• Research
• Open Access

# A strong convergence theorem of common elements in Hilbert spaces

Fixed Point Theory and Applications20132013:59

https://doi.org/10.1186/1687-1812-2013-59

• Accepted: 25 February 2013
• Published:

## Abstract

The purpose of this article is to investigate the convergence of an iterative process for equilibrium problems, fixed point problems and variational inequalities. Strong convergence of the purposed iterative process is obtained in the framework of Hilbert spaces.

MSC:47H05, 47H09, 47J25.

## Keywords

• equilibrium problem
• variational inequality
• quasi-nonexpansive
• inverse-strongly monotone mapping

## 1 Introduction

Nonlinear analysis plays an important role in optimization problems, economics and transportation. The theory of variational inequalities has emerged as a rapidly growing area of research because of its applications; see [117] fore more details and the references therein. To study variational inequalities based on iterative methods has been attracting many authors’ attention. For the iterative methods, the most popular method is the Mann iterative method which was introduced by Mann in 1953; see [18] and the references therein. The Mann iterative process has been proved to be weak convergence for nonexpansive mappings in infinite dimension spaces; see [19] and the reference therein. Recently, many authors studied the modification of Mann iterative methods. The most popular one is to use projections. We call the method a hybrid projection method; see [20] and the reference therein. In this paper, we study equilibrium problems, fixed point problems and variational inequalities based on the hybrid projection method. Strong convergence theorems for common solutions of the problems are established in infinite dimension Hilbert spaces.

## 2 Preliminaries

Throughout this paper, we always assume that H is a real Hilbert space with the inner product $〈\cdot ,\cdot 〉$ and the norm $\parallel \cdot \parallel$. Let C be a nonempty closed convex subset of H. Let $S:C\to C$ be a mapping. In this paper, we use $F\left(S\right)$ to denote the fixed point set of S.

Recall that the mapping S is said to be nonexpansive if
$\parallel Sx-Sy\parallel \le \parallel x-y\parallel ,\phantom{\rule{1em}{0ex}}\mathrm{\forall }x,y\in C.$
S is said to be quasi-nonexpansive if $F\left(S\right)\ne \mathrm{\varnothing }$ and
$\parallel Sx-y\parallel \le \parallel x-y\parallel ,\phantom{\rule{1em}{0ex}}\mathrm{\forall }x\in C,y\in F\left(S\right).$
Let $A:C\to H$ be a mapping. Recall that A is said to be monotone if
$〈Ax-Ay,x-y〉\ge 0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }x,y\in C.$
A is said to be strongly monotone if there exists a constant $\alpha >0$ such that
$〈Ax-Ay,x-y〉\ge \alpha {\parallel x-y\parallel }^{2},\phantom{\rule{1em}{0ex}}\mathrm{\forall }x,y\in C.$
For such a case, A is also said to be α-strongly monotone. A is said to be inverse-strongly monotone if there exists a constant $\alpha >0$ such that
$〈Ax-Ay,x-y〉\ge \alpha {\parallel Ax-Ay\parallel }^{2},\phantom{\rule{1em}{0ex}}\mathrm{\forall }x,y\in C.$
For such a case, A is also said to be α-inverse-strongly monotone. A is said to be Lipschitz if there exits a constant $L>0$ such that
$\parallel Ax-Ay\parallel \le L{\parallel x-y\parallel }^{2},\phantom{\rule{1em}{0ex}}\mathrm{\forall }x,y\in C.$

For such a case, A is also said to be L-Lipschitz. A set-valued mapping $T:H\to {2}^{H}$ is said to be monotone if for all $x,y\in H$, $f\in Tx$ and $g\in Ty$ imply $〈x-y,f-g〉>0$. A monotone mapping $T:H\to {2}^{H}$ is maximal if the graph $G\left(T\right)$ of T is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal if and only if, for any $\left(x,f\right)\in H×H$, $〈x-y,f-g〉\ge 0$ for all $\left(y,g\right)\in G\left(T\right)$ implies $f\in Tx$.

Let F be a bifunction of $C×C$ into , where denotes the set of real numbers and $A:C\to H$ is an inverse-strongly monotone mapping. In this paper, we consider the following generalized equilibrium problem:
(2.1)
In this paper, the set of such an $x\in C$ is denoted by $EP\left(F,A\right)$, i.e.,
$EP\left(F,A\right)=\left\{x\in C:F\left(x,y\right)+〈Ax,y-x〉\ge 0,\mathrm{\forall }y\in C\right\}.$
To study the generalized equilibrium problems (2.1), we may assume that F satisfies the following conditions:
1. (A1)

$F\left(x,x\right)=0$ for all $x\in C$;

2. (A2)

F is monotone, i.e., $F\left(x,y\right)+F\left(y,x\right)\le 0$ for all $x,y\in C$;

3. (A3)
for each $x,y,z\in C$,
$\underset{t↓0}{lim sup}F\left(tz+\left(1-t\right)x,y\right)\le F\left(x,y\right);$

4. (A4)

for each $x\in C$, $y↦F\left(x,y\right)$ is convex and lower semi-continuous.

Next, we give two special cases of the problem (2.1).
1. (I)
If $A\equiv 0$, then the generalized equilibrium problem (2.1) is reduced to the following equilibrium problem:
(2.2)

2. (II)
If $F\equiv 0$, then the problem (2.1) is reduced to the following classical variational inequality:
(2.3)

It is known that $x\in C$ is a solution to (2.3) if and only if x is a fixed point of the mapping ${P}_{C}\left(I-\lambda A\right)$, where $\lambda >0$ is a constant and I is the identity mapping.

Recently, many authors studied the problems (2.1), (2.2) and (2.3) based on hybrid projection methods; see, for example, [2136] and the references therein. Motivated by these results, we investigated the common element problems of the generalized equilibrium problem (2.1) and quasi-nonexpansive mappings based on the shrinking projection algorithm. A strong convergence theorem of common elements is established in the framework of Hilbert spaces.

In order to prove our main results, we also need the following definitions and lemmas.

The following lemma can be found in [4] and [9].

Lemma 2.1 Let C be a nonempty closed convex subset of H and let $F:C×C\to \mathbb{R}$ be a bifunction satisfying (A1)-(A4). Then, for any $r>0$ and $x\in H$, there exists $z\in C$ such that
$F\left(z,y\right)+\frac{1}{r}〈y-z,z-x〉\ge 0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }y\in C.$
Further, define
${T}_{r}x=\left\{z\in C:F\left(z,y\right)+\frac{1}{r}〈y-z,z-x〉\ge 0,\mathrm{\forall }y\in C\right\}$
for all $r>0$ and $x\in H$. Then the following hold:
1. (a)

${T}_{r}$ is single-valued;

2. (b)
${T}_{r}$ is firmly nonexpansive, i.e., for any $x,y\in H$,
${\parallel {T}_{r}x-{T}_{r}y\parallel }^{2}\le 〈{T}_{r}x-{T}_{r}y,x-y〉;$

3. (c)

$F\left({T}_{r}\right)=EP\left(F\right)$;

4. (d)

$EP\left(F\right)$ is closed and convex.

Lemma 2.2 [37]

Let B be a monotone mapping of C into H and ${N}_{C}v$ the normal cone to C at $v\in C$, i.e.,
${N}_{C}v=\left\{w\in H:〈v-u,w〉\ge 0,\mathrm{\forall }u\in C\right\}$
and define a mapping M on C by
$Mv=\left\{\begin{array}{cc}Bv+{N}_{C}v,\hfill & v\in C,\hfill \\ \mathrm{\varnothing },\hfill & v\notin C.\hfill \end{array}$

Then M is maximal monotone and $0\in Mv$ if and only if $〈Bv,u-v〉\ge 0$ for all $u\in C$.

## 3 Main results

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let ${F}_{m}$ be a bifunction from $C×C$ to which satisfies (A1)-(A4) and ${A}_{m}:C\to H$ be a ${\kappa }_{m}$-inverse-strongly monotone mapping for every $1\le m\le N$, where N denotes some positive integer. Let $S:C\to C$ be a continuous quasi-nonexpansive mapping which is assumed to be demiclosed at zero and let $B:C\to H$ be a β-inverse-strongly monotone mapping. Assume that $\mathcal{F}:={\bigcap }_{m=1}^{N}EP\left({F}_{m},{A}_{m}\right)\cap VI\left(C,B\right)\cap F\left(S\right)\ne \mathrm{\varnothing }$. Let $\left\{{\lambda }_{n}\right\}$ be a positive sequence in $\left[0,2\beta \right]$ and $\left\{{r}_{n,m}\right\}$ be a positive sequence in $\left[0,2{\kappa }_{m}\right]$ for every $1\le m\le N$. Let $\left\{{\alpha }_{n}\right\},\left\{{\beta }_{n,1}\right\},\dots$ and $\left\{{\beta }_{n,N}\right\}$ be sequences in $\left[0,1\right]$. Let $\left\{{x}_{n}\right\}$ be a sequence generated in the following iterative process:
$\left\{\begin{array}{c}{x}_{1}\in C,\hfill \\ {C}_{1}=C,\hfill \\ {z}_{n}={Proj}_{C}\left({\sum }_{m=1}^{N}{\beta }_{n,m}{u}_{n,m}-{\lambda }_{n}B{\sum }_{m=1}^{N}{\beta }_{n,m}{u}_{n,m}\right),\hfill \\ {y}_{n}={\alpha }_{n}{x}_{n}+\left(1-{\alpha }_{n}\right)S{z}_{n},\hfill \\ {C}_{n+1}=\left\{v\in {C}_{n}:\parallel {y}_{n}-v\parallel \le \parallel {x}_{n}-v\parallel \right\},\hfill \\ {x}_{n+1}={P}_{{C}_{n+1}}{x}_{1},\phantom{\rule{1em}{0ex}}n\ge 1,\hfill \end{array}$
where $\left\{{u}_{n,m}\right\}$ is such that
${F}_{m}\left({u}_{n,m},{u}_{m}\right)+〈{A}_{m}{x}_{n},{u}_{m}-{u}_{n,m}〉+\frac{1}{{r}_{n,m}}〈{u}_{m}-{u}_{n,m},{u}_{n,m}-{x}_{n}〉\ge 0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }{u}_{m}\in C$
for each $1\le m\le N$. Assume that the above sequence also satisfies the following restrictions:
1. (a)

${\alpha }_{n}\le a<1$;

2. (b)

${\sum }_{m=1}^{N}{\beta }_{n,m}=1$ and $0\le b\le {\beta }_{n,m}<1$ for each $1\le m\le N$;

3. (c)

$0 and $0 for each $1\le m\le N$,

where a, b, c, d, e and f are real numbers. Then the sequence $\left\{{x}_{n}\right\}$ strongly converges to ${Proj}_{\mathcal{F}}{x}_{1}$.

Proof

In view of Lemma 2.1, we see that
${u}_{n,m}={T}_{{r}_{n,m}}\left({x}_{n}-{r}_{n,m}{A}_{m}{x}_{n}\right),\phantom{\rule{1em}{0ex}}\mathrm{\forall }1\le m\le N.$
Letting $p\in \mathcal{F}$, we obtain that
$p=Sp={Proj}_{C}\left(I-{\lambda }_{n}B\right)p={T}_{{r}_{n,m}}\left(p-{r}_{n,m}{A}_{m}p\right),\phantom{\rule{1em}{0ex}}\mathrm{\forall }m\in \left\{1,2,\dots ,N\right\}.$
In view of the restriction (c), we obtain that

This shows that $I-{r}_{n,m}{A}_{m}$ is nonexpansive for every $m\in \left\{1,2,\dots ,N\right\}$. In view of the restriction (c), we also see that $I-{\lambda }_{n}B$ is nonexpansive.

Next, we show that ${C}_{n}$ is closed and convex. In view of the assumption in the main body of the theorem, we see that ${C}_{1}=C$ is closed and convex. Suppose that ${C}_{i}$ is closed and convex for some $i\ge 1$. We show that ${C}_{i+1}$ is closed and convex for the same i. Indeed, for any $v\in {C}_{i}$, we see that
$\parallel {y}_{i}-v\parallel \le \parallel {x}_{i}-v\parallel$
is equivalent to
${\parallel {y}_{i}\parallel }^{2}-{\parallel {x}_{i}\parallel }^{2}-2〈v,{y}_{i}-{x}_{i}〉\ge 0.$

Thus ${C}_{i+1}$ is closed and convex. This shows that ${C}_{n}$ is closed and convex.

Next, we show that $\mathcal{F}\subset {C}_{n}$ for each $n\ge 1$. From the assumption, we see that $\mathcal{F}\subset C={C}_{1}$. Assume that $\mathcal{F}\subset {C}_{i}$ for some $i\ge 1$. For any $v\in \mathcal{F}\subset {C}_{i}$, we see that
$\begin{array}{rl}\parallel {y}_{i}-v\parallel & =\parallel {\alpha }_{i}{x}_{i}+\left(1-{\alpha }_{i}\right)S{z}_{i}-v\parallel \\ \le {\alpha }_{i}\parallel {x}_{i}-v\parallel +\left(1-{\alpha }_{i}\right)\parallel {z}_{i}-v\parallel \\ \le {\alpha }_{i}\parallel {x}_{i}-v\parallel +\left(1-{\alpha }_{i}\right)\sum _{m=1}^{N}{\beta }_{i,m}\parallel {u}_{i,m}-v\parallel \\ \le {\alpha }_{i}\parallel {x}_{i}-v\parallel +\left(1-{\alpha }_{i}\right)\sum _{m=1}^{N}{\beta }_{i,m}\parallel {T}_{{r}_{i,m}}\left(I-{r}_{i,m}{A}_{m}\right){x}_{i}-v\parallel \\ \le {\alpha }_{i}\parallel {x}_{i}-v\parallel +\left(1-{\alpha }_{i}\right)\sum _{m=1}^{N}{\beta }_{i,m}\parallel \left(I-{r}_{i,m}{A}_{m}\right){x}_{i}-v\parallel \\ \le \parallel {x}_{i}-v\parallel .\end{array}$
This shows that $v\in {C}_{i+1}$. This proves that $\mathcal{F}\subset {C}_{n}$. Notice that ${x}_{n}={Proj}_{{C}_{n}}{x}_{1}$. For each $v\in \mathcal{F}\subset {C}_{n}$, we have
$\parallel {x}_{1}-{x}_{n}\parallel \le \parallel {x}_{1}-v\parallel .$
In particular, we have
$\parallel {x}_{1}-{x}_{n}\parallel \le \parallel {x}_{1}-{Proj}_{\mathcal{F}}{x}_{1}\parallel .$
This implies that $\left\{{x}_{n}\right\}$ is bounded. Since ${x}_{n}={Proj}_{{C}_{n}}{x}_{1}$ and ${x}_{n+1}={Proj}_{{C}_{n+1}}{x}_{1}\in {C}_{n+1}\subset {C}_{n}$, we arrive at
$0\le 〈{x}_{1}-{x}_{n},{x}_{n}-{x}_{n+1}〉\le -{\parallel {x}_{1}-{x}_{n}\parallel }^{2}+\parallel {x}_{1}-{x}_{n}\parallel \parallel {x}_{1}-{x}_{n+1}\parallel .$
It follows that
$\parallel {x}_{n}-{x}_{1}\parallel \le \parallel {x}_{n+1}-{x}_{1}\parallel .$
This implies that ${lim}_{n\to \mathrm{\infty }}\parallel {x}_{n}-{x}_{1}\parallel$ exists. On the other hand, we have
It follows that
$\underset{n\to \mathrm{\infty }}{lim}\parallel {x}_{n}-{x}_{n+1}\parallel =0.$
(3.1)
Notice that ${x}_{n+1}={Proj}_{{C}_{n+1}}{x}_{1}\in {C}_{n+1}$. It follows that
$\parallel {y}_{n}-{x}_{n+1}\parallel \le \parallel {x}_{n}-{x}_{n+1}\parallel .$
This in turn implies that
$\parallel {y}_{n}-{x}_{n}\parallel \le \parallel {y}_{n}-{x}_{n+1}\parallel +\parallel {x}_{n}-{x}_{n+1}\parallel \le 2\parallel {x}_{n}-{x}_{n+1}\parallel .$
In view of (3.1), we obtain that
$\underset{n\to \mathrm{\infty }}{lim}\parallel {x}_{n}-{y}_{n}\parallel =0.$
(3.2)
On the other hand, we have
$\parallel {x}_{n}-{y}_{n}\parallel =\left(1-{\alpha }_{n}\right)\parallel {x}_{n}-S{z}_{n}\parallel .$
It follows from (3.2) that
$\underset{n\to \mathrm{\infty }}{lim}\parallel {x}_{n}-S{z}_{n}\parallel =0.$
(3.3)
For any $p\in \mathcal{F}$, we have from Lemma 2.1 that
$\begin{array}{rl}{\parallel {u}_{n,m}-p\parallel }^{2}& ={\parallel {T}_{{r}_{n,m}}\left(I-{r}_{n,m}{A}_{m}\right){x}_{n}-{T}_{{r}_{n,m}}\left(I-{r}_{n,m}{A}_{m}\right)p\parallel }^{2}\\ \le {\parallel \left({x}_{n}-p\right)-{r}_{n,m}\left({A}_{m}{x}_{n}-{A}_{m}p\right)\parallel }^{2}\\ ={\parallel {x}_{n}-p\parallel }^{2}-2{r}_{n,m}〈{x}_{n}-p,{A}_{m}{x}_{n}-{A}_{m}p〉+{r}_{n,m}^{2}{\parallel {A}_{m}{x}_{n}-{A}_{m}p\parallel }^{2}\\ \le {\parallel {x}_{n}-p\parallel }^{2}-{r}_{n,m}\left(2{\kappa }_{m}-{r}_{n,m}\right){\parallel {A}_{m}{x}_{n}-{A}_{m}p\parallel }^{2},\\ \phantom{\le }\phantom{\rule{1em}{0ex}}\mathrm{\forall }m\in \left\{1,2,\dots ,N\right\}.\end{array}$
(3.4)
On the other hand, we have
$\begin{array}{rl}{\parallel {y}_{n}-p\parallel }^{2}& ={\parallel {\alpha }_{n}{x}_{n}+\left(1-{\alpha }_{n}\right)S{z}_{n}-p\parallel }^{2}\\ \le {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right){\parallel S{z}_{n}-p\parallel }^{2}\\ \le {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right){\parallel {z}_{n}-p\parallel }^{2}\\ \le {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right)\sum _{m=1}^{N}{\beta }_{n,m}{\parallel {u}_{n,m}-p\parallel }^{2}.\end{array}$
(3.5)
Substituting (3.4) into (3.5), we arrive at
${\parallel {y}_{n}-p\parallel }^{2}\le {\parallel {x}_{n}-p\parallel }^{2}-\left(1-{\alpha }_{n}\right)\sum _{m=1}^{N}{\beta }_{n,m}{r}_{n,m}\left(2{\kappa }_{m}-{r}_{n,m}\right){\parallel {A}_{m}{x}_{n}-{A}_{m}p\parallel }^{2}.$
(3.6)
This in turn implies that
In view of the restrictions (a)-(c), we obtain from (3.2) that
$\underset{n\to \mathrm{\infty }}{lim}\parallel {A}_{m}{x}_{n}-{A}_{m}p\parallel =0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }m\in \left\{1,2,\dots ,N\right\}.$
(3.7)
On the other hand, we have from Lemma 2.1 that
$\begin{array}{rcl}{\parallel {u}_{n,m}-p\parallel }^{2}& =& {\parallel {T}_{{r}_{n,m}}\left(I-{r}_{n,m}{A}_{m}\right){x}_{n}-{T}_{{r}_{n,m}}\left(I-{r}_{n,m}{A}_{m}\right)p\parallel }^{2}\\ \le & 〈\left(I-{r}_{n,m}{A}_{m}\right){x}_{n}-\left(I-{r}_{n,m}{A}_{m}\right)p,{u}_{n,m}-p〉\\ =& \frac{1}{2}\left({\parallel \left(I-{r}_{n,m}{A}_{m}\right){x}_{n}-\left(I-{r}_{n,m}{A}_{m}\right)p\parallel }^{2}+{\parallel {u}_{n,m}-p\parallel }^{2}\\ -{\parallel \left(I-{r}_{n,m}{A}_{m}\right){x}_{n}-\left(I-{r}_{n,m}{A}_{m}\right)p-\left({u}_{n,m}-p\right)\parallel }^{2}\right)\\ \le & \frac{1}{2}\left({\parallel {x}_{n}-p\parallel }^{2}+{\parallel {u}_{n,m}-p\parallel }^{2}-{\parallel {x}_{n}-{u}_{n,m}-{r}_{n,m}\left({A}_{m}{x}_{n}-{A}_{m}p\right)\parallel }^{2}\right)\\ =& \frac{1}{2}\left({\parallel {x}_{n}-p\parallel }^{2}+{\parallel {u}_{n,m}-p\parallel }^{2}-\left({\parallel {x}_{n}-{u}_{n,m}\parallel }^{2}\\ -2{r}_{n,m}〈{x}_{n}-{u}_{n,m},{A}_{m}{x}_{n}-{A}_{m}p〉+{r}_{n,m}^{2}{\parallel {A}_{m}{x}_{n}-{A}_{m}p\parallel }^{2}\right)\right).\end{array}$
This implies that
${\parallel {u}_{n,m}-p\parallel }^{2}\le {\parallel {x}_{n}-p\parallel }^{2}-{\parallel {x}_{n}-{u}_{n,m}\parallel }^{2}+2{r}_{n,m}\parallel {x}_{n}-{u}_{n,m}\parallel \parallel {A}_{m}{x}_{n}-{A}_{m}p\parallel .$
(3.8)
Notice that
$\begin{array}{rl}{\parallel {y}_{n}-p\parallel }^{2}& \le {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right){\parallel S{z}_{n}-p\parallel }^{2}\\ \le {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right){\parallel {z}_{n}-p\parallel }^{2}\\ \le {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right)\sum _{m=1}^{N}{\beta }_{n,m}{\parallel {u}_{n,m}-p\parallel }^{2}.\end{array}$
(3.9)
Substituting (3.8) into (3.9), we see that
$\begin{array}{rcl}{\parallel {y}_{n}-p\parallel }^{2}& \le & {\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right)\sum _{m=1}^{N}{\beta }_{n,m}2{r}_{n,m}\parallel {x}_{n}-{u}_{n,m}\parallel \parallel {A}_{m}{x}_{n}-{A}_{m}p\parallel \\ -\left(1-{\alpha }_{n}\right)\sum _{m=1}^{N}{\beta }_{n,m}{\parallel {x}_{n}-{u}_{n,m}\parallel }^{2}\\ \le & {\parallel {x}_{n}-p\parallel }^{2}+\sum _{m=1}^{N}2{r}_{n,m}\parallel {x}_{n}-{u}_{n,m}\parallel \parallel {A}_{m}{x}_{n}-{A}_{m}p\parallel \\ -\left(1-{\alpha }_{n}\right)\sum _{m=1}^{N}{\beta }_{n,m}{\parallel {x}_{n}-{u}_{n,m}\parallel }^{2},\phantom{\rule{1em}{0ex}}\mathrm{\forall }1\le m\le N.\end{array}$
(3.10)
It follows that
(3.11)
In view of the restrictions (a) and (b), we obtain from (3.2) and (3.7) that
$\underset{n\to \mathrm{\infty }}{lim}\parallel {x}_{n}-{u}_{n,m}\parallel =0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }1\le m\le N.$
(3.12)

Since $\left\{{x}_{n}\right\}$ is bounded, we may assume that there is a subsequence $\left\{{x}_{{n}_{i}}\right\}$ of $\left\{{x}_{n}\right\}$ converging weakly to some point x. It follows from (3.12) that ${u}_{{n}_{i},m}$ converges weakly to x for every $m\in \left\{1,2,\dots ,N\right\}$.

Next, we show that $x\in EP\left({F}_{m},{A}_{m}\right)$ for every $m\in \left\{1,2,\dots ,N\right\}$. Since ${u}_{n,m}={T}_{{r}_{n,m}}\left({x}_{n}-{r}_{n,m}{A}_{m}{x}_{n}\right)$ for any $u\in C$, we have
${F}_{m}\left({u}_{n,m},{u}_{m}\right)+〈{A}_{m}{x}_{n},{u}_{m}-{u}_{n,m}〉+\frac{1}{{r}_{n,m}}〈{u}_{m}-{u}_{n,m},{u}_{n,m}-{x}_{n}〉\ge 0.$
From the condition (A2), we see that
$〈{A}_{m}{x}_{n},{u}_{m}-{u}_{n,m}〉+\frac{1}{{r}_{n,m}}〈{u}_{m}-{u}_{n,m},{u}_{n,m}-{x}_{n}〉\ge {F}_{m}\left({u}_{m},{u}_{n,m}\right).$
(3.13)
Replacing n by ${n}_{i}$, we arrive at
$〈{A}_{m}{x}_{{n}_{i}},{u}_{m}-{u}_{{n}_{i},m}〉+〈{u}_{m}-{u}_{{n}_{i},m},\frac{{u}_{{n}_{i},m}-{x}_{{n}_{i}}}{{r}_{{n}_{i},m}}〉\ge {F}_{m}\left({u}_{m},{u}_{{n}_{i},m}\right).$
(3.14)
For ${t}_{m}$ with $0<{t}_{m}\le 1$ and ${u}_{m}\in C$, let ${u}_{{t}_{m}}={t}_{m}{u}_{m}+\left(1-{t}_{m}\right)x$. Since ${u}_{m}\in C$ and $x\in C$, we have ${u}_{{t}_{m}}\in C$ for every $1\le m\le N$. It follows from (3.14) that
(3.15)
From (3.12), we have ${A}_{m}{u}_{{n}_{i},m}-{A}_{m}{x}_{{n}_{i}}\to 0$ as $i\to \mathrm{\infty }$ for every $1\le m\le N$. On the other hand, we obtain from the monotonicity of ${A}_{m}$ that $〈{u}_{{t}_{m}}-{u}_{{n}_{i},m},{A}_{m}{u}_{{t}_{m}}-{A}_{m}{u}_{{n}_{i},m}〉\ge 0$. It follows from (A4) that
$〈{u}_{{t}_{m}}-x,{A}_{m}{u}_{{t}_{m}}〉\ge {F}_{m}\left({u}_{{t}_{m}},x\right),\phantom{\rule{1em}{0ex}}\mathrm{\forall }1\le m\le N.$
(3.16)
From (A1) and (A4), we obtain from (3.16) that
$\begin{array}{rl}0& ={F}_{m}\left({u}_{{t}_{m}},{u}_{{t}_{m}}\right)\le {t}_{m}{F}_{m}\left({u}_{{t}_{m}},{u}_{m}\right)+\left(1-{t}_{m}\right){F}_{m}\left({u}_{{t}_{m}},x\right)\\ \le {t}_{m}{F}_{m}\left({u}_{{t}_{m}},{u}_{m}\right)+\left(1-{t}_{m}\right)〈{u}_{{t}_{m}}-x,{A}_{m}{u}_{{t}_{m}}〉\\ ={t}_{m}{F}_{m}\left({u}_{{t}_{m}},{u}_{m}\right)+\left(1-{t}_{m}\right){t}_{m}〈{u}_{m}-x,{A}_{m}{u}_{{t}_{m}}〉,\end{array}$
which yields that
${F}_{m}\left({u}_{{t}_{m}},{u}_{m}\right)+\left(1-{t}_{m}\right)〈{u}_{m}-x,{A}_{m}{u}_{{t}_{m}}〉\ge 0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }1\le m\le N.$
Letting ${t}_{m}\to 0$ in the above inequality for every $1\le m\le N$, we arrive at
${F}_{m}\left(x,{u}_{m}\right)+〈{u}_{m}-x,{A}_{m}\xi 〉\ge 0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }1\le m\le N.$
This shows that $x\in EP\left({F}_{m},{A}_{m}\right)$ for every $1\le m\le N$, that is, $x\in {\bigcap }_{m=1}^{N}EP\left({F}_{m},{A}_{m}\right)$. Putting ${w}_{n}={\sum }_{m=1}^{N}{\beta }_{n,m}{u}_{n,m}$, we see that
$\parallel {w}_{n}-p\parallel \le \parallel {x}_{n}-p\parallel$
and
$\begin{array}{rcl}{\parallel {y}_{n}-p\parallel }^{2}& =& {\parallel {\alpha }_{n}{x}_{n}+\left(1-{\alpha }_{n}\right)S{z}_{n}-p\parallel }^{2}\\ \le & {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right){\parallel S{z}_{n}-p\parallel }^{2}\\ \le & {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right){\parallel {z}_{n}-p\parallel }^{2}\\ \le & {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right){\parallel \left(I-{\lambda }_{n}B\right){w}_{n}-p\parallel }^{2}\\ \le & {\parallel {x}_{n}-p\parallel }^{2}-\left(1-{\alpha }_{n}\right){\lambda }_{n}\left(2\beta -{\lambda }_{n}\right){\parallel B{w}_{n}-Bp\parallel }^{2}.\end{array}$
(3.17)
This in turn implies that
$\begin{array}{rl}\left(1-{\alpha }_{n}\right){\lambda }_{n}\left(2\beta -{\lambda }_{n}\right){\parallel B{w}_{n}-Bp\parallel }^{2}& \le {\parallel {x}_{n}-p\parallel }^{2}-{\parallel {y}_{n}-p\parallel }^{2}\\ \le \left(\parallel {x}_{n}-p\parallel +\parallel {y}_{n}-p\parallel \right)\parallel {x}_{n}-{y}_{n}\parallel .\end{array}$
(3.18)
In view of the restriction (a)-(c), we obtain from (3.2) that
$\underset{n\to \mathrm{\infty }}{lim}\parallel B{w}_{n}-Bp\parallel =0.$
(3.19)
On the other hand, we have from the firm nonexpansivity of ${Proj}_{C}$ that
$\begin{array}{rcl}{\parallel {z}_{n}-p\parallel }^{2}& =& {\parallel {Proj}_{C}\left(I-{\lambda }_{n}B\right){w}_{n}-{Proj}_{C}\left(I-{\lambda }_{n}B\right)p\parallel }^{2}\\ \le & 〈\left(I-{\lambda }_{n}B\right){w}_{n}-\left(I-{\lambda }_{n}B\right)p,{z}_{n}-p〉\\ =& \frac{1}{2}\left({\parallel \left(I-{\lambda }_{n}B\right){w}_{n}-\left(I-{\lambda }_{n}B\right)p\parallel }^{2}+{\parallel {z}_{n}-p\parallel }^{2}\\ -{\parallel \left(I-{\lambda }_{n}B\right){w}_{n}-\left(I-{\lambda }_{n}B\right)p-\left({z}_{n}-p\right)\parallel }^{2}\right)\\ \le & \frac{1}{2}\left({\parallel {w}_{n}-p\parallel }^{2}+{\parallel {z}_{n}-p\parallel }^{2}-{\parallel {w}_{n}-{z}_{n}-{\lambda }_{n}\left(B{w}_{n}-Bp\right)\parallel }^{2}\right)\\ \le & \frac{1}{2}\left({\parallel {x}_{n}-p\parallel }^{2}+{\parallel {z}_{n}-p\parallel }^{2}-{\parallel {w}_{n}-{z}_{n}\parallel }^{2}\\ +2{\lambda }_{n}〈{w}_{n}-{z}_{n},B{w}_{n}-Bp〉-{\lambda }_{n}^{2}{\parallel B{w}_{n}-Bp\parallel }^{2}\right).\end{array}$
This implies that
${\parallel {z}_{n}-p\parallel }^{2}\le {\parallel {x}_{n}-p\parallel }^{2}-{\parallel {w}_{n}-{z}_{n}\parallel }^{2}+2{\lambda }_{n}\parallel {w}_{n}-{z}_{n}\parallel \parallel B{w}_{n}-Bp\parallel ,$
from which it follows that
$\begin{array}{rcl}{\parallel {y}_{n}-p\parallel }^{2}& \le & {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right){\parallel S{z}_{n}-p\parallel }^{2}\\ \le & {\alpha }_{n}{\parallel {x}_{n}-p\parallel }^{2}+\left(1-{\alpha }_{n}\right){\parallel {z}_{n}-p\parallel }^{2}\\ \le & {\parallel {x}_{n}-p\parallel }^{2}-\left(1-{\alpha }_{n}\right){\parallel {w}_{n}-{z}_{n}\parallel }^{2}\\ +2{\lambda }_{n}\parallel {w}_{n}-{z}_{n}\parallel \parallel B{w}_{n}-Bp\parallel .\end{array}$
Hence, we get that
In view of the restriction (a), we obtain from (3.2) and (3.19) that
$\underset{n\to \mathrm{\infty }}{lim}\parallel {w}_{n}-{z}_{n}\parallel =0.$
(3.20)
Note that
$\parallel {z}_{n}-{x}_{n}\parallel \le \parallel {z}_{n}-{w}_{n}\parallel +\parallel {w}_{n}-{x}_{n}\parallel \le \parallel {z}_{n}-{w}_{n}\parallel +\sum _{m=1}^{N}{\beta }_{n,m}\parallel {u}_{n,m}-{x}_{n}\parallel .$
In view of (3.12) and (3.20), we get that
$\underset{n\to \mathrm{\infty }}{lim}\parallel {z}_{n}-{x}_{n}\parallel =0.$
(3.21)
Next, we prove that $x\in VI\left(C,B\right)$. In fact, let M be the maximal monotone mapping defined by
$My=\left\{\begin{array}{cc}By+{N}_{C}y,\hfill & y\in C,\hfill \\ \mathrm{\varnothing },\hfill & y\notin C.\hfill \end{array}$
For any given $\left(s,t\right)\in G\left(T\right)$, we have $t-Bs\in {N}_{C}s$. Since ${z}_{n}\in C$, by the definition of ${N}_{C}$, we have
$〈s-{z}_{n},t-Bs〉\ge 0.$
(3.22)
In view of the algorithm, we obtain that
$〈s-{z}_{n},{z}_{n}-\left(I-{\lambda }_{n}B\right){w}_{n}〉\ge 0$
and hence
$〈s-{z}_{n},\frac{{z}_{n}-{w}_{n}}{{\lambda }_{n}}+B{w}_{n}〉\ge 0.$
(3.23)
Since B is monotone, we obtain from (3.23) that
$\begin{array}{rcl}〈s-{z}_{{n}_{i}},t〉& \ge & 〈s-{z}_{{n}_{i}},Bs〉\\ \ge & 〈s-{z}_{{n}_{i}},Bs〉-〈s-{z}_{{n}_{i}},\frac{{z}_{{n}_{i}}-{w}_{{n}_{i}}}{{\lambda }_{{n}_{i}}}+B{w}_{{n}_{i}}〉\\ =& 〈s-{z}_{{n}_{i}},Bs-B{z}_{{n}_{i}}〉+〈s-{z}_{{n}_{i}},B{z}_{{n}_{i}}-B{w}_{{n}_{i}}〉\\ -〈s-{z}_{{n}_{i}},\frac{{z}_{{n}_{i}}-{w}_{{n}_{i}}}{{\lambda }_{{n}_{i}}}〉\\ \ge & 〈s-{z}_{{n}_{i}},B{z}_{{n}_{i}}-B{w}_{{n}_{i}}〉-〈s-{z}_{{n}_{i}},\frac{{z}_{{n}_{i}}-{w}_{{n}_{i}}}{{\lambda }_{{n}_{i}}}〉.\end{array}$
It follows from (3.21) that ${z}_{{n}_{i}}⇀x$. On the other hand, we have that B is $\frac{1}{\beta }$-Lipschitz continuous. It follows from (3.20) that
$〈s-x,t〉\ge 0.$
Notice that M is maximal monotone and hence $0\in Mx$. This shows that $x\in VI\left(C,B\right)$. Notice that
$\parallel {x}_{n}-S{x}_{n}\parallel \le \parallel {x}_{n}-S{z}_{n}\parallel +\parallel S{z}_{n}-S{x}_{n}\parallel .$
We find from (3.3) and (3.21) that
$\underset{n\to \mathrm{\infty }}{lim}\parallel {x}_{n}-S{x}_{n}\parallel =0.$
(3.24)
Next, we prove that $x\in F\left(S\right)$. Since S is demiclosed at zero, we see that $x\in F\left(S\right)$. This proves that $x\in \mathcal{F}$. Notice that ${Proj}_{\mathcal{F}}{x}_{1}\subset {C}_{n+1}$ and ${x}_{n+1}={Proj}_{{C}_{n+1}}{x}_{1}$, we have
$\parallel {x}_{1}-{x}_{n+1}\parallel \le \parallel {x}_{1}-{Proj}_{\mathcal{F}}{x}_{1}\parallel .$
On the other hand, we have
$\begin{array}{rl}\parallel {x}_{1}-{Proj}_{\mathcal{F}}{x}_{1}\parallel & \le \parallel {x}_{1}-x\parallel \\ \le \underset{i\to \mathrm{\infty }}{lim inf}\parallel {x}_{1}-{x}_{{n}_{i}}\parallel \\ \le \underset{i\to \mathrm{\infty }}{lim sup}\parallel {x}_{1}-{x}_{{n}_{i}}\parallel \\ \le \parallel {x}_{1}-{Proj}_{\mathcal{F}}{x}_{1}\parallel .\end{array}$
We, therefore, obtain that
$\parallel {x}_{1}-x\parallel =\underset{i\to \mathrm{\infty }}{lim}\parallel {x}_{1}-{x}_{{n}_{i}}\parallel =\parallel {x}_{1}-{Proj}_{\mathcal{F}}{x}_{1}\parallel .$

This implies ${x}_{{n}_{i}}\to x={Proj}_{\mathcal{F}}{x}_{1}$. Since $\left\{{x}_{{n}_{i}}\right\}$ is an arbitrary subsequence of $\left\{{x}_{n}\right\}$, we obtain that ${x}_{n}\to {Proj}_{\mathcal{F}}{x}_{1}$ as $n\to \mathrm{\infty }$. This completes the proof. □

If S is an identity mapping, we obtain from Theorem 3.1 the following.

Corollary 3.2 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let ${F}_{m}$ be a bifunction from $C×C$ to which satisfies (A1)-(A4) and ${A}_{m}:C\to H$ be a ${\kappa }_{m}$-inverse-strongly monotone mapping for every $1\le m\le N$, where N denotes some positive integer. Let $B:C\to H$ be a β-inverse-strongly monotone mapping. Assume that $\mathcal{F}:={\bigcap }_{m=1}^{N}EP\left({F}_{m},{A}_{m}\right)\cap VI\left(C,B\right)\ne \mathrm{\varnothing }$. Let $\left\{{\lambda }_{n}\right\}$ be a positive sequence in $\left[0,2\beta \right]$ and $\left\{{r}_{n,m}\right\}$ be a positive sequence in $\left[0,2{\kappa }_{m}\right]$ for every $1\le m\le N$. Let $\left\{{\alpha }_{n}\right\},\left\{{\beta }_{n,1}\right\},\dots$ and $\left\{{\beta }_{n,N}\right\}$ be sequences in $\left[0,1\right]$. Let $\left\{{x}_{n}\right\}$ be a sequence generated in the following iterative process:
$\left\{\begin{array}{c}{x}_{1}\in C,\hfill \\ {C}_{1}=C,\hfill \\ {y}_{n}={\alpha }_{n}{x}_{n}+\left(1-{\alpha }_{n}\right){Proj}_{C}\left({\sum }_{m=1}^{N}{\beta }_{n,m}{u}_{n,m}-{\lambda }_{n}B{\sum }_{m=1}^{N}{\beta }_{n,m}{u}_{n,m}\right),\hfill \\ {C}_{n+1}=\left\{v\in {C}_{n}:\parallel {y}_{n}-v\parallel \le \parallel {x}_{n}-v\parallel \right\},\hfill \\ {x}_{n+1}={P}_{{C}_{n+1}}{x}_{1},\phantom{\rule{1em}{0ex}}n\ge 1,\hfill \end{array}$
where $\left\{{u}_{n,m}\right\}$ is such that
${F}_{m}\left({u}_{n,m},{u}_{m}\right)+〈{A}_{m}{x}_{n},{u}_{m}-{u}_{n,m}〉+\frac{1}{{r}_{n,m}}〈{u}_{m}-{u}_{n,m},{u}_{n,m}-{x}_{n}〉\ge 0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }{u}_{m}\in C$
for each $1\le m\le N$. Assume that the above sequence also satisfies the following restrictions:
1. (a)

${\alpha }_{n}\le a<1$;

2. (b)

${\sum }_{m=1}^{N}{\beta }_{n,m}=1$ and $0\le b\le {\beta }_{n,m}<1$ for each $1\le m\le N$;

3. (c)

$0 and $0 for each $1\le m\le N$,

where a, b, c, d, e and f are real numbers. Then the sequence $\left\{{x}_{n}\right\}$ strongly converges to ${Proj}_{\mathcal{F}}{x}_{1}$.

If $N=1$, we obtain from Theorem 3.1 the following.

Corollary 3.3 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let F be a bifunction from $C×C$ to which satisfies (A1)-(A4) and $A:C\to H$ be a κ-inverse-strongly monotone mapping. Let $S:C\to C$ be a continuous quasi-nonexpansive mapping which is assumed to be demiclosed at zero and let $B:C\to H$ be a β-inverse-strongly monotone mapping. Assume that $\mathcal{F}:=EP\left(F,A\right)\cap VI\left(C,B\right)\cap F\left(S\right)\ne \mathrm{\varnothing }$. Let $\left\{{\lambda }_{n}\right\}$ be a positive sequence in $\left[0,2\beta \right]$ and $\left\{{r}_{n}\right\}$ be a positive sequence in $\left[0,2\kappa \right]$. Let $\left\{{\alpha }_{n}\right\}$ be a sequence in $\left[0,1\right]$. Let $\left\{{x}_{n}\right\}$ be a sequence generated in the following iterative process:
$\left\{\begin{array}{c}{x}_{1}\in C,\hfill \\ {C}_{1}=C,\hfill \\ {y}_{n}={\alpha }_{n}{x}_{n}+\left(1-{\alpha }_{n}\right)S{Proj}_{C}\left({u}_{n}-{\lambda }_{n}B{u}_{n}\right),\hfill \\ {C}_{n+1}=\left\{v\in {C}_{n}:\parallel {y}_{n}-v\parallel \le \parallel {x}_{n}-v\parallel \right\},\hfill \\ {x}_{n+1}={P}_{{C}_{n+1}}{x}_{1},\phantom{\rule{1em}{0ex}}n\ge 1,\hfill \end{array}$
where $\left\{{u}_{n}\right\}$ is such that
$F\left({u}_{n},u\right)+〈A{x}_{n},u-{u}_{n}〉+\frac{1}{{r}_{n}}〈u-{u}_{n},{u}_{n}-{x}_{n}〉\ge 0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }{u}_{m}\in C.$
Assume that the above sequence also satisfies the following restrictions:
1. (a)

${\alpha }_{n}\le a<1$;

2. (b)

$0 and $0 for each $1\le m\le N$,

where a, b, c, d and e are real numbers. Then the sequence $\left\{{x}_{n}\right\}$ strongly converges to ${Proj}_{\mathcal{F}}{x}_{1}$.

If B is a zero operator, we obtain from Theorem 3.1 the following.

Corollary 3.4 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let ${F}_{m}$ be a bifunction from $C×C$ to which satisfies (A1)-(A4) and ${A}_{m}:C\to H$ be a ${\kappa }_{m}$-inverse-strongly monotone mapping for every $1\le m\le N$, where N denotes some positive integer. Let $S:C\to C$ be a continuous quasi-nonexpansive mapping which is assumed to be demiclosed at zero. Assume that $\mathcal{F}:={\bigcap }_{m=1}^{N}EP\left({F}_{m},{A}_{m}\right)\cap F\left(S\right)\ne \mathrm{\varnothing }$. Let $\left\{{r}_{n,m}\right\}$ be a positive sequence in $\left[0,2{\kappa }_{m}\right]$ for every $1\le m\le N$. Let $\left\{{\alpha }_{n}\right\},\left\{{\beta }_{n,1}\right\},\dots$ and $\left\{{\beta }_{n,N}\right\}$ be sequences in $\left[0,1\right]$. Let $\left\{{x}_{n}\right\}$ be a sequence generated in the following iterative process:
$\left\{\begin{array}{c}{x}_{1}\in C,\hfill \\ {C}_{1}=C,\hfill \\ {y}_{n}={\alpha }_{n}{x}_{n}+\left(1-{\alpha }_{n}\right)S{\sum }_{m=1}^{N}{\beta }_{n,m}{u}_{n,m},\hfill \\ {C}_{n+1}=\left\{v\in {C}_{n}:\parallel {y}_{n}-v\parallel \le \parallel {x}_{n}-v\parallel \right\},\hfill \\ {x}_{n+1}={P}_{{C}_{n+1}}{x}_{1},\phantom{\rule{1em}{0ex}}n\ge 1,\hfill \end{array}$
where $\left\{{u}_{n,m}\right\}$ is such that
${F}_{m}\left({u}_{n,m},{u}_{m}\right)+〈{A}_{m}{x}_{n},{u}_{m}-{u}_{n,m}〉+\frac{1}{{r}_{n,m}}〈{u}_{m}-{u}_{n,m},{u}_{n,m}-{x}_{n}〉\ge 0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }{u}_{m}\in C$
for each $1\le m\le N$. Assume that the above sequence also satisfies the following restrictions:
1. (a)

${\alpha }_{n}\le a<1$;

2. (b)

${\sum }_{m=1}^{N}{\beta }_{n,m}=1$ and $0\le b\le {\beta }_{n,m}<1$ for each $1\le m\le N$;

3. (c)

$0 for each $1\le m\le N$,

where a, b, c and d are real numbers. Then the sequence $\left\{{x}_{n}\right\}$ strongly converges to ${Proj}_{\mathcal{F}}{x}_{1}$.

Finally, we consider the following optimization problem: Find an ${x}^{\ast }$ such that
$\left\{\begin{array}{c}{\phi }_{1}\left({x}^{\ast }\right)={min}_{x\in C}{\phi }_{1}\left(x\right),\hfill \\ {\phi }_{2}\left({x}^{\ast }\right)={min}_{x\in C}{\phi }_{2}\left(x\right),\hfill \\ ⋮\hfill \\ {\phi }_{N}\left({x}^{\ast }\right)={min}_{x\in C}{\phi }_{N}\left(x\right),\hfill \end{array}$

where ${\phi }_{m}:C\to \mathbb{R}$ is a convex and lower semicontinuous function for each $1\le m\le N$, where $N\ge 1$ is some positive integer.

Theorem 3.5 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let ${\phi }_{m}$ be a proper convex and lower semicontinuous function for every $1\le m\le N$, where N denotes some positive integer. Assume that $\mathcal{F}:=OP\left(\phi \right)\cap VI\left(C,B\right)\cap F\left(S\right)\ne \mathrm{\varnothing }$, $OP\left(\phi \right)$ denotes the solution set of the above optimization problem. Let $\left\{{\alpha }_{n}\right\},\left\{{\beta }_{n,1}\right\},\dots$ and $\left\{{\beta }_{n,N}\right\}$ be sequences in $\left[0,1\right]$. Let $\left\{{x}_{n}\right\}$ be a sequence generated in the following iterative process:
$\left\{\begin{array}{c}{x}_{1}\in C,\hfill \\ {C}_{1}=C,\hfill \\ {y}_{n}={\alpha }_{n}{x}_{n}+\left(1-{\alpha }_{n}\right){\sum }_{m=1}^{N}{\beta }_{n,m}{u}_{n,m},\hfill \\ {C}_{n+1}=\left\{v\in {C}_{n}:\parallel {y}_{n}-v\parallel \le \parallel {x}_{n}-v\parallel \right\},\hfill \\ {x}_{n+1}={P}_{{C}_{n+1}}{x}_{1},\phantom{\rule{1em}{0ex}}n\ge 1,\hfill \end{array}$
where $\left\{{u}_{n,m}\right\}$ is such that
${\phi }_{m}\left({u}_{m}\right)-{\phi }_{m}\left({u}_{n,m}\right)+\frac{1}{{r}_{n,m}}〈{u}_{m}-{u}_{n,m},{u}_{n,m}-{x}_{n}〉\ge 0,\phantom{\rule{1em}{0ex}}\mathrm{\forall }{u}_{m}\in C$
for each $1\le m\le N$. Assume that the above sequence also satisfies the following restrictions:
1. (a)

${\alpha }_{n}\le a<1$;

2. (b)

${\sum }_{m=1}^{N}{\beta }_{n,m}=1$ and $0\le b\le {\beta }_{n,m}<1$ for each $1\le m\le N$;

3. (c)

$0 for each $1\le m\le N$,

where a, b, c and d are real numbers. Then the sequence $\left\{{x}_{n}\right\}$ strongly converges to ${Proj}_{\mathcal{F}}{x}_{1}$.

Proof Putting $S=I$, ${A}_{m}=B=0$ and ${F}_{m}\left(x,y\right)=\phi \left(y\right)-\phi \left(x\right)$, we find from Theorem 3.1 the desired conclusion immediately. □

## Declarations

### Acknowledgements

The author is grateful to the reviewers for useful suggestions which improved the contents of the article.

## Authors’ Affiliations

(1)
School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450011, China

## References

1. Lin LJ, Tu CI: The studies of systems of variational inclusions problems and variational disclusions problems with applications. Nonlinear Anal. 2008, 69: 1981–1998. 10.1016/j.na.2007.07.041
2. Cho SY, Kang SM: Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process. Appl. Math. Lett. 2011, 24: 224–228. 10.1016/j.aml.2010.09.008
3. Yang S, Li W: Iterative solutions of a system of equilibrium problems in Hilbert spaces. Adv. Fixed Point Theory 2011, 1: 15–26.Google Scholar
4. Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994, 63: 123–145.
5. Cho SY, Kang SM: Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math. Sci. 2012, 32: 1607–1618.
6. Qin X, Chang SS, Cho YJ: Iterative methods for generalized equilibrium problems and fixed point problems with applications. Nonlinear Anal. 2010, 11: 2963–2972. 10.1016/j.nonrwa.2009.10.017
7. Lv S, Wu C: Convergence of iterative algorithms for a generalized variational inequality and a nonexpansive mapping. Eng. Math. Lett. 2012, 1: 44–57.Google Scholar
8. Zegeye H, Shahzad N: Strong convergence theorem for a common point of solution of variational inequality and fixed point problem. Adv. Fixed Point Theory 2012, 2: 374–397.Google Scholar
9. Combettes PL, Hirstoaga SA: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 2005, 6: 117–136.
10. Luo H, Wang Y: Iterative approximation for the common solutions of a infinite variational inequality system for inverse-strongly accretive mappings. J. Math. Comput. Sci. 2012, 2: 1660–1670.
11. Qin X, Cho YJ, Kang SM: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 2009, 225: 20–30. 10.1016/j.cam.2008.06.011
12. Al-Bayati AY, Al-Kawaz RZ: A new hybrid WC-FR conjugate gradient-algorithm with modified secant condition for unconstrained optimization. J. Math. Comput. Sci. 2012, 2: 937–966.
13. Reddappa B, Reddy MVS, Prasad KR: Effect of variable viscosity on the peristaltic flow of a Newtonian fluid in asymmetric channel under the effect of a magnetic field. J. Math. Comput. Sci. 2012, 2: 1598–1611.
14. Qin X, Cho SY, Kang SM: On hybrid projection methods for asymptotically quasi- ϕ -nonexpansive mappings. Appl. Math. Comput. 2010, 215: 3874–3883. 10.1016/j.amc.2009.11.031
15. Khader MM, Mohamed ST: Numerical treatment for first order neutral delay differential equations using spline functions. Eng. Math. Lett. 2012, 1: 32–43.Google Scholar
16. Liu Z, Agarwal RP, Feng C, Kang SM: Weak and strong convergence theorems of common fixed points for a pair of nonexpansive and asymptotically nonexpansive mappings. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 2005, 44: 83–96.
17. Qin X, Cho YJ, Kang SM, Zhou H: Convergence of a modified Halpern-type iteration algorithm for quasi- ϕ -nonexpansive mappings. Appl. Math. Lett. 2009, 22: 1051–1055. 10.1016/j.aml.2009.01.015
18. Mann WR: Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4: 506–510. 10.1090/S0002-9939-1953-0054846-3
19. Genel A, Lindenstrass J: An example concerning fixed points. Isr. J. Math. 1975, 22: 81–86. 10.1007/BF02757276
20. Haugazeau, Y: Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes. Ph.D. Thesis, Université de Paris (1968)Google Scholar
21. Ye J, Huang J: Strong convergence theorems for fixed point problems and generalized equilibrium problems of three relatively quasi-nonexpansive mappings in Banach spaces. J. Math. Comput. Sci. 2011, 1: 1–18.
22. Qin X, Cho SY, Kang SM: Strong convergence of shrinking projection methods for quasi- ϕ -nonexpansive mappings and equilibrium problems. J. Comput. Appl. Math. 2010, 234: 750–760. 10.1016/j.cam.2010.01.015
23. Kim JK: Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi- ϕ -nonexpansive mappings. Fixed Point Theory Appl. 2011., 2011: Article ID 10Google Scholar
24. Kang SM, Cho SY, Liu Z: Convergence of iterative sequences for generalized equilibrium problems involving inverse-strongly monotone mappings. J. Inequal. Appl. 2010., 2010: Article ID 827082Google Scholar
25. Kim JK: Hybrid projection algorithms for generalized equilibrium problems and strictly pseudocontractive mappings. J. Inequal. Appl. 2010., 2010: Article ID 312602Google Scholar
26. Wu C, Liu A: Strong convergence of a hybrid projection iterative algorithm for common solutions of operator equations and of inclusion problems. Fixed Point Theory Appl. 2012., 2012: Article ID 90Google Scholar
27. Qin X, Cho SY, Kang SM: An extragradient-type method for generalized equilibrium problems involving strictly pseudocontractive mappings. J. Glob. Optim. 2011, 49: 679–693. 10.1007/s10898-010-9556-2
28. Lu J, Gu F: Projection methods of iterative solutions in Hilbert spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 162Google Scholar
29. Nilsrakoo W, Saejung S: Strong convergence theorems by Halpern-Mann iterations for relatively nonexpansive mappings in Banach spaces. Appl. Math. Comput. 2011, 217: 6577–6586. 10.1016/j.amc.2011.01.040
30. Nilsrakoo W, Saejung S: Weak and strong convergence theorems for countable Lipschitzian mappings and its applications. Nonlinear Anal. 2008, 69: 2695–2708. 10.1016/j.na.2007.08.044
31. Nilsrakoo W, Saejung S: Strong convergence theorems for a countable family of quasi-Lipschitzian mappings and its applications. J. Math. Anal. Appl. 2009, 356: 154–167. 10.1016/j.jmaa.2009.03.002
32. Qin X, Shang M, Su Y: Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems. Math. Comput. Model. 2008, 48: 1033–1046. 10.1016/j.mcm.2007.12.008
33. Takahashi S, Takahashi W: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 2007, 331: 506–515. 10.1016/j.jmaa.2006.08.036
34. Takahashi S, Takahashi W: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 2008, 69: 1025–1033. 10.1016/j.na.2008.02.042
35. Zhang M: Iterative algorithms for common elements in fixed point sets and zero point sets with applications. Fixed Point Theory Appl. 2012., 2012: Article ID 21Google Scholar
36. Qing Y, Kim JK: Weak convergence of algorithms for asymptotically strict pseudocontractions in the intermediate sense and equilibrium problems. Fixed Point Theory Appl. 2012., 2012: Article ID 132Google Scholar
37. Rockafellar RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 1970, 149: 75–88. 10.1090/S0002-9947-1970-0282272-5