } = d ( a , f a ) .
(3.14)

Taking the upper limit in (3.10) and using (3.14), Lemma 2.1, and (φ,α)Φ× Ψ 3 , we conclude that

0 < 0 d ( a , f a ) φ ( t ) d t = lim sup n 0 d ( f n + 1 u , f a ) φ ( t ) d t lim sup n ( α ( d ( f n u , a ) ) 0 m 2 ( f n u , a ) φ ( t ) d t ) lim sup n α ( d ( f n u , a ) ) lim sup n 0 m 2 ( f n u , a ) φ ( t ) d t sup { α ( s ) : s [ 0 , 1 ] } 0 d ( a , f a ) φ ( t ) d t < 0 d ( a , f a ) φ ( t ) d t ,

which is absurd. Therefore, d(a,fa)=0, that is, a=fa.

Suppose that f has another fixed point wX{a}. Since

m 2 (a,w)=max { d ( a , w ) , d ( a , f a ) , d ( w , f w ) , d ( a , f w ) , d ( w , f a ) } =d(a,w),

it follows from (3.10) that

0 < 0 d ( a , w ) φ ( t ) d t α ( d ( a , w ) ) 0 m 2 ( a , w ) φ ( t ) d t = α ( d ( a , w ) ) 0 d ( a , w ) φ ( t ) d t < 0 d ( a , w ) φ ( t ) d t ,

which is a contradiction. That is, f has a unique fixed point in X. This completes the proof. □

As in the arguments of Theorems 3.1 and 3.2, we conclude similarly the following results and omit their proofs.

Theorem 3.3 Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtα ( m 1 ( x , y ) ) 0 m 1 ( x , y ) φ(t)dt,x,yX,
(3.15)

where (φ,α)Φ× Ψ 2 . Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Theorem 3.4 Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtα ( m 2 ( x , y ) ) 0 m 2 ( x , y ) φ(t)dt,x,yX,
(3.16)

where (φ,α)Φ× Ψ 3 . Assume that f has a bounded orbit at some point uX. Then f has a unique fixed point aX such that lim n f n u=a.

4 Remarks and illustrative examples

Now we construct four examples with uncountably many points to show the fixed point theorems obtained in Section 3 generalize properly or are different from the known results in Section 1.

Remark 4.1 Theorem 3.1 generalizes Theorem 1.2, which, in turns, extends Theorem 1.1. The following example proves that Theorem 3.1 both extends substantially Theorem 1.1 and is different from Theorem 1.4.

Example 4.2 Let X=[0, 3 2 ]R be endowed with the Euclidean metric d=||, f:XX, φ: R + R + and α: R + [0,1) be defined by

f ( x ) = { x 3 , x [ 0 , 1 ] , x 1 , x ( 1 , 3 2 ] , φ ( t ) = 2 t , t R + and α ( t ) = { 1 3 , t = 0 , 1 2 + t , t ( 0 , + ) .

Obviously, (φ,α)Φ× Ψ 1 . Let x,yX with y<x. In order to verify (3.1), we have to consider six possible cases as follows:

Case 1. 1<y<x 3 2 . It is clear that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , 1 , 1 , 1 } = 1 = d ( x , f x )

and

0 d ( f x , f y ) φ ( t ) d t = ( x y ) 2 1 4 < 2 5 1 2 + x y = α ( d ( x , y ) ) 0 1 φ ( t ) d t = α ( d ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

Case 2. 0y< x 3 and x1. Note that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , 2 3 x , 2 3 y , 2 3 ( x y ) } = x y = d ( x , y )

and

0 d ( f x , f y ) φ ( t ) d t = ( x 3 y 3 ) 2 = ( x y ) 2 9 ( x y ) 2 2 + x y = α ( d ( x , y ) ) 0 d ( x , y ) φ ( t ) d t = α ( d ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

Case 3. x 3 y<x1. It follows that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , 2 3 x , 2 3 y , 1 2 ( x y 3 + y x 3 ) } = 2 3 x = d ( x , f x )

and

0 d ( f x , f y ) φ ( t ) d t = ( x 3 y 3 ) 2 = ( x y ) 2 9 1 2 + x y 4 9 x 2 = α ( d ( x , y ) ) 0 d ( x , f x ) φ ( t ) d t = α ( d ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

Case 4. 1 2 <y1<x 3 2 . Notice that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , 1 , 2 3 y , 1 2 ( 1 + 2 3 y ) } = 1 = d ( x , f x )

and

0 d ( f x , f y ) φ ( t ) d t = | x 1 y 3 | 2 1 9 < 1 3 1 2 + x y = α ( d ( x , y ) ) 0 d ( x , f x ) φ ( t ) d t = α ( d ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

Case 5. x1y 1 2 and 1<x 3 2 . It is easy to see that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , 1 , 2 3 y , 1 2 ( 1 + 2 3 y ) } = 1 = d ( x , f x )

and

0 d ( f x , f y ) φ ( t ) d t = | x 1 y 3 | 2 1 4 < 2 7 1 2 + x y = α ( d ( x , y ) ) 0 d ( x , f x ) φ ( t ) d t = α ( d ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

Case 6. 0y<x1 and 1<x 3 2 . It is easy to verify that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , 1 , 2 3 y , 1 2 ( 2 x 4 3 y 1 ) } = x y = d ( x , y )

and

0 d ( f x , f y ) φ ( t ) d t = | x 1 y 3 | 2 1 4 < 2 7 1 2 + x y ( x y ) 2 2 + x y = α ( d ( x , y ) ) 0 d ( x , y ) φ ( t ) d t = α ( d ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

That is, (3.1) holds. It follows from Theorem 3.1 that f has a unique fixed point 0X and lim n f n x=0 for each xX. But we invoke neither Theorem 1.1 nor Theorem 1.4 to show that f possesses a fixed point in X.

Suppose that f satisfies the conditions of Theorem 1.1, that is, there exists c(0,1) satisfying

49 900 = | 11 10 1 1 3 | 2 = 0 d ( f 11 10 , f 1 ) φ ( t ) d t c 0 d ( 11 10 , 1 ) φ ( t ) d t = c | 11 10 1 | 2 = c 100 ,

which means that

1< 49 9 c<1,

which is a contradiction.

Suppose that f satisfies the conditions of Theorem 1.4, that is, there exists α Ψ 2 satisfying

1 100 = | 13 10 12 10 | 2 = 0 d ( f 13 10 , f 12 10 ) φ ( t ) d t α ( d ( 13 10 , 12 10 ) ) 0 d ( 13 10 , 12 10 ) φ ( t ) d t = α ( 1 10 ) | 13 10 12 10 | 2 = 1 100 α ( 1 10 ) ,

which implies that

1α ( 1 10 ) <1,

which is a contradiction.

Remark 4.3 Theorem 3.2 is a generalization of Theorem 1.3. The below example demonstrates that Theorem 3.2 is different from Theorem 1.4.

Example 4.4 Let X=[1, 3 2 ][2, 5 2 ][3,+)R be endowed with the Euclidean metric d=||, f:XX, φ: R + R + and α: R + [0,1) be defined by

f ( x ) = { 1 , x [ 1 , 3 2 ] , x 1 , x [ 2 , 5 2 ] , 3 2 , x [ 3 , + ) , φ ( t ) = 2 t , t R + and α ( t ) = { 1 2 , t = 0 , t 2 ( 1 + t ) 2 , t ( 0 , + ) .

It is easy to see that (φ,α)Φ× Φ 3 and O f (u) is bounded for each uX. Let x,yX with y<x. In order to verify (3.10), we have to consider six possible cases as follows:

Case 1. 1y<x 3 2 . It is clear that

0 d ( f x , f y ) φ(t)dt=0α ( d ( x , y ) ) 0 m 2 ( x , y ) φ(t)dt.

Case 2. 2y<x 5 2 . Note that

m 2 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) } = max { x y , 1 , 1 , x y + 1 , y x + 1 } = x y + 1 = d ( x , f y )

and

0 d ( f x , f y ) φ ( t ) d t = | x 1 y + 1 | 2 = ( x y ) 2 ( x y ) 2 ( x y + 1 ) 2 ( x y + 1 ) 2 = α ( d ( x , y ) ) 0 d ( x , f y ) φ ( t ) d t = α ( d ( x , y ) ) 0 m 2 ( x , y ) φ ( t ) d t .

Case 3. 1y 3 2 and 2x 5 2 . It follows that

m 2 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) } = max { x y , 1 , y 1 , x 1 , | y ( x 1 ) | } = x 1 = d ( x , f y )

and

0 d ( f x , f y ) φ ( t ) d t = | x 1 1 | 2 = ( x 2 ) 2 ( x y ) 2 ( x 1 ) 2 ( x y + 1 ) 2 = α ( d ( x , y ) ) 0 d ( x , f y ) φ ( t ) d t = α ( d ( x , y ) ) 0 m 2 ( x , y ) φ ( t ) d t .

Case 4. 3y<x<+. It is easy to see that

0 d ( f x , f y ) φ(t)dt=0α ( d ( x , y ) ) 0 m 2 ( x , y ) φ(t)dt.

Case 5. 2y 5 2 and x3. It follows that

m 2 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) } = max { x y , x 3 2 , 1 , x y + 1 , y 3 2 } = x y + 1 = d ( x , f y )

and

0 d ( f x , f y ) φ ( t ) d t = | 3 2 ( y 1 ) | 2 = ( 5 2 y ) 2 ( x y ) 2 ( x y + 1 ) 2 ( x y + 1 ) 2 = α ( d ( x , y ) ) 0 d ( x , f y ) φ ( t ) d t = α ( d ( x , y ) ) 0 m 2 ( x , y ) φ ( t ) d t .

Case 6. 1y 3 2 and x3. It is clear that

m 2 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) } = max { x y , x 3 2 , y 1 , x 1 , 3 2 y } = x 1 = d ( x , f y )

and

0 d ( f x , f y ) φ ( t ) d t = | 3 2 1 | 2 = 1 4 ( x 1 ) 2 ( x y ) 2 ( 1 + x y ) 2 = α ( d ( x , y ) ) 0 d ( x , f y ) φ ( t ) d t = α ( d ( x , y ) ) 0 m 2 ( x , y ) φ ( t ) d t .

That is, the conditions of Theorem 3.2 are fulfilled. It follows from Theorem 3.2 that f has a unique fixed point 1X and lim n f n u=1 for each uX. However, Theorem 1.4 is useless in guaranteeing the existence of a fixed point of f in X. Suppose that f satisfies the conditions of Theorem 1.4, that is, there exists α Ψ 2 satisfying

1 100 = | 21 10 2 | 2 = 0 d ( f 21 10 , f 2 ) φ ( t ) d t α ( d ( 21 10 , 2 ) ) 0 d ( 21 10 , 2 ) φ ( t ) d t = α ( 1 10 ) | 21 10 2 | 2 = 1 100 α ( 1 10 ) ,

which yields

1α ( 1 10 ) <1,

which is impossible.

Remark 4.5 Theorem 3.3 extends Theorems 1.1 and 1.2. The example below is an application of Theorem 3.3.

Example 4.6 Let X= R + be endowed with the Euclidean metric d=||, f:XX, φ: R + R + and α: R + [0,1) be defined by

f ( x ) = { x 2 , x [ 0 , 1 ) , x 1 + x , x [ 1 , + ) , φ ( t ) = 2 t , t R + and α ( t ) = { 1 4 , t [ 0 , 1 2 ) , t 1 + t , t [ 1 2 , + ) .

Obviously, (φ,α)Φ× Ψ 2 . Let x,yX with y<x. In order to verify (3.15), we have to consider five possible cases as follows:

Case 1. 1y<x<+. It follows that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , x 2 1 + x , y 2 1 + y , 1 2 ( x y 1 + y + y x 1 + x ) } = x 2 1 + x = d ( x , f x )

and

0 d ( f x , f y ) φ ( t ) d t = ( x 1 + x y 1 + y ) 2 = ( x y ) 2 ( 1 + x ) 2 ( 1 + y ) 2 1 16 ( x y ) 2 1 16 ( x 2 1 + x ) 2 α ( x 2 1 + x ) ( x 2 1 + x ) 2 = α ( m 1 ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

Case 2. x 2 y<x<1. It follows that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , x 2 , y 2 , 1 2 ( x y 2 + y x 2 ) } = x 2 = d ( x , f x )

and

0 d ( f x , f y ) φ ( t ) d t = ( x 2 y 2 ) 2 = 1 4 ( x y ) 2 1 4 ( x 2 ) 2 = α ( x 2 ) ( x 2 ) 2 = α ( m 1 ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

Case 3. 0y< x 2 and x<1. It is clear that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , x 2 , y 2 , 1 2 ( x y 2 + x 2 y ) } = x y = d ( x , y )

and

0 d ( f x , f y ) φ ( t ) d t = ( x 2 y 2 ) 2 = 1 4 ( x y ) 2 α ( x y ) ( x y ) 2 = α ( m 1 ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

Case 4. x 1 + x y<1 and x1. Notice that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , x 2 1 + x , y 2 , 1 2 ( x y 2 + y x 1 + x ) } = x 2 1 + x = d ( x , f x )

and

0 d ( f x , f y ) φ ( t ) d t = ( x 1 + x y 2 ) 2 ( x 1 + x 1 2 x 1 + x ) 2 = 1 4 ( x 1 + x ) 2 α ( x 2 1 + x ) ( x 2 1 + x ) 2 = α ( m 1 ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

Case 5. 0y< x 1 + x and x1. It is clear that

m 1 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , 1 2 [ d ( x , f y ) + d ( y , f x ) ] } = max { x y , x 2 1 + x , y 2 , 1 2 ( x y 2 + x 1 + x y ) } = x y = d ( x , y )

and

0 d ( f x , f y ) φ ( t ) d t = ( x 1 + x y 2 ) 2 ( x 2 y 2 ) 2 = 1 4 ( x y ) 2 α ( x y ) ( x y ) 2 = α ( m 1 ( x , y ) ) 0 m 1 ( x , y ) φ ( t ) d t .

That is, the conditions of Theorem 3.3 are fulfilled. It follows from Theorem 3.3 that f has a unique fixed point 0X and lim n f n x=0 for each xX.

Remark 4.7 Theorem 3.4 extends Theorem 1.3. The following example shows that Theorem 3.4 both generalizes substantially Theorem 1.3 and differs from Theorem 1.5.

Example 4.8 Let X= R + be endowed with the Euclidean metric d=||, f:XX, φ: R + R + and α: R + [0,1) be defined by

f ( x ) = { x 2 , x [ 0 , 1 ] , x 1 , x ( 1 , + ) , φ ( t ) = 2 t , t R + and α ( t ) = { 1 4 , t [ 0 , 1 ] , ( t 1 ) 2 t 2 , t ( 1 , + ) .

It is clear that (φ,α)Φ× Φ 3 and O f (u) is bounded for each uX. Let x,yX with y<x. In order to verify (3.16), we have to consider four possible cases as follows:

Case 1. 0y<x1. Note that

m 2 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) } = max { x y , x 2 , y 2 , x y 2 , | y x 2 | } = x y 2 = d ( x , f y )

and

0 d ( f x , f y ) φ ( t ) d t = | x 2 y 2 | 2 = ( x y ) 2 4 ( x y 2 ) 2 4 = α ( d ( x , f y ) ) 0 d ( x , f y ) φ ( t ) d t = α ( m 2 ( x , y ) ) 0 m 2 ( x , y ) φ ( t ) d t .

Case 2. 0y1<x1+ y 2 . Clearly

m 2 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) } = max { x y , 1 , y 2 , x y 2 , | y x + 1 | } = 1 = d ( x , f x )

and

0 d ( f x , f y ) φ ( t ) d t = | x 1 y 2 | 2 ( y 2 ) 2 1 4 = α ( d ( x , f x ) ) 0 d ( x , f x ) φ ( t ) d t = α ( m 2 ( x , y ) ) 0 m 2 ( x , y ) φ ( t ) d t .

Case 3. 0y1 and 1+ y 2 <x<+. Obviously

m 2 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) } = max { x y , 1 , y 2 , x y 2 , | y x + 1 | } = x y 2 = d ( x , f y )

and

0 d ( f x , f y ) φ ( t ) d t = | x 1 y 2 | 2 ( x 1 y 2 ) 2 ( x y 2 ) 2 ( x y 2 ) 2 = α ( d ( x , f y ) ) 0 d ( x , f y ) φ ( t ) d t = α ( m 2 ( x , y ) ) 0 m 2 ( x , y ) φ ( t ) d t .

Case 4. 1<y<x<+. It follows that

m 2 ( x , y ) = max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) , d ( y , f x ) } = max { x y , 1 , 1 , x y + 1 , | y x + 1 | } = x y + 1 = d ( x , f y )

and

0 d ( f x , f y ) φ ( t ) d t = ( x y ) 2 ( x y + 1 1 ) 2 ( x y + 1 ) 2 ( x y + 1 ) 2 = α ( d ( x , f y ) ) 0 d ( x , f y ) φ ( t ) d t = α ( m 2 ( x , y ) ) 0 m 2 ( x , y ) φ ( t ) d t .

That is, the conditions of Theorem 3.4 are fulfilled. It follows from Theorem 3.4 that f has a unique fixed point 0X and lim n f n u=0 for each uX. But we do not invoke Theorems 1.3 and 1.5 to show the existence of a fixed point of f in X.

Suppose that f satisfies the conditions of Theorem 1.3, that is, there exists some c(0,1) satisfying

( x y ) 2 = 0 d ( f x , f y ) φ ( t ) d t c 0 m 2 ( x , y ) φ ( t ) d t = c ( x y + 1 ) 2 , x , y ( 1 , + )  with  y < x ,

which yields

1= lim x y + ( x y ) 2 ( x y + 1 ) 2 c<1,

which is impossible.

Suppose that f satisfies the conditions of Theorem 1.5, that is, there exist α,β: R + [0,1) satisfying

α(t)+β(t)<1,t R + , lim sup s 0 + β(s)<1, lim sup s t + α ( s ) 1 β ( s ) <1,t>0

and

1 = ( 3 2 ) 2 = 0 d ( f 3 , f 2 ) φ ( t ) d t α ( d ( 3 , 2 ) ) 0 d ( 3 , f 3 ) φ ( t ) d t + β ( d ( 3 , 2 ) ) 0 d ( 2 , f 2 ) φ ( t ) d t = α ( 1 ) 1 + β ( 1 ) 1 = α ( 1 ) + β ( 1 ) ,

which means that

1α(1)+β(1)<1,

which is absurd.

References

  1. Aliouche A: A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type. J. Math. Anal. Appl. 2006, 322(2):796–802. 10.1016/j.jmaa.2005.09.068

    Article  MathSciNet  Google Scholar 

  2. Altun I, Türkoǧlu D: Some fixed point theorems for weakly compatible mappings satisfying an implicit relation. Taiwan. J. Math. 2009, 13(4):1291–1304.

    Google Scholar 

  3. Altun I, Türkoǧlu D, Rhoades BE: Fixed points of weakly compatible maps satisfying a general contractive of integral type. Fixed Point Theory Appl. 2007., 2007: Article ID 17301 10.1155/2007/17301

    Google Scholar 

  4. Beygmohammadi M, Razani A: Two fixed-point theorems for mappings satisfying a general contractive condition of integral type in the modular space. Int. J. Math. Math. Sci. 2010., 2010: Article ID 317107 10.1155/2010/317107

    Google Scholar 

  5. Branciari A: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2002, 29(9):531–536. 10.1155/S0161171202007524

    Article  MathSciNet  Google Scholar 

  6. Djoudi A, Aliouche A: Common fixed point theorems of Greguš type for weakly compatible mappings satisfying contractive conditions of integral type. J. Math. Anal. Appl. 2007, 329(1):31–45. 10.1016/j.jmaa.2006.06.037

    Article  MathSciNet  Google Scholar 

  7. Djoudi A, Merghadi F: Common fixed point theorems for maps under a contractive condition of integral type. J. Math. Anal. Appl. 2008, 341(2):953–960. 10.1016/j.jmaa.2007.10.064

    Article  MathSciNet  Google Scholar 

  8. Jachymski J: Remarks on contractive conditions of integral type. Nonlinear Anal. 2009, 71(3–4):1073–1081. 10.1016/j.na.2008.11.046

    Article  MathSciNet  Google Scholar 

  9. Kutbi MA, Imdad M, Chauhan S, Sintunavarat W:Some integral type fixed point theorems for non-self mappings satisfying generalized (ψ,φ)-weak contractive conditions in symmetric spaces. Abstr. Appl. Anal. 2014., 2014: Article ID 519038 10.1155/2014/519038

    Google Scholar 

  10. Liu Z, Li X, Kang SM, Cho SY: Fixed point theorems for mappings satisfying contractive conditions of integral type and applications. Fixed Point Theory Appl. 2011., 2011: Article ID 64 10.1186/1687-1812-2011-64

    Google Scholar 

  11. Liu Z, Li ZL, Kang SM: Fixed point theorems of contractive mappings of integral type. Fixed Point Theory Appl. 2013., 2013: Article ID 300 10.1186/1687-1812-2013-300

    Google Scholar 

  12. Liu Z, Lu Y, Kang SM: Fixed point theorems for mappings satisfying contractive conditions of integral type. Fixed Point Theory Appl. 2013., 2013: Article ID 267 10.1186/1687-1812-2013-267

    Google Scholar 

  13. Mongkolkeha C, Kumam P: Fixed point and common fixed point theorems for generalized weak contraction mappings of integral type in modular spaces. Int. J. Math. Math. Sci. 2011., 2011: Article ID 705943 10.1155/2011/705943

    Google Scholar 

  14. Sintunavarat W, Kumam P: Gregus-type common fixed point theorems for tangential multivalued mappings of integral type in metric spaces. Int. J. Math. Math. Sci. 2011., 2011: Article ID 923458 10.1155/2011/923458

    Google Scholar 

  15. Sintunavarat W, Kumam P: Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type. J. Inequal. Appl. 2011., 2011: Article ID 3 10.1186/1029-242X-2011-3

    Google Scholar 

  16. Rhoades BE: Two fixed-point theorems for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2003, 2003(63):4007–4013. 10.1155/S0161171203208024

    Article  MathSciNet  Google Scholar 

  17. Suzuki T: Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Int. J. Math. Math. Sci. 2007., 2007: Article ID 39281 10.1155/2007/39281

    Google Scholar 

  18. Vijayaraju P, Rhoades BE, Mohanraj R: A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2005, 2005(15):2359–2364. 10.1155/IJMMS.2005.2359

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for useful comments and suggestions. This research was supported by the Science Research Foundation of Educational Department of Liaoning Province (L2012380) and the fund of the Research Promotion Program, Gyeongsang National University, 2013 (RPP-2013-023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Min Kang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, X. & Kang, S.M. Existence and approximations of fixed points for contractive mappings of integral type. Fixed Point Theory Appl 2014, 138 (2014). https://doi.org/10.1186/1687-1812-2014-138

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2014-138

Keywords