Skip to main content

Strong convergence theorems for common zeros of a family of accretive operators

Abstract

In this paper, common zeros of a family of accretive operators are investigated based on the Kirk-like proximal point algorithm. A strong convergence theorem is established in a reflexive Banach space.

1 Introduction

In the real world, many important problems have reformulations which require finding common zero (fixed) points of nonlinear operators, for instance, image recovery, inverse problems, transportation problems and optimization problems. It is well known that the convex feasibility problem is a special case of the common zero (fixed) points of nonlinear operators. In 1971, Kirk [1] introduced a parallel iterative process for finding a family of nonexpansive mappings. Common fixed point theorems were established in a Banach space; for more details, see [1]. For studying zero points of monotone operators, the most well-known algorithm is the proximal point algorithm; see [2, 3] and the references therein. It is known that Rockfellar’s proximal point algorithm is, in general, weak convergence; see [4] and the references therein.

Recently, many authors have been devoted to investigating the strong convergence of a proximal point algorithm. Strong convergence theorems for zero points of accretive operators were established; see, for example, [5–29] and the references therein.

In this paper, we are concerned with the problem of finding a common zero of a family of accretive operators based on the Kirk-like proximal point algorithm. A strong convergence theorem is established in a reflexive Banach space.

2 Preliminaries

Let E be a Banach space with the dual E ∗ . Let 〈⋅,⋅〉 denote the pairing between E and E ∗ . The normalized duality mapping J:E→ 2 E ∗ is defined by

J(x)= { f ∈ E ∗ : 〈 x , f 〉 = ∥ x ∥ 2 = ∥ f ∥ 2 } ,∀x∈E.

Let U E ={x∈E:∥x∥=1}. E is said to be smooth or to have a Gâteaux differentiable norm if the limit lim t → 0 ∥ x + t y ∥ − ∥ x ∥ t exists for each x,y∈ U E . E is said to have a uniformly Gâteaux differentiable norm if for each y∈ U E , the limit is attained uniformly for all x∈ U E . E is said to be uniformly smooth or to have a uniformly Fréchet differentiable norm if the limit is attained uniformly for x,y∈ U E .

It is well known that (uniform) Fréchet differentiability of the norm of E implies (uniform) Gâteaux differentiability of the norm of E. It is known that if the norm of E is uniformly Gâteaux differentiable, then the duality mapping j is single-valued and uniformly norm to weak∗ continuous on each bounded subset of E. In the sequel, we use j to denote the single-valued normalized duality mapping.

A Banach space E is said to be strictly convex if and only if

∥x∥=∥y∥= ∥ ( 1 − λ ) x + λ y ∥

for x,y∈E, and 0<λ<1 implies that x=y.

Recall that a closed convex subset C of a Banach space E is said to have a normal structure if for each bounded closed convex subset K of C which contains at least two points, there exists an element x of K which is not a diametral point of K, i.e., sup{∥x−y∥:y∈K}<d(K), where d(K) is the diameter of K.

Let C be a nonempty closed convex subset of E. Let T:C→C be a mapping. In this paper, we use F(T) to denote the set of fixed points of T. Recall that T is said to be nonexpansive iff ∥Tx−Ty∥≤∥x−y∥, ∀x,y∈C. For the existence of fixed points of a nonexpansive mapping, we refer readers to [30].

Let I denote the identity operator on E. An operator A⊂E×E with the domain D(A)={z∈E:Az≠∅} and the range R(A)=⋃{Az:z∈D(A)} is said to be accretive if for each x i ∈D(A) and y i ∈A x i , i=1,2, there exists j( x 1 − x 2 )∈J( x 1 − x 2 ) such that 〈 y 1 − y 2 ,j( x 1 − x 2 )〉≥0. An accretive operator A is said to be m-accretive if R(I+rA)=E for all r>0. In this paper, we use A − 1 (0) to denote the set of zero points of A. For an accretive operator A, we can define a nonexpansive single-valued mapping J r :R(I+rA)→D(A) by J r = ( I + r A ) − 1 for each r>0, which is called the resolvent of A.

Next we give the following lemmas which play an important role in this article.

Lemma 2.1 [31]

Let E be a real Banach space and let J be the normalized duality mapping. Then there exists j(x+y)∈J(x+y) such that

∥ x + y ∥ 2 ≤ ∥ x ∥ 2 +2 〈 y , j ( x + y ) 〉 ,∀x,y∈E.

Lemma 2.2 [32]

Let C be a closed convex subset of a strictly convex Banach space E. Let S:C→C and T:C→c be two nonexpansive mappings. Suppose that F(S)∩F(T) is nonempty. Then the mapping wS+(1−w)T, where s∈(0,1) is a real number, is well defined nonexpansive with F(wS+(1−w)T)=F(S)∩F(T).

Lemma 2.3 [33]

Let E be a real reflexive Banach space with the uniformly Gâteaux differentiable norm and the normal structure, and let C be a nonempty closed convex subset of E. Let T:C→C be a nonexpansive mapping with a fixed point. Let { x t } be a sequence generated by the following x t =tu+(1−t)T x t , where t∈(0,1) and u∈C is a fixed element. Then { x t } converges strongly as t→0 to a fixed point x ∗ of T, which is the unique solution in F(T) to the following variational inequality 〈u− x ∗ ,j( x ∗ −p)〉≥0, ∀p∈F(T).

Lemma 2.4 [34]

Let { a n }, { b n }, { c n } and { d n } be three nonnegative real sequences satisfying a n + 1 ≤(1− b n ) a n + b n c n + d n , ∀n≥ n 0 , where n 0 is some positive integer, { b n } is a number sequence in (0,1) such that ∑ n = n 0 ∞ b n =∞, { c n } is a number sequence such that lim sup n → ∞ c n ≤0, and { d n } is a positive number sequence such that ∑ n = n 0 ∞ d n <∞. Then lim n → ∞ a n =0.

3 Main results

Theorem 3.1 Let E be a real reflexive, strictly convex Banach space with the uniformly Gâteaux differentiable norm. Let N≥1 be some positive integer. Let A m be an m-accretive operator in E for each m∈{1,2,…,N}. Assume that C:= ⋂ m = 1 N D ( A m ) ¯ is convex and has the normal structure. Let { α n } be a real number sequence in (0,1) such that lim n → ∞ α n =0, ∑ n = 1 ∞ α n =∞ and ∑ n = 1 ∞ | α n + 1 − α n |<∞, let { β n , m } be a real number sequence in (0,1) such that ∑ m = 1 N β n , m =1, lim n → ∞ β n , m = β m and ∑ n = 1 ∞ | β n + 1 , m − β n , m |<∞, let { r m } be a positive real number sequence, and let { e n , m } be a sequence in E such that ∑ n = 1 ∞ ∥ e n , m ∥<∞ for each m∈{1,2,…,N}. Assume that ⋂ m = 1 N A m − 1 (0) is not empty. Let { x n } be a sequence generated in the following manner:

x 1 ∈C, x n + 1 = α n u+(1− α n ) ∑ m = 1 N β n , m J r m ( x n + e n , m ),∀n≥1,

where u is a fixed element in C and J r m = ( I + r m A m ) − 1 . Then the sequence { x n } converges strongly to x ¯ , which is the unique solution to the following variational inequality 〈u− x ¯ ,j(p− x ¯ )〉≤0, ∀p∈ ⋂ m = 1 N A m − 1 (0).

Proof The proof is split into five steps.

Step 1. Show that { x n } is bounded.

Put y n = ∑ m = 1 N β n , m J r m ( x n + e n , m ). Fixing p∈ ⋂ m = 1 N A m − 1 (0), we find that

∥ y n −p∥≤ ∑ m = 1 N β n , m ∥ J r m ( x n + e n , m ) − p ∥ ≤∥ x n −p∥+ ∑ m = 1 N ∥ e n , m ∥.

It follows that

∥ x n + 1 − p ∥ ≤ α n ∥ u − p ∥ + ( 1 − α n ) ∥ y n − p ∥ ≤ α n ∥ u − p ∥ + ( 1 − α n ) ∥ x n − p ∥ + ∑ m = 1 N ∥ e n , m ∥ ≤ max { ∥ u − p ∥ , ∥ x n − p ∥ } + ∑ m = 1 N ∥ e n , m ∥ .

By induction, we find that

∥ x n + 1 −p∥≤max { ∥ u − p ∥ , ∥ x 1 − p ∥ } + ∑ i = 1 ∞ ∑ m = 1 N ∥ e i , m ∥<∞.

This proves Step 1.

Step 2. Show that lim n → ∞ ∥ x n + 1 − x n ∥=0.

Note that

y n − y n − 1 = ∑ m = 1 N β n , m ( J r m ( x n + e n , m ) − J r m ( x n − 1 + e n − 1 , m ) ) + ∑ m = 1 N ( β n , m − β n − 1 , m ) J r m ( x n − 1 + e n − 1 , m ) .

It follows that

∥ y n − y n − 1 ∥ ≤ ∑ m = 1 N β n , m ∥ J r m ( x n + e n , m ) − J r m ( x n − 1 + e n − 1 , m ) ∥ + ∑ m = 1 N | β n , m − β n − 1 , m | ∥ J r m ( x n − 1 + e n − 1 , m ) ∥ ≤ ∥ x n − x n − 1 ∥ + ∑ m = 1 N ∥ e n , m ∥ + ∑ m = 1 N ∥ e n − 1 , m ∥ + ∑ m = 1 N | β n , m − β n − 1 , m | ∥ J r m ( x n − 1 + e n − 1 , m ) ∥ ≤ ∥ x n − x n − 1 ∥ + M 1 ∑ m = 1 N | β n , m − β n − 1 , m | + ∑ m = 1 N ∥ e n , m ∥ + ∑ m = 1 N ∥ e n − 1 , m ∥ ,

where M 1 is an appropriate constant such that

M 1 =max { sup n ≥ 1 ∥ J r 1 ( x n + e n , 1 ) ∥ , sup n ≥ 1 ∥ J r 2 ( x n + e n , 2 ) ∥ , … , sup n ≥ 1 ∥ J r N ( x n + e n , N ) ∥ } .

It follows that

∥ x n + 1 − x n ∥ ≤ ( 1 − α n ) ∥ y n − y n − 1 ∥ + | α n − α n − 1 | ∥ u − y n − 1 ∥ ≤ ( 1 − α n ) ∥ x n − x n − 1 ∥ + M 2 ( ∑ m = 1 N | β n , m − β n − 1 , m | + | α n − α n − 1 | ) + ∑ m = 1 N ∥ e n , m ∥ + ∑ m = 1 N ∥ e n − 1 , m ∥ ,

where M 2 =max{ M 1 , sup n ≥ 1 ∥u− y n ∥}. In view of Lemma 2.4, we conclude Step 2.

Step 3. Show that lim n → ∞ ∥T x n − x n ∥=0, where T= ∑ m = 1 N β m J r m . In light of Lemma 2.2, we see that T is nonexpansive with F(T)= â‹‚ m = 1 N F( J r m )= â‹‚ m = 1 N A m − 1 (0). Since

∥ y n − T x n ∥ ≤ ∥ ∑ m = 1 N β n , m J r m ( x n + e n , m ) − ∑ m = 1 N β m J r m ( x n + e n , m ) ∥ + ∥ ∑ m = 1 N β m J r m ( x n + e n , m ) − ∑ m = 1 N β m J r m x n ∥ ≤ ∑ m = 1 N | β n , m − β m | ∥ J r m ( x n + e n , m ) ∥ + ∑ m = 1 N ∥ e n , m ∥ ,

we find from the restrictions imposed on the control sequences that lim n → ∞ ∥T x n − y n ∥=0. Since

∥ T x n − x n ∥ ≤ ∥ x n − x n + 1 ∥ + ∥ x n + 1 − T x n ∥ ≤ ∥ x n − x n + 1 ∥ + α n ∥ u − J x n ∥ + ( 1 − α n ) ∥ y n − T x n ∥ ,

we conclude Step 3.

Step 4. Show that lim sup n → ∞ 〈u− x ¯ ,j( x n − x ¯ )〉≤0, where x ¯ = lim t → 0 x t , and x t solves the fixed point equation

x t =tu+(1−t)T x t ,∀t∈(0,1).

It follows that

∥ x t − x n ∥ 2 = t 〈 u − x n , j ( x t − x n ) 〉 + ( 1 − t ) 〈 T x t − x n , j ( x t − x n ) 〉 = t 〈 u − x t , j ( x t − x n ) 〉 + t 〈 x t − x n , j ( x t − x n ) 〉 + ( 1 − t ) 〈 T x t − T x n , j ( x t − x n ) 〉 + ( 1 − t ) 〈 T x n − x n , j ( x t − x n ) 〉 ≤ t 〈 u − x t , j ( x t − x n ) 〉 + ∥ x t − x n ∥ 2 + ∥ T x n − x n ∥ ∥ x t − x n ∥ , ∀ t ∈ ( 0 , 1 ) .

This implies that

〈 x t − u , j ( x t − x n ) 〉 ≤ 1 t ∥T x n − x n ∥∥ x t − x n ∥,∀t∈(0,1).

Since lim n → ∞ ∥T x n − x n ∥=0, we find that lim sup n → ∞ 〈 x t −u,j( x t − x n )〉≤0. In view of the fact that j is strong to weak∗ uniformly continuous on bounded subsets of E, we find that

| 〈 u − x ¯ , j ( x n − x ¯ ) 〉 − 〈 x t − u , j ( x t − x n ) 〉 | ≤ | 〈 u − x ¯ , j ( x n − x ¯ ) 〉 − 〈 u − x ¯ , j ( x n − x t ) 〉 | + | 〈 u − x ¯ , j ( x n − x t ) 〉 − 〈 x t − u , j ( x t − x n ) 〉 | ≤ | 〈 u − x ¯ , j ( x n − x ¯ ) − j ( x n − x t ) 〉 | + | 〈 u − x ¯ + x t − u , j ( x n − x t ) 〉 | ≤ ∥ u − x ¯ ∥ ∥ j ( x n − x ¯ ) − j ( x n − x t ) ∥ + ∥ x t − x ¯ ∥ ∥ x n − x t ∥ .

Since x t → x ¯ , as t→0, we have

lim t → 0 | 〈 x t − u , j ( x t − x n ) 〉 − 〈 u − x ¯ , j ( x n − x ¯ ) 〉 | =0.

For ϵ>0, there exists δ>0 such that ∀t∈(0,δ), we have

〈 u − x ¯ , j ( x n − x ¯ ) 〉 ≤ 〈 x t − u , j ( x t − x n ) 〉 +ϵ.

This implies that

lim sup n → ∞ 〈 u − x ¯ , j ( x n − x ¯ ) 〉 ≤ lim sup n → ∞ 〈 x t − u , j ( x t − x n ) 〉 +ϵ.

Since ϵ is arbitrarily chosen, we find that lim sup n → ∞ 〈u− x ¯ ,j( x n − x ¯ )〉≤0. This implies that lim sup n → ∞ 〈u− x ¯ ,j( x n + 1 − x ¯ )〉≤0. This proves Step 4.

Step 5. Show that x n → x ¯ as n→∞.

Using Lemma 2.1, we find that

∥ x n + 1 − x ¯ ∥ 2 = ∥ α n ( u − x ¯ ) + ( 1 − α n ) ( ∑ m = 1 N β n , m ( J r m ( x n + e n , m ) − x ¯ ) ) ∥ 2 ≤ ( 1 − α n ) 2 ∥ ∑ m = 1 N β n , m ( J r m ( x n + e n , m ) − x ¯ ) ∥ 2 + 2 α n 〈 u − x ¯ , j ( x n + 1 − x ¯ ) 〉 ≤ ( 1 − α n ) 2 ∑ m = 1 N β n , m ∥ x n + e n , m − x ¯ ∥ 2 + 2 α n 〈 u − x ¯ , j ( x n + 1 − x ¯ ) 〉 ≤ ( 1 − α n ) ∥ x n − x ¯ ∥ 2 + λ n + 2 α n 〈 u − x ¯ , j ( x n + 1 − x ¯ ) 〉 ,

where λ n = ∑ m = 1 N ( ∥ e n , m ∥ 2 +2∥ e n , m ∥∥ x n − x ¯ ∥). We, therefore, find that ∑ n = 1 ∞ λ n <∞. From Lemma 2.4, we find the desired conclusion. This proves the proof. □

Remark 3.2 Theorem 3.1 is still valid in the framework of the space which is uniformly convex and the norm is uniformly Gâteaux differentiable.

4 Applications

In this section, we consider an application of Theorem 3.1. Let A:C→ E ∗ be a single-valued monotone operator which is hemicontinuous; that is, continuous along each line segment in C with respect to the weak∗ topology of E ∗ . Consider the following variational inequality:

find x∈C such that ã€ˆy−x,Ax〉≥0,∀y∈C.

The solution set of the variational inequality is denoted by VI(C,A). Recall that the normal cone N C (x) for C at a point x∈C is defined by

N C (x)= { x ∗ ∈ E ∗ : 〈 y − x , x ∗ 〉 ≤ 0 , ∀ y ∈ C } .

Now, we are in a position to give the result on the variational inequality.

Theorem 4.1 Let E be a real reflexive, strictly convex Banach space with the uniformly Gâteaux differentiable norm. Let N≥1 be some positive integer and let C be a nonempty closed and convex subset of E. Let A m :C→ E ∗ be a single-valued, monotone and hemicontinuous operator. Assume that ⋂ m = 1 N VI(C, A m ) is not empty and C has the normal structure. Let { α n } be a real number sequence in (0,1) such that lim n → ∞ α n =0, ∑ n = 1 ∞ α n =∞ and ∑ n = 1 ∞ | α n + 1 − α n |<∞, let { β n , m } be a real number sequence in (0,1) such that ∑ m = 1 N β n , m =1, lim n → ∞ β n , m = β m and ∑ n = 1 ∞ | β n + 1 , m − β n , m |<∞, let { r m } be a positive real number sequence for each m∈{1,2,…,N}. Assume that { x n } is a sequence generated in the following manner:

x 1 ∈C, x n + 1 = α n u+(1− α n ) ∑ m = 1 N β n , m VI ( C , A m + 1 r m ( I − x n ) ) ,∀n≥1,

where u is a fixed element in C. Then the sequence { x n } converges strongly to x ¯ , which is the unique solution to the following variational inequality 〈u− x ¯ ,j(p− x ¯ )〉≤0, ∀p∈ ⋂ m = 1 N VI(C, A m ).

Proof First, we define a mapping T m ⊂E× E ∗ by

T m x={ A m x + N C x , x ∈ C , ∅ , x ∉ C .

From Rockafellar [33], we find that T m is maximal monotone and T m − 1 (0)=VI(C, A m ). For each r m >0 and x n ∈E, we see that there exists a unique x r m ∈D( T m ) such that x n ∈ x r m + r m T m ( x r m ), where x r m = ( I + r m T m ) − 1 x n . Notice that

y n , m =VI ( C , A m + 1 r m ( I − x n ) ) ,

which is equivalent to

〈 y − y n , m , A m y n , m + 1 r m ( y n , m − x n ) 〉 ≥0,∀y∈C,

that is, − A m y n , m + 1 r m ( x n − y n , m )∈ N C ( y n , m ). This implies that y n , m = ( I + r m T m ) − 1 x n . In light of Theorem 3.1, we draw the desired conclusion immediately. □

References

  1. Kirk WA: On successive approximations for nonexpansive mappings in Banach spaces. Glasg. Math. J. 1971, 12: 6–9. 10.1017/S0017089500001063

    Article  MathSciNet  Google Scholar 

  2. Rockfellar RT: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1976, 1: 97–116. 10.1287/moor.1.2.97

    Article  MathSciNet  Google Scholar 

  3. Rockfellar RT: Monotone operators and proximal point algorithm. SIAM J. Control Optim. 1976, 14: 877–898. 10.1137/0314056

    Article  Google Scholar 

  4. Güler O: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 1991, 29: 403–419. 10.1137/0329022

    Article  MathSciNet  Google Scholar 

  5. Cho SY, Kang SM: Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process. Appl. Math. Lett. 2011, 24: 224–228. 10.1016/j.aml.2010.09.008

    Article  MathSciNet  Google Scholar 

  6. Qin X, Su Y: Approximation of a zero point of accretive operator in Banach spaces. J. Math. Anal. Appl. 2007, 329: 415–424. 10.1016/j.jmaa.2006.06.067

    Article  MathSciNet  Google Scholar 

  7. Jung JS: Some results on Rockafellar-type iterative algorithms for zeros of accretive operators. J. Inequal. Appl. 2013., 2013: Article ID 255

    Google Scholar 

  8. Kim JK: Convergence of Ishikawa iterative sequences for accretive Lipschitzian mappings in Banach spaces. Taiwan. J. Math. 2006, 10: 553–561.

    Google Scholar 

  9. Qin X, Kang SM, Cho YJ: Approximating zeros of monotone operators by proximal point algorithms. J. Glob. Optim. 2010, 46: 75–87. 10.1007/s10898-009-9410-6

    Article  MathSciNet  Google Scholar 

  10. Wu C, Lv S: Bregman projection methods for zeros of monotone operators. J. Fixed Point Theory 2013., 2013: Article ID 7

    Google Scholar 

  11. Wu C: Convergence of algorithms for an infinite family nonexpansive mappings and relaxed cocoercive mappings in Hilbert spaces. Adv. Fixed Point Theory 2014, 4: 125–139.

    Google Scholar 

  12. Cho SY, Qin X, Kang SM: Iterative processes for common fixed points of two different families of mappings with applications. J. Glob. Optim. 2013, 57: 1429–1446. 10.1007/s10898-012-0017-y

    Article  MathSciNet  Google Scholar 

  13. Yang S: Zero theorems of accretive operators in reflexive Banach spaces. J. Nonlinear Funct. Anal. 2013., 2013: Article ID 2

    Google Scholar 

  14. Song J, Chen M: A modified Mann iteration for zero points of accretive operators. Fixed Point Theory Appl. 2013., 2013: Article ID 347

    Google Scholar 

  15. Qin X, Agarwal RP: Shrinking projection methods for a pair of asymptotically quasi- ϕ -nonexpansive mappings. Numer. Funct. Anal. Optim. 2010, 31: 1072–1089. 10.1080/01630563.2010.501643

    Article  MathSciNet  Google Scholar 

  16. Qin X, Cho SY, Wang L: A regularization method for treating zero points of the sum of two monotone operators. Fixed Point Theory Appl. 2014., 2014: Article ID 75

    Google Scholar 

  17. Hao Y: Zero theorems of accretive operators. Bull. Malays. Math. Soc. 2011, 34: 103–112.

    Google Scholar 

  18. Hu L, Liu L: A new iterative algorithm for common solutions of a finite family of accretive operators. Nonlinear Anal. 2009, 70: 344–2351.

    Article  Google Scholar 

  19. Cho SY, Kang SM: Zero point theorems for m -accretive operators in a Banach space. Fixed Point Theory 2012, 13: 49–58.

    MathSciNet  Google Scholar 

  20. Cho SY, Li W, Kang SM: Convergence analysis of an iterative algorithm for monotone operators. J. Inequal. Appl. 2013., 2013: Article ID 199

    Google Scholar 

  21. Cho SY, Qin X, Wang L: Strong convergence of a splitting algorithm for treating monotone operators. Fixed Point Theory Appl. 2014., 2014: Article ID 94

    Google Scholar 

  22. Reich S: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 1980, 75: 287–292. 10.1016/0022-247X(80)90323-6

    Article  MathSciNet  Google Scholar 

  23. Qing Y, Cho SY: Proximal point algorithms for zero points of nonlinear operators. Fixed Point Theory Appl. 2014., 2014: Article ID 42

    Google Scholar 

  24. Rodjanadid B, Sompong S: A new iterative method for solving a system of generalized equilibrium problems, generalized mixed equilibrium problems and common fixed point problems in Hilbert spaces. Adv. Fixed Point Theory 2013, 3: 675–705.

    Google Scholar 

  25. Qing Y, Cho SY, Qin X: Convergence of iterative sequences for common zero points of a family of m -accretive mappings in Banach spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 216173

    Google Scholar 

  26. Takahashi W: Viscosity approximation methods for resolvents of accretive operators in Banach spaces. J. Fixed Point Theory Appl. 2007, 1: 135–147. 10.1007/s11784-006-0004-3

    Article  MathSciNet  Google Scholar 

  27. Cho SY, Qin X: On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems. Appl. Math. Comput. 2014, 235: 430–438.

    Article  MathSciNet  Google Scholar 

  28. Zegeye H, Shahzad N: Strong convergence theorem for a common point of solution of variational inequality and fixed point problem. Adv. Fixed Point Theory 2012, 2: 374–397.

    Google Scholar 

  29. Cho SY, Kang SM: Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math. Sci. 2011, 32: 1607–1618.

    Article  Google Scholar 

  30. Kirk WA: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 1965, 72: 1004–1006. 10.2307/2313345

    Article  MathSciNet  Google Scholar 

  31. Chang SS: Some problems and results in the study of nonlinear analysis. Nonlinear Anal. 1997, 30: 4197–4208. 10.1016/S0362-546X(97)00388-X

    Article  MathSciNet  Google Scholar 

  32. Bruck RE: Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math. Soc. 1973, 179: 251–262.

    Article  MathSciNet  Google Scholar 

  33. Qin X, Cho SY, Wang L: Iterative algorithms with errors for zero points of m -accretive operators. Fixed Point Theory Appl. 2013., 2013: Article ID 148

    Google Scholar 

  34. Liu L: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 1995, 194: 114–125. 10.1006/jmaa.1995.1289

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for their suggestions which improved the contents of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Ma.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally to this manuscript. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Ma, X. Strong convergence theorems for common zeros of a family of accretive operators. Fixed Point Theory Appl 2014, 105 (2014). https://doi.org/10.1186/1687-1812-2014-105

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2014-105

Keywords