Open Access

Strong convergence theorems for a generalized mixed equilibrium problem and variational inequality problems

Fixed Point Theory and Applications20132013:65

https://doi.org/10.1186/1687-1812-2013-65

Received: 4 June 2012

Accepted: 1 March 2013

Published: 21 March 2013

Abstract

In this paper, a new iterative scheme based on the extragradient-like method for finding a common element of the set of common fixed points of a finite family of nonexpansive mappings, the set of solutions of variational inequalities for a strongly positive linear bounded operator and the set of solutions of a mixed equilibrium problem is proposed. A strong convergence theorem for this iterative scheme in Hilbert spaces is established. Our results extend recent results announced by many others.

MSC:49J30, 49J40, 47J25, 47H09.

Keywords

fixed point inverse strongly monotone mapping variational inequality equilibrium problem

1 Introduction

Let H be a real Hilbert space with the inner product , and the norm . Let C be a nonempty closed convex subset of H. Recall that a mapping T : C C is said to be nonexpansive if
T x T y x y , x , y C .

We denote by F ( T ) the set of fixed points of T. Let P C be the projection of H onto the convex subset C. Moreover, we also denote by the set of all real numbers.

Peng and Yao [1] considered the generalized mixed equilibrium problem of finding x C such that
Θ ( x , y ) + φ ( y ) φ ( x ) + F x , y x 0 , y C ,
(1.1)

where F : C H is a nonlinear mapping and φ : C R is a function and Θ : C × C R is a bifunction. The set of solutions of problem (1.1) is denoted by GMEP.

In the case of F = 0 , problem (1.1) reduces to the mixed equilibrium problem of finding x C such that
Θ ( x , y ) + φ ( y ) φ ( x ) 0 , y C ,

which was considered by Ceng and Yao [2]. GMEP is denoted by MEP.

In the case of φ = 0 , problem (1.1) reduces to the generalized equilibrium problem of finding x C such that
Θ ( x , y ) + F x , y x 0 , y C ,

which was studied by Takahashi and Takahashi [3] and many others, for example, [410].

In the case of φ = 0 and F = 0 , problem (1.1) reduces to the equilibrium problem of finding x C such that
Θ ( x , y ) 0 , y C .
(1.2)

The set of solutions of (1.2) is denoted by EP ( Θ ) .

In the case Θ = 0 , φ = 0 and F = A , problem (1.1) reduces to the classical variational inequality problem of finding x C such that
A x , y x 0 , y C .
(1.3)

The set of solutions of problem (1.3) is denoted by VI ( A , C ) .

Problem (1.1) is very general in the sense that it includes, as special cases, optimization problems, variational inequalities, minimax problems, the Nash equilibrium problem in noncooperative games and others; see, for instance, [2, 3, 11]. Peng and Yao [1] considered iterative methods for finding a common element of the set of solutions of problem (1.1), the set of solutions of problem (1.2) and the set of fixed points of a nonexpansive mapping.

Let G 1 , G 2 : C × C R be two bifunctions and let B 1 , B 2 : C H be two nonlinear mappings. We consider the generalized equilibrium problem ( x ¯ , y ¯ ) C × C such that
{ G 1 ( x ¯ , x ) + B 1 y ¯ , x x ¯ + 1 μ 1 x ¯ y ¯ , x x ¯ 0 , x C , G 2 ( y ¯ , y ) + B 2 x ¯ , y y ¯ + 1 μ 2 y ¯ x ¯ , y y ¯ 0 , y C ,
(1.4)

where μ 1 > 0 and μ 2 > 0 are two constants.

In the case G 1 = G 2 = 0 , problem (1.4) reduces to the general system of variational inequalities of finding ( x ¯ , y ¯ ) C × C such that
{ μ 1 B 1 y ¯ + x ¯ y ¯ , x x ¯ 0 , x C , μ 2 B 2 x ¯ + y ¯ x ¯ , y y ¯ 0 , y C ,
(1.5)
where μ 1 > 0 and μ 2 > 0 are two constants, which was considered by Ceng, Wang and Yao [12]. In particular, if B 1 = B 2 = A , then problem (1.5) reduces to the system of variational inequalities of finding ( x ¯ , y ¯ ) C × C such that
{ μ 1 A y ¯ + x ¯ y ¯ , x x ¯ 0 , x C , μ 2 A x ¯ + y ¯ x ¯ , y y ¯ 0 , y C ,
(1.6)

which was studied by Verma [13].

If x ¯ = y ¯ in (1.6), then (1.6) reduces to the classical variational inequality (1.3). Further, problem (1.6) is equivalent to the following projection formulas:
{ x ¯ = P C ( I μ 1 A ) y ¯ , y ¯ = P C ( I μ 2 A ) x ¯ .

Recently, Ceng et al. [12] introduced and studied a relaxed extragradient method for finding solutions of problem (1.5).

Let { T i } be an infinite family of nonexpansive mappings of C into itself and { λ n 1 } , { λ n 2 } , , { λ n N } be real sequences such that λ n 1 , λ n 2 , , λ n N ( 0 , 1 ] for every n N . For any n 1 , we define a mapping W n of C into itself as follows:
U n 0 = I , U n 1 = λ n 1 T 1 U n 0 + ( 1 λ n 1 ) I , U n 2 = λ n 2 T 2 U n 1 + ( 1 λ n 2 ) I , U n , N 1 = λ n , N 1 T N 1 U n , N 2 + ( 1 λ n , N 1 ) I , W n = U n , N = λ n , N T N U n , N 1 + ( 1 λ n , N ) I .

Such a mapping W n is called the W-mapping generated by T 1 , T 2 , , T N and { λ n 1 } , { λ n 2 } , , { λ n N } . Nonexpansivity of each T i ensures the nonexpansivity of W n . Moreover, in [1], it is shown that F ( W n ) = i = 1 N F ( T i ) .

Throughout this article, let us assume that a bifunction Θ : C × C R and a convex function φ : C R satisfy the following conditions:
  1. (H1)

    Θ ( x , x ) = 0 for all x C ;

     
  2. (H2)

    Θ is monotone, i.e., Θ ( x , y ) + Θ ( y , x ) 0 for all x , y C ;

     
  3. (H3)

    for each y C , x Θ ( x , y ) is weakly upper semicontinuous;

     
  4. (H4)

    for each x C , y Θ ( x , y ) is convex and lower semicontinuous;

     
  5. (A1)
    for each x H and r > 0 , there exists a bounded subset D x C and y x C such that for any z C D x ,
    Θ ( z , y x ) + φ ( y x ) φ ( z ) + 1 r y x z , z x < 0 ;
     
  6. (A2)

    C is a bounded set.

     

Recently, Qin et al. [8] studied the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings, the set of solutions of variational inequalities for a relaxed cocoercive mapping and the set of solutions of an equilibrium problem. More precisely, they proved the following theorem.

Theorem 1.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let Θ be a bifunction from C × C to which satisfies (H 1)-(H 4). Let T 1 , T 2 , , T N be a finite family of nonexpansive mappings of C into H and let B be a μ-Lipschitz, relaxed ( u , v ) -cocoercive mapping of C into H such that F = i = 1 N F ( T i ) EP ( Θ ) VI ( A , C ) ϕ . Let f be a contraction of H into itself with a coefficient α ( 0 < α < 1 ) and let A be a strongly positive linear bounded operator with a coefficient γ ¯ > 0 such that A 1 . Assume that 0 < γ < γ ¯ α . Let { x n } and { y n } be sequences generated by x 1 H and
{ Θ ( y n , η ) + 1 r n η y n , y n x n 0 , η C , x n + 1 = α n γ f ( W n x n ) + ( 1 α n A ) W n P C ( I s n B ) y n , n 1 ,
where α n ( 0 , 1 ] and { r n } , { s n } [ 0 , ) satisfy
  1. (i)

    lim n α n = 0 and n = 1 α n = ;

     
  2. (ii)

    n = 1 | α n + 1 α n | < , n = 1 | r n + 1 r n | < and n = 1 | s n + 1 s n | < ;

     
  3. (iii)

    lim inf n r n > 0 ;

     
  4. (iv)

    { s n } [ a , b ] for some a, b with 0 a b 2 ( v u μ 2 ) μ 2 , v u μ 2 ;

     
  5. (v)

    n = 0 | λ n , i λ n 1 , i | < for all i = 1 , 2 , , N .

     
Then, both { x n } and { y n } converge strongly to q F , where q = P F ( γ f + ( I A ) ) ( q ) , which solves the following variational inequality:
γ f ( q ) A q , p q 0 , p F .
In this paper, motivated by Takahashi and Takahashi [3], Ceng, Wang and Yao [12], Peng and Yao [1] and Qin, Shang and Su [8], we introduce the general iterative scheme for finding a common element of the set of common fixed points of a finite family of nonexpansive mappings, the set of solutions of the generalized mixed equilibrium problem (1.1) and the set of solutions of the generalized equilibrium problem (1.4), which solves the variational inequality
( A γ f ) x , x x 0 , x F ,

where F = i = 1 N F ( T i ) GMEP Ω and Ω is the set of solutions of the generalized equilibrium problem (1.4). The results obtained in this paper improve and extend the recent results announced by Qin et al. [8], Chen et al. [14], Combetters and Hirstoaga [15], Iiduka and Takahashi [16], Marino and Xu [17], Takahashi and Takahashi [18], Wittmann [19] and many others.

2 Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. For every point x H , there exists a unique nearest point of C, denoted by P C x , such that x P C x x y for all y C . Such a P C is called the metric projection of H onto C. We know that P C is a firmly nonexpansive mapping of H onto C, i.e.,
x y , P C x P C y P C x P C y 2 , x , y H .
Further, for any x H and z C , z = P C x if and only if
x z , z y 0 , y C .
It is also known that H satisfies Opial’s condition [20] if for each sequence { x n } n = 1 in H which converges weakly to a point x H , we have
lim inf n x n x < lim inf n x n y , y H , y x .
Moreover, we assume that A is a bounded strongly positive operator on H with a constant γ ¯ , that is, there exists γ ¯ > 0 such that
A x , x γ ¯ x 2 , x H .
A mapping B : C H is called β-inverse strongly monotone if there exists β > 0 such that
x y , B x B y β B x B y 2 , x , y C .

It is obvious that any inverse strongly monotone mapping is Lipschitz continuous.

In order to prove our main results in the next section, we need the following lemmas and proposition.

Lemma 2.1 [2]

Let C be a nonempty closed convex subset of H. Let Θ : C × C R be a bifunction satisfying conditions (H1)-(H4) and let φ : C R be a lower semicontinuous and convex function. For r > 0 and x H , define a mapping
T r ( Θ , φ ) ( x ) = { z C : Θ ( z , y ) + φ ( y ) φ ( z ) + 1 r y z , z x 0 , y C }
for all x H . Assume that either (A1) or (A2) holds. Then the following results hold:
  1. (i)

    T r ( Θ , φ ) ( x ) ϕ for each x H and T r ( Θ , φ ) is single-valued;

     
  2. (ii)
    T r ( Θ , φ ) is firmly nonexpansive, i.e., for any x , y H ,
    T r ( Θ , φ ) x T r ( Θ , φ ) y 2 T r ( Θ , φ ) x T r ( Θ , φ ) y , x y ;
     
  3. (iii)

    F ( T r ( Θ , φ ) ) = MEP ( Θ , φ ) ;

     
  4. (iv)

    MEP ( Θ , φ ) is closed and convex.

     

Remark 2.1 If φ = 0 , then T r ( Θ , φ ) is rewritten as T r Θ .

By a similar argument as that in the proof of Lemma 2.1 in [12], we have the following result.

Lemma 2.2 Let C be a nonempty closed convex subset of H. Let G 1 , G 2 : C × C R be two bifunctions satisfying conditions (H1)-(H4) and let the mappings B 1 , B 2 : C H be β 1 -inverse strongly monotone and β 2 -inverse strongly monotone, respectively. Then, for given x ¯ , y ¯ C , ( x ¯ , y ¯ ) is a solution of (1.4) if and only if x ¯ is a fixed point of the mapping Γ : C C defined by
Γ ( x ) = T μ 1 G 1 [ T μ 2 G 2 ( x μ 2 B 2 x ) μ 1 B 1 T μ 2 G 2 ( x μ 2 B 2 x ) ] , x C ,

where y ¯ = T μ 2 G 2 ( x ¯ μ 2 B 2 x ¯ ) .

The set of fixed points of the mapping Γ is denoted by Ω.

Proposition 2.1 [3]

Let C, H, Θ, φ and T r ( Θ , φ ) be as in Lemma  2.1. Then the following holds:
T s ( Θ , φ ) x T t ( Θ , φ ) x 2 s t s T s ( Θ , φ ) x T t ( Θ , ρ ) x , T s ( Θ , φ ) x x

for all s , t > 0 and x H .

Lemma 2.3 [21]

Assume that T is a nonexpansive self-mapping of a nonempty closed convex subset C of H. If T has a fixed point, then I T is demi-closed; that is, when { x n } is a sequence in C converging weakly to some x C and the sequence { ( I T ) x n } converges strongly to some y, it follows that ( I T ) x = y .

Lemma 2.4 [22]

Assume that { a n } is a sequence of nonnegative real numbers such that
a n + 1 ( 1 γ n ) a n + δ n , n 1 ,
where { γ n } is a sequence in ( 0 , 1 ) and { δ n } is a sequence such that
  1. (i)

    n = 1 γ n = ;

     
  2. (ii)

    lim sup n δ n γ n 0 or n = 1 | δ n | < .

     

Then lim n a n = 0 .

Lemma 2.5 [17]

Assume A is a strong positive linear bounded operator on a Hilbert space H with a coefficient γ ¯ > 0 and 0 < ρ A 1 . Then I ρ A 1 ρ γ ¯ .

The following lemma is an immediate consequence of an inner product.

Lemma 2.6 In a real Hilbert space H, the following inequality holds:
x + y 2 x 2 + 2 y , x + y

for all x , y H .

3 Main results

Now we state and prove our main results.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let Θ , G 1 , G 2 : C × C R be three bifunctions which satisfy assumptions (H1)-(H4) and φ : C R be a lower semicontinuous and convex function with assumption (A1) or (A2). Let the mappings F , B 1 , B 2 : C H be ζ-inverse strongly monotone, β 1 -inverse strongly monotone and β 2 -inverse strongly monotone, respectively. Let T 1 , T 2 , , T N be a finite family of nonexpansive mappings of C into H such that F = i = 1 N F ( T i ) GMEP Ω ϕ . Let f be a contraction of C into itself with a constant α ( 0 < α < 1 ) and let A be a strongly positive linear bounded operator with a coefficient γ ¯ > 0 such that A 1 . Assume that 0 < γ < γ ¯ α . Let x 1 C and let { x n } be a sequence defined by
{ z n = T δ n ( Θ , φ ) ( x n δ n F x n ) , y n = T μ 1 G 1 [ T μ 2 G 2 ( z n μ 2 B 2 z n ) μ 1 B 1 T μ 2 G 2 ( z n μ 2 B 2 z n ) ] , x n + 1 = α n γ f ( W n x n ) + ( 1 α n A ) W n y n , n 1 ,
(3.1)
where α n [ 0 , 1 ] , μ 1 ( 0 , 2 β 1 ) , μ 2 ( 0 , 2 β 2 ) and { δ n } [ 0 , 2 ζ ] satisfy the following conditions:
  1. (i)

    lim n α n = 0 , n = 1 α n = 0 and n = 1 | α n + 1 α n | < ;

     
  2. (ii)

    0 < lim inf n δ n lim sup n δ n < 2 ζ and n = 1 | δ n + 1 δ n | < ;

     
  3. (iii)

    lim n λ n , i = 0 and n = 1 | λ n , i λ n 1 , i | < for all i = 1 , 2 , , N .

     
Then { x n } converges strongly to x = P F ( γ f + ( I A ) ) ( x ) , which solves the following variational inequality:
( A γ f ) x , x x 0 , x F ,

and ( x , y ) is a solution of problem (1.4), where y = T μ 2 G 2 ( x μ 2 B 2 x ) .

Proof We divide the proof into several steps.

Step 1. { x n } is bounded.

Indeed, take p F = i = 1 N F ( T i ) GMEP Ω ϕ arbitrarily. Since p = T δ n ( Θ , φ ) ( p δ n F p ) , F is ζ-inverse strongly monotone and 0 δ n 2 ζ , we obtain that for any n 1 ,
z n p 2 = T δ n ( Θ , φ ) ( x n δ n F x n ) T δ n ( Θ , φ ) ( p δ n F p ) 2 ( x n p ) δ n ( F x n F p ) 2 = x n p 2 2 δ n x n p , F x n F p + δ n 2 F x n F p 2 x n p 2 2 δ n ζ F x n F p 2 + δ n 2 F x n F p 2 = x n p 2 + δ n ( δ n 2 ζ ) F x n F p 2 x n p 2 .
(3.2)
Putting u n = T μ 2 G 2 ( z n μ 2 B 2 z n ) and u = T μ 2 G 2 ( p μ 2 B 2 p ) , we have
u n u 2 = T μ 2 G 2 ( z n μ 2 B 2 z n ) T μ 2 G 2 ( p μ 2 B 2 p ) 2 ( z n p ) μ 2 ( B 2 z n B 2 p ) 2 = z n p 2 2 μ 2 z n p , B 2 z n B 2 p + μ 2 2 B 2 z n B 2 p 2 z n p 2 2 μ 2 β 2 B 2 z n B 2 p 2 + μ 2 2 B 2 z n B 2 p 2 = z n p 2 + μ 2 ( μ 2 2 β 2 ) B 2 z n B 2 p 2 z n p 2 .
(3.3)
And since p = T μ 1 G 1 ( u μ 1 B 1 u ) , we know that for any n 1 ,
y n p 2 = T μ 1 G 1 ( u n μ 1 B 1 u n ) T μ 1 G 1 ( u μ 1 B 1 u ) 2 ( u n u ) μ 1 ( B 1 u n B 1 u ) 2 u n u 2 2 μ 1 u n u , B 1 u n B 1 u + μ 1 2 B 1 u n B 1 u 2 u n u 2 2 μ 1 β 1 B 1 u n B 1 u + μ 1 B 1 u n b 1 u 2 u n u 2 + μ 1 ( μ 1 2 β 1 ) B 1 u n B 1 u u n u 2 z n p 2 .
(3.4)
Furthermore, from (3.1), we have
x n + 1 p = α n γ f ( W n x n ) + ( 1 α n A ) W n y n p = α n ( γ f ( W n x n ) A p ) + ( 1 α n A ) ( W n y n p ) α n γ f ( W n x n ) A p + I α n A W n y n p α n ( γ f ( W n x n ) f ( p ) + γ f ( p ) A p ) + ( 1 α n γ ¯ ) y n p α n ( γ α x n p + γ f ( p ) A p ) + ( 1 α n γ ¯ ) x n p [ 1 ( γ ¯ γ α ) α n ] x n p + α n γ f ( p ) A p .
By induction, we obtain that for all n 1 ,
x n p max { x 1 p , 1 γ ¯ γ α γ f ( p ) A p } .

Hence { x n } is bounded. Consequently, we deduce immediately that { z n } , { y n } , { f ( W n x n ) } and { W n ( y n ) } are bounded.

Step 2. lim n W n + 1 y n W n y n = 0 .

It follows from the definition of W n that
W n + 1 y n W n y n = λ n + 1 , N T N U n + 1 , N 1 y n ( 1 λ n + 1 , N ) y n λ n , N T N U n , N 1 y n ( 1 λ n , N ) y n | λ n + 1 , N λ n , N | y n + λ n + 1 , N T N U n + 1 , N 1 y n λ n , N T N U n , N 1 y n | λ n + 1 , N λ n , N | y n + λ n + 1 , N ( T N U n + 1 , N 1 y n T N U n , N 1 y n ) + | λ n + 1 , N λ n , N | T N U n , N 1 y n | λ n + 1 , N λ n , N | y n + λ n + 1 , N U n + 1 , N 1 y n U n , N 1 y n + | λ n + 1 , N λ n , N | T N U n , N 1 y n .

Since { y n } is bounded and T k , U n , k are nonexpansive, lim n W n + 1 y n W n y n = 0 .

Step 3. lim n x n + 1 x n = 0 .

We estimate y n + 1 y n , W n + 1 x n + 1 W n x n and W n + 1 y n + 1 W n y n . From (3.1) we have
(3.5)
and
z n + 1 z n = T δ n + 1 ( Θ , φ ) ( x n + 1 δ n + 1 F x n + 1 ) T δ n ( Θ , φ ) ( x n δ n F x n ) T δ n + 1 ( Θ , φ ) ( x n + 1 δ n + 1 F x n + 1 ) T δ n + 1 ( Θ , φ ) ( x n δ n F x n ) + T δ n + 1 ( Θ , φ ) ( x n δ n F x n ) T δ n ( Θ , φ ) ( x n δ n F x n ) ( x n + 1 δ n + 1 F x n + 1 ) ( x n δ n F x n ) + T δ n + 1 ( Θ , φ ) ( x n δ n F x n ) T δ n ( Θ , φ ) ( x n δ n F x n ) x n + 1 x n + | δ n + 1 δ n | F x n + T δ n + 1 ( Θ , φ ) ( x n δ n F x n ) T δ n ( Θ , φ ) ( x n δ n F x n ) .
(3.6)
It follows from (3.5) and (3.6) that
y n + 1 y n z n + 1 z n x n + 1 x n + | δ n + 1 δ n | F x n + T δ n + 1 ( Θ , φ ) ( x n δ n F x n ) T δ n ( Θ , φ ) ( x n δ n F x n ) .
(3.7)
Without loss of generality, let us assume that there exists a real number a such that δ n > a > 0 for all n. Utilizing Proposition 2.1, we have
T δ n + 1 ( Θ , φ ) ( x n δ n F x n ) T δ n ( Θ , φ ) ( x n δ n F x n ) | δ n + 1 δ n | δ n + 1 T δ n + 1 ( Θ , φ ) ( I δ n F ) x n | δ n + 1 δ n | a T δ n + 1 ( Θ , φ ) ( I δ n F ) x n .
(3.8)
It follows from the definition of W n that
W n + 1 y n W n y n = λ n + 1 , N T N U n + 1 , N 1 y n + ( 1 λ n + 1 , N ) y n λ n , N T N U n , N 1 y n ( 1 λ n , N ) y n | λ n + 1 , N λ n , N | y n + λ n + 1 , N T N U n + 1 , N 1 y n λ n , N T N U n , N 1 y n | λ n + 1 , N λ n , N | y n + λ n + 1 , N ( T N U n + 1 , N 1 y n T N U n , N 1 y n ) + | λ n + 1 , N λ n , N | T N U n , N 1 y n | λ n + 1 , N λ n , N | y n + λ n + 1 , N U n + 1 , N 1 y n U n , N 1 y n + | λ n + 1 , N λ n , N | T N U n , N 1 y n M 1 | λ n + 1 , N λ n , N | + λ n + 1 , N U n + 1 , N 1 y n U n , N 1 y n ,
(3.9)
where M 1 is a constant such that M 1 2 max { sup n 1 y n , sup n 1 T N U n , N 1 y n } . Next, we consider
U n + 1 , N 1 y n U n , N 1 y n = λ n + 1 , N 1 T N 1 U n + 1 , N 2 y n + ( 1 λ n + 1 , N 1 ) y n λ n , N 1 T N 1 U n , N 2 y n ( 1 λ n , N 1 ) y n | λ n + 1 , N 1 λ n , N 1 | y n + λ n + 1 , N 1 T N 1 U n + 1 , N 2 y n λ n , N 1 T N 1 U n , N 2 y n | λ n + 1 , N 1 λ n , N 1 | y n + λ n + 1 , N 1 T N 1 U n + 1 , N 2 y n T N 1 U n , N 2 y n + | λ n + 1 , N 1 λ n , N 1 | T N 1 U n , N 2 y n M 2 | λ n + 1 , N 1 λ n , N 1 | + U n + 1 , N 2 y n U n , N 2 y n ,
where M 2 is a constant that M 2 2 max { sup n 1 y n , sup n 1 T N 1 U n , N 2 y n } . In a similar way, we obtain
U n + 1 , N 1 y n U n , N 1 y n M 3 i = 1 N 1 | λ n + 1 , i λ n , i | ,
(3.10)
where M 3 is an appropriate constant. Substituting (3.10) into (3.9), we have that
W n + 1 y n W n y n M 1 | λ n + 1 , N λ n , N | + λ n + 1 , N M 3 i = 1 N 1 | λ n + 1 , i λ n , i | M 4 i = 1 N | λ n + 1 , i λ n , i | ,
(3.11)
where M 4 is a constant such that M 4 max { M 1 , M 3 } . Similarly, we have
W n + 1 x n W n x n M 5 i = 1 N | λ n + 1 , i λ n , i | ,
(3.12)
where M 5 is an appropriate constant. Hence it follows from (3.1), (3.7), (3.8), (3.11) and (3.12) that
x n + 2 x n + 1 = ( I α n + 1 A ) ( W n + 1 y n + 1 W n y n ) ( α n + 1 α n ) A W n y n + γ [ α n + 1 ( f ( W n + 1 x n + 1 ) f ( W n x n ) ) + f ( W n x n ) ( α n + 1 α n ) ] ( 1 α n + 1 γ ¯ ) ( W n + 1 y n + 1 W n + 1 y n + W n + 1 y n W n y n ) + | α n + 1 α n | A W n y n + γ [ α n + 1 f ( W n + 1 x n + 1 ) f ( W n x n ) + f ( W n x n ) ( α n + 1 α n ) ] ( 1 α n + 1 γ ¯ ) ( y n + 1 y n + W n + 1 y n W n y n ) + | α n + 1 α n | A W n y n + γ [ α n + 1 α ( x n + 1 x n + W n + 1 x n W n x n ) + | α n + 1 α n | f ( W n x n ) ] ( 1 α n + 1 γ ¯ ) ( x n + 1 x n + | δ n + 1 δ n | F x n + T δ n + 1 ( Θ , φ ) ( x n δ n F x n ) T δ n ( Θ , φ ) ( x n δ n F x n ) + M 4 i = 1 N | λ n + 1 , i λ n , i | ) + | α n + 1 α n | A W n y n + γ α α n + 1 x n + 1 x n + γ α α n + 1 W n + 1 x n W n x n + γ | α n + 1 α n | f ( W n x n ) [ 1 α n + 1 ( γ ¯ γ α ) ] x n + 1 x n + | δ n + 1 δ n | F x n + | δ n + 1 δ n | a T δ n + 1 ( Θ , φ ) ( I δ n F ) x n + M 4 i = 1 N | λ n + 1 , i λ n , i | + | α n + 1 α n | A W n y n + γ α α n + 1 M 5 i = 1 N | λ n + 1 , i λ n , i | + γ | α n + 1 α n | f ( W n x n ) [ 1 α n + 1 ( γ ¯ γ α ) ] x n + 1 x n + M 6 [ 2 | δ n + 1 δ n | + i = 1 N | λ n + 1 , i λ n , i | + ( 1 + γ ) | α n + 1 α n | ] ,

where M 6 is a constant such that M 6 max { sup n 1 F x n , 1 a sup n 1 T δ n + 1 ( Θ , φ ) ( I δ n F ) x n , M 4 + γ M 5 , sup n 1 A W n y n , sup n 1 f ( W n x n ) } . By Lemma 2.4, we get lim n x n + 1 x n = 0 .

Step 4. lim n F x n F p = 0 , lim n B 1 u n B 1 u = 0 and lim n B 2 z n B 2 p = 0 .

Indeed, from (3.1)-(3.4) we get
x n + 1 p 2 = α n ( γ f ( W n x n ) A p ) + ( I α n A ) ( W n y n p ) 2 ( α n γ f ( W n x n ) A p + ( 1 α n γ ¯ ) y n p ) 2 α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) y n p 2 + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) [ u n u 2 + μ 1 ( μ 1 2 β 1 ) B 1 u n B 1 u 2 ] + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) [ z n p 2 + μ 2 ( μ 2 2 β 2 ) B 2 z n B 2 p 2 + μ 1 ( μ 1 2 β 1 ) B 1 u n B 1 u 2 ] + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + x n p 2 + δ n ( δ n 2 ζ ) F n F p 2 + μ 2 ( μ 2 2 β 2 ) B 2 z n B 2 p 2 + μ 1 ( μ 1 2 β 1 ) B 1 u n B 1 u 2 + 2 α n γ f ( W n x n ) A p y n p .
Therefore
δ n ( 2 ζ δ n ) F x n F p 2 + μ 2 ( 2 β 2 μ 2 ) B 2 z n B 2 p 2 + μ 1 ( 2 β 1 μ 1 ) B 1 u n B 1 u 2 α n γ f ( W n x n ) A p 2 + x n p x n + 1 p 2 + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + ( x n p + x n + 1 p ) x n x n + 1 + 2 α n γ f ( W n x n ) A p y n p .

Since α n 0 and x n x n + 1 0 as n , we have lim n F x n F p = 0 , lim n B 1 u n B 1 u = 0 and lim n B 2 z n B 2 p = 0 .

Step 5. lim n x n z n = 0 , lim n z n y n = 0 and lim n x n y n = 0 .

Indeed, from (3.2), (3.3) and Lemma 2.1, we have
u n u 2 = T μ 2 G 2 ( z n μ 2 B 2 z n ) T μ 2 G 2 ( p μ 2 B 2 p ) 2 ( z n μ 2 B 2 z n ) ( p μ 2 B 2 p ) , u n u = 1 2 [ ( z n μ 2 B 2 z n ) ( p μ 2 B 2 p ) 2 + u n u 2 ( z n μ 2 B 2 z n ) ( p μ 2 B 2 p ) ( u n u ) 2 ] 1 2 [ z n p 2 + u n u 2 ( z n u n ) μ 2 ( B 2 z n B 2 p ) ( p u ) 2 ] 1 2 [ x n p 2 + u n u 2 ( z n u n ) ( p u ) 2 + 2 μ 2 ( z n u n ) ( p u ) , B 2 z n B 2 p μ 2 2 B 2 z n B 2 p 2 ]
and
y n p 2 = T μ 1 G 1 ( u n μ 1 B 1 u n ) T μ 1 G 1 ( u μ 1 B 1 u ) 2 ( u n μ 1 B 1 u n ) ( u μ 1 B 1 u ) , y n p = 1 2 [ ( u n μ 1 B 1 u n ) ( u μ 1 B 1 u ) 2 + y n p 2 ( u n μ 1 B 1 u n ) ( u μ 1 B 1 u ) ( y n p ) 2 ] 1 2 [ u n u 2 + y n p 2 ( u n y n ) + ( p u ) 2 + 2 μ 1 B 1 u n B 1 u , ( u n y n ) + ( p u ) μ 1 2 B 1 u n B 1 u 2 ] 1 2 [ x n p 2 + y n p 2 ( u n y n ) + ( p u ) 2 + 2 μ 1 B 1 u n B 1 u , ( u n y n ) + ( p u ) ] ,
which imply that
u n u 2 x n p 2 ( z n u n ) ( p u ) 2 + 2 μ 2 ( z n u n ) ( p u ) , B 2 z n B 2 p μ 2 2 B 2 z n B 2 p 2
(3.13)
and
y n p 2 x n p 2 ( u n y n ) + ( p u ) 2 + 2 μ 1 B 1 u n B 1 u ( u n y n ) + ( p u ) .
(3.14)
It follows from (3.14) that
x n + 1 p 2 = α n ( γ f ( W n x n ) A p ) + ( I α n A ) ( W n y n p ) 2 α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) y n p 2 + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) [ x n p 2 ( u n y n ) + ( p u ) 2 + 2 μ 1 B 1 u n B 1 u ( u n y n ) + ( p u ) ] + 2 α n γ f ( W n x n ) A p y n p ,
which gives that
( 1 α n γ ¯ ) ( u n y n ) + ( p u ) 2 α n γ f ( W n x n ) A p 2 + x n p 2 x n + 1 p 2 + 2 μ 1 ( 1 α n γ ¯ ) B 1 u n B 1 u ( u n y n ) + ( p u ) + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + ( x n p + x n + 1 p ) x n x n + 1 + 2 μ 1 ( 1 α n γ ¯ ) B 1 u n B 1 u ( u n y n ) + ( p u ) + 2 α n γ f ( W n x n ) A p y n p .
Since α n 0 , x n + 1 x n 0 and B 1 u n B 1 u 0 as n , we have
lim n ( u n y n ) + ( p u ) 2 = 0 .
(3.15)
Also, from (3.4) and (3.13), we have
x n + 1 p 2 = α n ( γ f ( W n x n ) A p ) + ( I α n A ) ( W n y n p ) 2 α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) y n p 2 + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) u n u 2 + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) [ x n p 2 ( z n u n ) ( p u ) 2 + 2 μ 2 ( z n u n ) ( p u ) , B 2 z n B 2 p ] + 2 α n γ f ( W n x n ) A p y n p .
So, we have
( 1 α n γ ¯ ) ( z n u n ) ( p u ) 2 α n γ f ( W n x n ) A p 2 + x n p 2 x n + 1 p 2 + 2 μ 2 ( z n u n ) ( p u ) B 2 z n B 2 p + 2 α n γ f ( W n x n ) A p ) y n p α n γ f ( W n x n ) A p 2 + ( x n p + x n + 1 p ) x n x n + 1 + 2 μ 2 ( z n u n ) ( p u ) B 2 z n B 2 p + 2 α n γ f ( W n x n ) A p y n p .
Note that B 2 z n B 2 p 0 as n . Then we have
lim n ( z n u n ) ( p u ) = 0 .
(3.16)
In addition, from the firm nonexpansivity of T δ n ( Θ , φ ) , we have
z n p 2 = T δ n ( Θ , φ ) ( x n δ n F x n ) T δ n ( Θ , φ ) ( p δ n F p ) 2 ( x n δ n F x n ) ( p δ n F p ) , z n p = 1 2 [ ( x n δ n F x n ) ( p δ n F p ) 2 + z n p 2 ( x n δ n F x n ) ( p δ n F p ) ( z n p ) 2 ] 1 2 [ x n p 2 + z n p 2 x n z n δ n ( F x n F p ) 2 ] = 1 2 [ x n p 2 + z n p 2 x n z n 2 + 2 δ n F x n F p , x n z n δ n 2 F x n F p 2 ] ,
which implies that
z n p 2 x n p 2 x n z n 2 + 2 δ n F x n F p x n z n .
(3.17)
From (3.1), (3.4) and (3.17), we have
x n + 1 p 2 = α n ( γ f ( W n x n ) A p ) + ( I α n A ) ( W n y n p ) 2 α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) y n p 2 + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) z n p 2 + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + ( 1 α n γ ¯ ) [ x n p 2 x n z n 2 + 2 δ n F x n F p x n z n ] + 2 α n γ f ( W n x n ) A p y n p .
It follows that
( 1 α n γ ¯ ) x n z n 2 α n γ f ( W n x n ) A p 2 + x n p 2 x n + 1 p 2 + 2 ( 1 α n γ ¯ ) δ n F x n F p x n z n + 2 α n γ f ( W n x n ) A p y n p α n γ f ( W n x n ) A p 2 + ( x n p + x n + 1 p ) x n x n + 1 + 2 ( 1 α n γ ¯ ) δ n F x n F p x n z n + 2 α n γ f ( W n x n ) A p y n p .
Since F x n F p 0 as n , we obtain
lim n x n z n = 0 .
(3.18)
Thus, from (3.15), (3.16) and (3.18), we obtain that
lim n z n y n = lim n ( z n u n ) ( p u ) + ( u n y n ) + ( p u ) lim n z n u n ( p u ) + lim n u n y n + ( p u ) = 0
and
lim n x n y n lim n x n z n + lim n z n y n = 0 .

Step 6. lim n y n W n y n = 0 .

Indeed, observe that
x n W n y n x n x n + 1 + x n + 1 W n y n = x n x n + 1 + α n γ f ( W n x n ) + ( I α n A ) W n y n W n y n x n x n + 1 + α n [ γ f ( W n x n ) + A W n y n ] .
From Step 3 and α n 0 as n , we have lim n x n W n y n = 0 . Consequently,
lim n y n W n y n lim n ( y n x n + x n W n y n ) = 0 .

Step 7. lim sup n γ f ( x ) A x , x n x 0 , where x = P F ( γ f + ( I A ) ) ( x ) .

Indeed, take a subsequence { x n i } of { x n } such that
lim sup n γ f ( x ) A x , x n x = lim i γ f ( x ) A x , x n i x .
Correspondingly, there exists a subsequence { y n i } of { y n } . Since { y n i } is bounded, there exists a subsequence of y n i which converges weakly to w. Without loss of generality, we can assume that y n i w . Next we show w F . First, we prove that w Ω . Utilizing Lemma 2.1, we have for all x , y C
Γ ( x ) Γ ( y ) 2 = T μ 1 G 1 [ T μ 2 G 2 ( x μ 2 B 2 x ) μ 1 B 1 T μ 2 G 2 ( x μ 2 B 2 x ) ] T μ 1 G 1 [ T μ 2 G 2 ( y μ 2 B 2 y ) μ 1 B 1 T μ 2 G 2 ( y μ 2 B 2 y ) ] 2 T μ 2 G 2 ( x μ 2 B 2 x ) T μ 2 G 2 ( y μ 2 B 2 y ) μ 1 [ B 1 T μ 2 G 2 ( x μ 2 B 2 x ) B 1 T μ 2 G 2 ( y μ 2 B 2 y ) ] 2 T μ 2 G 2 ( x μ 2 B 2 x ) T μ 2 G 2 ( y μ 2 B 2 y ) 2 + μ 1 ( μ 1 2 β 1 ) B 1 T μ 2 G 2 ( x μ 2 B 2 x ) B 1 T μ 2 G 2 ( y μ 2 B 2 y ) 2 T μ 2 G 2 ( x μ 2 B 2 x ) T μ 2 G 2 ( y μ 2 B 2 y ) 2 x y μ 2 ( B 2 x B 2 y ) 2 x y 2 + μ 2 ( μ 2 2 β 2 ) B 2 x B 2 y 2 x y 2 .
This shows that Γ : C C is nonexpansive. Note that
y n Γ ( y n ) = Γ ( z n ) Γ ( y n ) z n y n 0 as  n .

According to Lemma 2.2 and Lemma 2.3, we obtain w Ω .

Next, let us show that w GMEP . From z n = T δ n ( Θ , φ ) ( x n δ n F x n ) , we obtain
Θ ( z n , y ) + φ ( y ) φ ( z n ) + 1 δ n y z n , z n ( x n δ n F x n ) 0 , y C .
It follows from (H2) that
φ ( y ) φ ( z n ) + y z n , F x n + 1 δ n y z n , z n x n Θ ( y , z n ) , y C .
(3.19)
Replacing n by n i , we have
φ ( y ) φ ( z n i ) + y z n i , F x n i + y z n i , z n i x n i δ n i Θ ( y , z n i ) , y C .
Let z t = t y + ( 1 t ) w for all t [ 0 , 1 ] and y C . Then we have z t C . It follows from (3.19) that
z t z n i , F z t z t z n i , F z t φ ( z t ) + φ ( z n i ) z t z n i , F x n i z t z n i , z n i x n i δ n i + Θ ( z t , z n i ) = z t z n i , F z t F z n i + z t z n i , F z n i F x n i φ ( z t ) + φ ( z n i ) z t z n i , z n i x n i δ n i + Θ ( z t , z n i ) .
Since z n i x n i 0 , we have F z n i F x n i 0 . From the monotonicity of F, we have
F z t F z n i , z t z n i 0 .
From (H4), the weakly lower semicontinuity of φ, z n i x n i δ n i 0 and z n i w , we have
z t w , F z t φ ( z t ) + φ ( w ) + Θ ( z t , w )
(3.20)
as i . By (H1), (H4) and (3.20), we obtain
0 = Θ ( z t , z t ) + φ ( z t ) φ ( z t ) = Θ ( z t , t y + ( 1 t ) w ) + φ ( t y + ( 1 t ) w ) φ ( z t ) t Θ ( z t , y ) + ( 1 t ) Θ ( z t , w ) + t φ ( y ) + ( 1 t ) φ ( w ) φ ( z t ) = t [ Θ ( z t , y ) + φ ( y ) φ ( z t ) ] + ( 1 t ) [ Θ ( z t , w ) + φ ( w ) φ ( z t ) ] t [ Θ ( z t , y ) + φ ( y ) φ ( z t ) ] + ( 1 t ) z t w , F z t = t [ Θ ( z t , y ) + φ ( y ) φ ( z t ) ] + ( 1 t ) t y w , F z t .
Hence we obtain
0 Θ ( z t , y ) + φ ( y ) φ ( z t ) + ( 1 t ) y w , F z t .
Putting t 0 , we have
0 Θ ( w , y ) + φ ( y ) φ ( w ) + y w , F w , y C .

This implies that w GMEP .

Since Hilbert spaces satisfy Opial’s condition, it follows from Step 5 that
lim inf i y n i w < lim inf i y n i W n w lim inf i [ y n i W n y n i + W n y n i W n w ] lim sup i y n i W n y n i + lim inf i W n y n i W n w = lim inf i W n y n i W n w lim inf i y n i w ,

which derives a contraction. This implies that w F ( W n ) . It follows from F ( W n ) = i = 1 N F ( T i ) that w i = 1 N F ( T i ) .

Since x = P F ( γ f + ( I A ) ) ( x ) , we have
lim sup n γ f ( x ) A x , x n x = lim n γ f ( x ) A x , x n i x = γ f ( x ) A x , w x 0 .

Step 8. x n x as n .

Indeed, from Lemma 2.6 and (3.4), we have
x n + 1 x 2 = α n γ f ( W n x n ) + ( I α n A ) W n y n x 2 = ( I α n A ) ( W n y n x ) + α n ( γ f ( W n x n ) A x ) 2 ( I α n A ) ( W n y n x ) 2 + 2 α n γ f ( W n x n ) A x , x n + 1 x ( 1 α n γ ¯ ) 2 y n x 2 + 2 α n γ f ( W n x n ) A x , x n + 1 x ( 1 α n γ ¯ ) 2 x n x 2 + 2 α n γ f ( W n x n ) f ( x ) , x n + 1 x + 2 α n γ f ( x ) A x , x n + 1 x ( 1 α n γ ¯ ) 2 x n x 2 + 2 α n γ α x n x x n + 1 x + 2 α n γ f ( x ) A x , x n + 1 x ( 1 α n γ ¯ ) 2 x n x 2 + α n γ α ( x n x 2 + x n + 1 x 2 ) + 2 α n γ f ( x ) A x , x n + 1 x ,
which implies that
x n + 1 x 2 ( 1 α n γ ¯ ) 2 + α n γ α 1 α n γ α x n x 2 + 2 α n 1 α n γ α γ f ( x ) A x , x n + 1 x = ( 1 2 α n ( γ ¯ α γ ) 1 α n γ α ) x n x 2 + 2 α n ( γ ¯ α γ ) 1 α n γ α [ α n γ ¯ 2 2 ( γ ¯ α γ ) x n x 2 + 1 γ ¯ α γ γ f ( x ) A x , x n + 1 x ] .
Put
γ n = 2 α n ( γ ¯ α γ ) 1 α n γ α
and
ξ n = 2 α n ( γ ¯ α γ ) 1 α n γ α [ α n γ ¯ 2 2 ( γ ¯ α γ ) x n x 2 + 1 γ ¯ α γ γ f ( x ) A x , x n + 1 x ] .
Then we can write the last inequality as
a n + 1 ( 1 γ n ) a n + ξ n .
It follows from condition (i) and Step 6 that
n = 1 γ n = +
and
lim sup n ξ n γ n = lim sup n { α n γ ¯ 2 2 ( γ ¯ α γ ) x n x 2 + 1 γ ¯ α γ γ f ( x ) A x , x n + 1 x } 0 .

Hence, applying Lemma 2.4, we immediately obtain that x n x as n . This completes the proof. □

As corollaries of Theorem 3.1, we have the following results.

Corollary 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let Θ , G 1 , G 2 : C × C R be three bifunctions which satisfy assumptions (H1)-(H4) and φ : C R be a lower semicontinuous and convex function satisfying (A1) or (A2). Let the mappings B 1 , B 2 : C H be β 1 -inverse strongly monotone and β 2 -inverse strongly monotone, respectively. Let T 1 , T 2 , , T N be a finite family of nonexpansive mappings of C into H such that F = i = 1 N F ( T i ) MEP Ω ϕ . Let f be a contraction of H into itself with a constant α ( 0 < α < 1 ) and let A be a strongly positive linear bounded operator with a coefficient γ ¯ > 0 such that A 1 . Assume that 0 < γ < γ ¯ α . Let x 1 C and let { x n } be a sequence defined by
{ Θ ( z n , y ) + φ ( y ) φ ( z n ) + 1 δ n y z n , z n x n 0 , y C , y n = T μ 1 G 1 [ T μ 2 G 2 ( z n μ 2 B 2 z n ) μ 1 B 1 T μ 2 G 2 ( z n μ 2 B 2 z n ) ] , x n + 1 = α n γ f ( W n x n ) + ( 1 α n A ) W n y n , n 1 ,
where α n [ 0 , 1 ] , μ 1 ( 0 , 2 β 1 ) , μ 2 ( 0 , 2 β 2 ) and { δ n } ( 0 , ) satisfy the following conditions:
  1. (i)

    lim n α n = 0 , n = 1 α n = and n = 1 | α n + 1 α n | < ;

     
  2. (ii)

    lim n λ n , i = 0 , n = 1 | λ n , i λ n 1 , i | < for all i = 1 , 2 , , N ,

     
  3. (iii)

    0 < lim inf n δ n lim sup n δ n < and n = 1 N | δ n + 1 δ n | < .

     
Then { x n } converges strongly to x = P i = 1 N F ( T i ) MEP Ω ( γ ¯ f + ( I A ) ) ( x ) and ( x , y ) is a solution of problem (1.4), where y = T μ 2 G 2 ( x μ 2 B 2 x ) , which solves the following variational inequality:
( A γ f ) x , x x 0 , x i = 1 N F ( T i ) MEP Ω .
Proof In Theorem 3.1, for all n 0 , z n = T δ n ( Θ , φ ) ( x n δ n F x n ) is equivalent to
Θ ( z n , y ) + φ ( y ) φ ( z n ) + F x n , y z n + 1 δ n y z n , z n x n 0 , y C .
(3.21)
Putting F 0 , we obtain
Θ ( z n , y ) + φ ( y ) φ ( z n ) + 1 δ n y z n , z n x n 0 , y C .

 □

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H and let G 1 , G 2 : C × C R be two bifunctions with satisfy assumptions (H1)-(H4). Let the mappings F , B 1 , B 2 : C H be ζ-inverse strongly monotone, β 1 -inverse strongly monotone and β 2 -inverse strongly monotone, respectively. Let T 1 , T 2 , , T N be a finite family of nonexpansive mappings of C into H such that i = 1 N F ( T i ) VI ( A , C ) Ω ϕ . Let f be a contraction of H into itself with a constant α ( 0 < α < 1 ) and let A be a strongly positive linear bounded operator with a coefficient γ ¯ > 0 such that A 1 . Assume that 0 < γ < γ ¯ α . Let x 1 C and let { x n } be a sequence defined by
{ z n = P C ( x n δ F x n ) , y n = T μ 1 G 1 [ T μ 2 G 2 ( z n μ 2 B 2 z n ) μ 1 B 1 T μ 2 G 2 ( z n μ 2 B 2 z n ) ] , x n + 1 = α n γ f ( W n x n ) + ( 1 α n A ) W n y n , n 1 ,
where α n [ 0 , 1 ] , μ 1 ( 0 , 2 β 1 ) , μ 2 ( 0 , 2 β 2 ) and { δ n } [ 0 , 2 ζ ] satisfy the following conditions:
  1. (i)

    lim n α n = 0 , n = 1 α n = 0 and n = 1 | α n + 1 α n | < ;

     
  2. (ii)

    lim n λ n , i = 0 and n = 1 | λ n , i λ n 1 , i | < for all i = 1 , 2 , , N ;

     
  3. (iii)

    lim inf n δ n > 0 and n = 1 | δ n + 1 δ n | < .

     
Then { x n } converges strongly to x = P i = 1 N F ( T i ) VI ( A , C ) Ω ( γ f + ( I A ) ) ( x ) and ( x , y ) is a solution of problem (1.4), where y = T μ 2 G 2 ( x μ 2 B 2 x ) , which solves the following variational inequality:
( A γ f ) x , x x 0 , x i = 1 N F ( T i ) VI ( A , C ) Ω .
Proof Put Θ = 0 and φ = 0 in Theorem 3.1. Then we have from (3.21) that
F x n , y z n + 1 δ n y z n , z n x n 0 , y C , n 1 .
That is,
y z n , x n δ n F x n z n 0 , y C .

It follows that P C ( x n δ n F x n ) = z n for all n 1 . We can obtain the desired conclusion easily. □

Remark 3.1 We can see easily that Takahashi and Takahashi [18], Peng and Yao’s [1] results are special cases of Theorem 3.1.

Declarations

Acknowledgements

The author is grateful to the referees for useful suggestions that improved the contents of the article.

Authors’ Affiliations

(1)
Department of Mathematics, Dongeui University

References

  1. Peng JW, Yao JC: A new hybrid extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems. Taiwan. J. Math. 2008, 12: 1401–1432.MathSciNetGoogle Scholar
  2. Ceng LC, Yao JC: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. Comput. Appl. Math. 2008, 214: 186–201. 10.1016/j.cam.2007.02.022MathSciNetView ArticleGoogle Scholar
  3. Takahashi S, Takahashi W: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 2008, 69: 1025–1033. 10.1016/j.na.2008.02.042MathSciNetView ArticleGoogle Scholar
  4. Chang SS, Lee HWJ, Chan CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. 2009, 70: 3307–3319. 10.1016/j.na.2008.04.035MathSciNetView ArticleGoogle Scholar
  5. Ding XP: Iterative algorithm of solutions for a system of generalized mixed implicity equilibrium problems in reflexive Banach spaces. Appl. Math. Comput. 2012, 218: 4953–4961. 10.1016/j.amc.2011.10.060MathSciNetView ArticleGoogle Scholar
  6. Jaiboon C, Kumam P: A general iterative method for addressing mixed equilibrium problems and optimization problems. Nonlinear Anal. 2010, 73: 1180–1202. 10.1016/j.na.2010.04.041MathSciNetView ArticleGoogle Scholar
  7. Moudafi A: Mixed equilibrium problems: sensitivity analysis and algorithmic aspect. Comput. Math. Appl. 2002, 44: 1099–1108. 10.1016/S0898-1221(02)00218-3MathSciNetView ArticleGoogle Scholar
  8. Qin X, Shang M, Su Y: Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems. Math. Comput. Model. 2008, 48: 1033–1046. 10.1016/j.mcm.2007.12.008MathSciNetView ArticleGoogle Scholar
  9. Yang S, Li W: Iterative solutions of a system of equilibrium problems in Hilbert spaces. Adv. Fixed Point Theory 2011, 1: 15–26.Google Scholar
  10. Ye J, Huang J: Strong convergence theorems for fixed point problems and generalized equilibrium problems of three relatively quasi-nonexpansive mappings in Banach spaces. J. Math. Comput. Sci. 2011, 1: 1–18.MathSciNetView ArticleGoogle Scholar
  11. Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994, 63: 123–145.MathSciNetGoogle Scholar
  12. Ceng LC, Wang CY, Yao JC: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 2008, 67: 375–390. 10.1007/s00186-007-0207-4MathSciNetView ArticleGoogle Scholar
  13. Verma RU: On a new system of nonlinear variational inequalities and associated iterative algorithms. Math. Sci. Res. Hot-Line 1999, 3: 65–68.MathSciNetGoogle Scholar
  14. Chen JM, Zhang LJ, Fan TG: Viscosity approximation methods for nonexpansive mappings and monotone mappings. J. Math. Anal. Appl. 2007, 334: 1450–1461. 10.1016/j.jmaa.2006.12.088MathSciNetView ArticleGoogle Scholar
  15. Combettes PL, Hirstoaga SA: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 2005, 6: 117–136.MathSciNetGoogle Scholar
  16. Iiduka H, Takahashi W: Strong convergence theorems for nonexpansive mappings and inverse strongly monotone mappings. Nonlinear Anal. 2005, 61: 341–350. 10.1016/j.na.2003.07.023MathSciNetView ArticleGoogle Scholar
  17. Marino G, Xu HK: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2006, 318: 43–52. 10.1016/j.jmaa.2005.05.028MathSciNetView ArticleGoogle Scholar
  18. Takahashi S, Takahashi W: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 2007, 331: 506–515. 10.1016/j.jmaa.2006.08.036MathSciNetView ArticleGoogle Scholar
  19. Wittmann R: Approximation of fixed points of nonexpansive mappings. Arch. Math. 1992, 58: 486–491. 10.1007/BF01190119MathSciNetView ArticleGoogle Scholar
  20. Opial Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 1967, 73: 595–597.MathSciNetView ArticleGoogle Scholar
  21. Goebel K, Kirk WA: Topics on Metric Fixed Point Theory. Cambridge University Press, Cambridge; 1990.View ArticleGoogle Scholar
  22. Xu HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66: 240–256. 10.1112/S0024610702003332View ArticleGoogle Scholar

Copyright

© Jeong; licensee Springer 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.