Skip to main content

Coupled fixed point theorems for mixed g-monotone mappings in partially ordered metric spaces

Abstract

In this paper, we prove some coupled coincidence point results for mixed g-monotone mappings in partially ordered metric spaces. The main results of this paper are generalizations of the main results of Luong and Thuan (Nonlinear Anal. 74:983-992, 2011).

MSC:54H25, 47H10.

1 Introduction and preliminaries

Fixed point theory plays a major role in mathematics. The Banach contraction principle [1] is the simplest one corresponding to fixed point theory. So a large number of mathematicians have extended it and have been interested in fixed point theory in some metric spaces. One of these spaces is a partially ordered metric space, that is, metric spaces endowed with a partial ordering. The first result in this direction was given by Ran and Reurings [2] who presented their applications to a matrix equation. Subsequently, the existence of solutions for matrix equations or ordinary differential equations by applying fixed point theorems were presented in [27].

The existence of a fixed point for contraction type mappings in partially ordered metric spaces has been considered by Ran and Reurings [2], Bhaskar and Lakshmikantham [4], Nieto and Rodriquez-Lopez [6, 7], Lakshmikantham and Ćirić [8], Agarwal et al. [9] and Samet [10]. Bhaskar and Lakshmikantham [4] introduced the notion of coupled fixed point and proved some coupled fixed point theorems for mappings satisfying the mixed monotone property and discussed the existence and uniqueness of a solution for a periodic boundary value problem. Lakshmikantham and Ćirić [8] introduced the concept of a mixed g-monotone mapping and proved coupled coincidence and common fixed point theorems that extend theorems from [4]. Subsequently, many authors obtained several coupled coincidence and coupled fixed point theorems in some ordered metric spaces [1127].

Definition 1 ([4])

Let (X,) be a partially ordered set and F:X×XX. The mapping F is said to have the mixed monotone property if F(x,y) is monotone non-decreasing in x and is monotone non-decreasing in y, that is, for any x,yX,

x 1 , x 2 X, x 1 x 2 F( x 1 ,y)F( x 2 ,y)

and

y 1 , y 2 X, y 1 y 2 F(x, y 1 )F(x, y 2 ).

Definition 2 ([4])

An element (x,y)X×X is called a coupled fixed point of the mapping F:X×XX if F(x,y)=x, F(y,x)=y.

Definition 3 ([8])

An element (x,y)X×X is called a coupled coincidence point of mappings F:X×XX and g:XX if F(x,y)=gx, F(y,x)=gy.

Definition 4 ([8])

Let X be non-empty set and F:X×XX and g:XX. We say F and g are commutative if gF(x,y)=F(gx,gy) for all x,yX.

Definition 5 ([8])

Let (X,) be a partially ordered set and F:X×XX, g:XX be mappings. The mapping F is said to have the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in the second argument, that is, for any x,yX,

x 1 , x 2 X,g x 1 g x 2 F( x 1 ,y)F( x 2 ,y)

and

y 1 , y 2 X,g y 1 g y 2 F(x, y 1 )F(x, y 2 ).

Lemma 1 ([28])

Let X be a non-empty set and F:X×XX and g:XX be mappings. Then there exists a subset EX such that g(E)=g(X) and g:EX is one-to-one.

Theorem 1 ([4])

Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let F:X×XX be a continuous mapping having the mixed monotone property on X. Assume that there exists k[0,1) with

d ( F ( x , y ) , F ( u , v ) ) k 2 [ d ( x , u ) + d ( y , v ) ] for all xu and yv.

If there exist two elements x 0 , y 0 X with

x 0 F( x 0 , y 0 )and y 0 F( y 0 , x 0 ),

then there exist x,yX such that

x=F(x,y)andy=F(y,x).

Theorem 2 ([4])

Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Assume that X has the following property:

  1. (1)

    if a non-decreasing sequence { x n }x, then x n x for all nN,

  2. (2)

    if a non-increasing sequence { y n }y, then y y n for all nN.

Let F:X×XX be a mapping having the mixed monotone property on X. Assume that there exists k[0,1) with

d ( F ( x , y ) , F ( u , v ) ) k 2 [ d ( x , u ) + d ( y , v ) ] for all xu and yv.

If there exist two elements x 0 , y 0 X with

x 0 F( x 0 , y 0 )and y 0 F( y 0 , x 0 ),

then there exist x,yX such that

x=F(x,y)andy=F(y,x).

Theorem 3 ([29])

Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let F:X×XX be a mapping having the mixed monotone property on X and there exist two elements x 0 , y 0 X with x 0 F( x 0 , y 0 ) and y 0 F( y 0 , x 0 ). Suppose that F, g satisfy

φ ( d ( F ( x , y ) , F ( u , v ) ) ) 1 2 φ ( d ( x , u ) + d ( y , v ) ) ψ ( d ( x , u ) + d ( y , v ) 2 )

for all x,y,u,vX with xu and yv. Suppose that either

  1. (1)

    F is continuous or

  2. (2)

    X has the following property:

  3. (a)

    if a non-decreasing sequence { x n }x, then x n x for all nN,

  4. (b)

    if a non-increasing sequence { y n }y, then y y n for all nN.

Then there exist x,yX such that

x=F(x,y)andy=F(y,x),

that is, F has a coupled fixed point in X.

2 The main results

In this paper, we prove coupled coincidence and common fixed point theorems for mixed g-monotone mappings satisfying more general contractive conditions in partially ordered metric spaces. We also present results on existence and uniqueness of coupled common fixed points. Our results improve those of Luong and Thuan [29]. Our work generalizes, extends and unifies several well known comparable results in the literature.

Let Φ denote all functions φ:[0,)[0,) which satisfy

  1. (1)

    φ is continuous and non-decreasing,

  2. (2)

    φ(t)=0 and only if t=0,

  3. (3)

    φ(t+s)φ(t)+φ(s), t,s[0,)

and Ψ denote all functions ψ:[0,)[0,) which satisfy lim t r ψ(t)>0 for all r>0 and lim t 0 + ψ(t)=0.

Theorem 4 Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let F:X×XX be a mapping having the mixed monotone property on X and there exist two elements x 0 , y 0 X with x 0 F( x 0 , y 0 ) and y 0 F( y 0 , x 0 ). Suppose that F, g satisfy

φ ( d ( F ( x , y ) , F ( u , v ) ) ) 1 2 φ ( d ( g x , g u ) + d ( g y , g v ) ) ψ ( d ( g x , g u ) + d ( g y , g v ) 2 )
(2.1)

for all x,y,u,vX with gxgu and gygv, F(X×X)g(X), g(X) is complete and g is continuous.

Suppose that either

  1. (1)

    F is continuous or

  2. (2)

    X has the following property:

  3. (a)

    if a non-decreasing sequence { x n }x, then x n x for all nN,

  4. (b)

    if a non-increasing sequence { y n }y, then y y n for all nN.

Then there exist x,yX such that

gx=F(x,y)andgy=F(y,x),

that is, F and g have a coupled coincidence point in X×X.

Proof Using Lemma 1, there exists EX such that g(E)=g(X) and g:EX is one-to-one. We define a mapping A:g(E)×g(E)X by

A(gx,gy)=F(x,y),gx,gyg(E).
(2.2)

As g is one-to-one on g(E), so A is well defined. Thus, it follows from (2.1) and (2.2) that

φ ( A ( x , y ) , A ( u , v ) ) 1 2 φ ( d ( g x , g u ) + d ( g y , g v ) ) ψ ( d ( g x , g u ) + d ( g y , g v ) 2 )
(2.3)

for all gx,gy,gu,gvg(E) with gxgu and gygv. Since F has the mixed g-monotone property, for all x,yX, we have

x 1 , x 2 X,g x 1 g x 2 F( x 1 ,y)F( x 2 ,y)
(2.4)

and

y 1 , y 2 X,g y 1 g y 2 F(x, y 1 )F(x, y 2 ).
(2.5)

Thus, it follows from (2.2), (2.4) and (2.5) that, for all gx,gyg(E),

g x 1 ,g x 2 g(X),g x 1 g x 2 A(g x 1 ,gy)A(g x 2 ,gy)

and

g y 1 ,g y 2 g(X),g y 1 g y 2 A(gx,g y 1 )A(gx,g y 2 ),

which implies that A has the mixed monotone property.

Suppose that assumption (1) holds. Since F is continuous, A is also continuous. Using Theorem 3 with the mapping A, it follows that A has a coupled fixed point (u,v)g(E)×g(E).

Suppose that assumption (2) holds. We can conclude similarly in the proof of Theorem 3 that the mapping A has a coupled fixed point (u,v)g(X)×g(X).

Finally, we prove that F and g have a coupled fixed point in X. Since (u,v) is a coupled fixed point of A, we get

u=A(u,v),v=A(v,u).
(2.6)

Since (u,v)g(X)×g(X), there exists a point ( u , v )X×X such that

u=g u ,v=g v .
(2.7)

Thus, it follows from (2.6) and (2.7) that

g u =A ( g u , g v ) ,g v =A ( g v , g u ) .
(2.8)

Also, from (2.2) and (2.8), we get

g u =F ( u , v ) ,g v =F ( v , u ) .

Therefore, ( u , v ) is a coupled coincidence point of F and g. This completes the proof. □

Corollary 1 Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let F:X×XX be a mapping having the mixed monotone property on X and there exist two elements x 0 , y 0 X with x 0 F( x 0 , y 0 ) and y 0 F( y 0 , x 0 ). Suppose that F, g satisfy

φ ( d ( F ( x , y ) , F ( u , v ) ) ) k 2 d(gx,gu)+d(gy,gv)

for all x,y,u,vX with gxgu and gygv, F(X×X)g(X), g(X) is complete and g is continuous.

Suppose that either

  1. (1)

    F is continuous or

  2. (2)

    X has the following property:

  3. (a)

    if a non-decreasing sequence { x n }x, then x n x for all nN,

  4. (b)

    if a non-increasing sequence { y n }y, then y y n for all nN.

Then there exist x,yX such that

gx=F(x,y)andgy=F(y,x),

that is, F and g have a coupled coincidence point in X×X.

Proof In Theorem 4, taking φ(t)=t, we get Corollary 1. □

Corollary 2 Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let F:X×XX be a mapping having the mixed monotone property on X, and there exist two elements x 0 , y 0 X with x 0 F( x 0 , y 0 ) and y 0 F( y 0 , x 0 ). Suppose that F, g satisfy

d ( F ( x , y ) , F ( u , v ) ) 1 2 ( d ( g x , g u ) + d ( g y , g v ) ) ψ ( d ( g x , g u ) + d ( g y , g v ) 2 )

for all x,y,u,vX with gxgu and gygv, F(X×X)g(X), g(X) is complete and g is continuous.

Suppose that either

  1. (1)

    F is continuous or

  2. (2)

    X has the following property:

  3. (a)

    if a non-decreasing sequence { x n }x, then x n x for all nN,

  4. (b)

    if a non-increasing sequence { y n }y, then y y n for all nN.

Then there exist x,yX such that

gx=F(x,y)andgy=F(y,x),

that is, F and g have a coupled coincidence point in X×X.

Proof In Corollary 1, taking ψ(t)= 1 k 2 t, we get Corollary 2. □

Theorem 5 Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let (X,) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let F:X×XX be a mapping having the mixed monotone property on X and there exist two elements x 0 , y 0 X with x 0 F( x 0 , y 0 ) and y 0 F( y 0 , x 0 ). Suppose that F, g satisfy

φ ( d ( F ( x , y ) , F ( u , v ) ) ) 1 2 φ ( d ( g x , g u ) + d ( g y , g v ) ) ψ ( d ( g x , g u ) + d ( g y , g v ) 2 )

for all x,y,u,vX with gxgu and gygv, F(X×X)g(X), g(X) is complete and g is continuous.

Suppose that either

  1. (1)

    F is continuous or

  2. (2)

    X has the following property:

  3. (a)

    if a non-decreasing sequence { x n }x, then x n x for all nN,

  4. (b)

    if a non-increasing sequence { y n }y, then y y n for all nN.

Then there exist x,yX such that

gx=F(x,y),gy=F(y,x)

and

x=gx=F(x,y),y=gy=F(y,x),

that is, F and g have a coupled common fixed point (x,y)X×X.

Proof Following the proof of Theorem 4, F and g have a coupled coincidence point. We only have to show that x=gx and y=gy.

Now, x 0 and y 0 are two points in the statement of Theorem 4. Since F(X×X)g(X), we can choose x 1 , y 1 X such that g x 1 =F( x 0 , y 0 ) and g y 1 =F( y 0 , x 0 ). In the same way, we construct g x 2 =F( x 1 , y 1 ) and g y 2 =F( y 1 , x 1 ). Continuing in this way, we can construct two sequences { x n } and { y n } in X such that

g x n + 1 =F( x n , y n )andg y n + 1 =F( y n , x n ),n0.
(2.9)

Since gxg x n + 1 and gyg y n + 1 , from (2.1) and (2.9), we have

φ ( d ( g x n + 1 , g x ) ) = φ ( d ( F ( x n , y n ) , F ( x , y ) ) ) 1 2 φ ( d ( g x n , g x ) + d ( g y n , g y ) ) ψ ( d ( g x n , g x ) + d ( g y n , g y ) 2 ) .
(2.10)

Similarly, since g y n + 1 gy and g x n + 1 gx, from (2.1) and (2.9), we have

φ ( d ( g y , g y n + 1 ) ) = φ ( d ( F ( y , x ) , F ( y n , x n ) ) ) 1 2 φ ( d ( g y , g y n ) + d ( g x , g x n ) ) ψ ( d ( g y , g y n ) + d ( g x , g x n ) 2 ) .
(2.11)

From (2.10) and (2.11), we have

φ ( d ( g x n + 1 , g x ) ) + φ ( d ( g y , g y n + 1 ) ) φ ( d ( g x n , g x ) + d ( g y n , g y ) ) 2 ψ ( d ( g x n , g x ) + d ( g y n , g y ) 2 ) .
(2.12)

By property (3) of φ, we have

φ ( d ( g x n + 1 , g x ) + d ( g y , g y n + 1 ) ) φ ( d ( g x n + 1 , g x ) ) +φ ( d ( g y , g y n + 1 ) ) .
(2.13)

From (2.12) and (2.13), we have

φ ( d ( g x n + 1 , g x ) + d ( g y , g y n + 1 ) ) φ ( d ( g x n , g x ) + d ( g y n , g y ) ) 2ψ ( d ( g x n , g x ) + d ( g y n , g y ) 2 ) ,

which implies

φ ( d ( g x n + 1 , g x ) + d ( g y , g y n + 1 ) ) φ ( d ( g x n , g x ) + d ( g y n , g y ) ) .

Using the fact that φ is non-decreasing, we get

d(g x n + 1 ,gx)+d(gy,g y n + 1 )d(g x n ,gx)+d(g y n ,gy).
(2.14)

Set δ n =d(g x n + 1 ,gx)+d(g y n + 1 ,gy), then sequence { δ n } is decreasing. Therefore, there is some δ0 such that

lim n δ n = lim n [ d ( g x n + 1 , g x ) + d ( g y n + 1 , g y ) ] =δ.

We shall show that δ=0. Suppose, to the contrary, that δ>0. Then taking the limit as n (equivalently, δ n δ) of both sides of (2.13) and having in mind that we suppose that lim t r ψ(t)>0 for all r>0 and φ is continuous, we have

φ(δ)= lim n φ( δ n ) lim n [ φ ( δ n 1 ) 2 ψ ( δ n 1 2 ) ] =φ(δ)2 lim δ n 1 δ ψ ( δ n 1 2 ) <φ(δ),

a contradiction. Thus δ=0, that is,

lim n δ n = lim n [ d ( g x n + 1 , g x ) + d ( g y n + 1 , g y ) ] =0.
(2.15)

Hence d(g x n + 1 ,gx)=0 and d(g y n + 1 ,gy)=0, that is, x=gx and y=gy. □

Theorem 6 In addition to the hypotheses of Theorem  4, suppose that for every (x,y), (z,t) in X×X, there exists (u,v) in X×X that is comparable to (x,y) and (z,t), then F and g have a unique coupled fixed point.

Proof From Theorem 4, the set of coupled fixed points of F is non-empty. Suppose that (x,y) and (z,t) are coupled coincidence points of F, that is, gx=F(x,y), gy=F(y,x), gz=F(z,t) and gt=F(t,z). We will prove that

gx=gzandgy=gt.

By assumption, there exists (u,v) in X×X such that (F(u,v),F(v,u)) is comparable with (F(x,y),F(y,x)) and (F(z,t),F(t,z)). Put u 0 =u and v 0 =v and choose u 1 , v 1 X so that g u 1 =F( u 0 , v 0 ) and g v 1 =F( v 0 , u 0 ). Then, similarly as in the proof of Theorem 3, we can inductively define sequences {g u n }, {g v n } with

g u n + 1 =F( u n , v n )andg v n + 1 =F( v n , u n )for all n.

Further set x 0 =x, y 0 =y, z 0 =z and t 0 =t, in a similar way, define the sequences {g x n }, {g y n } and {g z n }, {g t n }. Then it is easy to show that

g x n F(x,y),g y n F(y,x)andg z n F(z,t),g t n F(t,z)

as n. Since

( F ( x , y ) , F ( y , x ) ) =(g x 1 ,g y 1 )=(gx,gy)and ( F ( u , v ) , F ( v , u ) ) =(g u 1 ,g v 1 )

are comparable, then gxg u 1 and gyg v 1 , or vice versa. It is easy to show that, similarly, (gx,gy) and (g u n ,g v n ) are comparable for all n1, that is, gxg u n and gyg v n , or vice versa. Thus from (2.1), we have

φ ( d ( g x , g u n + 1 ) ) = φ ( F ( x , y ) , F ( u n , v n ) ) 1 2 φ ( d ( g x , g u n ) + d ( g y , g v n ) ) ψ ( d ( g x , g u n ) + d ( g y , g v n ) 2 ) .
(2.16)

Similarly,

φ ( d ( g v n + 1 , g y ) ) = φ ( F ( v n , u n ) , F ( y , x ) ) 1 2 φ ( d ( g v n , g y ) + d ( g u n , g x ) ) ψ ( d ( g v n , g y ) + d ( g u n , g x ) 2 ) .
(2.17)

From (2.16), (2.17) and the property of φ, we have

φ ( d ( g x , g u n + 1 ) + d ( g v n + 1 , g y ) ) φ ( d ( g x , g u n + 1 ) ) + φ ( d ( g v n + 1 , g y ) ) φ ( d ( g x , g u n ) + d ( g y , g v n ) ) 2 ψ ( d ( g x , g u n ) + d ( g y , g v n ) 2 ) ,
(2.18)

which implies

φ ( d ( g x , g u n + 1 ) + d ( g v n + 1 , g y ) ) φ ( d ( g x , g u n ) + d ( g y , g v n ) ) .

Thus,

d(gx,g u n + 1 )+d(g v n + 1 ,gy)d(gx,g u n )+d(gy,g v n ).

That is, the sequence {d(gx,g u n )+d(gy,g v n )} is decreasing. Therefore, there exists α0 such that

lim n [ d ( g x , g u n ) + d ( g y , g v n ) ] =α.

We shall show that α=0. Suppose, to the contrary, that α>0. Taking the limit as n in (2.18), we have

φ(α)φ(α)2 lim n ψ ( d ( g x , g u n ) + d ( g y , g v n ) 2 ) <φ(α),

a contradiction. Thus, α=0, that is,

lim n [ d ( g x , g u n ) + d ( g y , g v n ) ] =0.

It implies

lim n d(gx,g u n )= lim n d(gy,g v n )=0.
(2.19)

Similarly, we show that

lim n d(gz,g u n )= lim n d(gt,g v n )=0.
(2.20)

From (2.19), (2.20) and by the uniqueness of the limit, it follows that we have gx=gz and gy=gt. Hence (gx,gy) is the unique coupled point of coincidence of F and g. □

Example 1 Let X=[0,+) endowed with the standard metric d(x,y)=|xy| for all x,yX. Then (X,d) is a complete metric space. Define the mapping F:X×XX by

F(x,y)= { y if  x y , x if  x < y .

Suppose that g:XX is such that gx= x 2 for all xX and φ(t):[0,+)[0,+) is such that φ(t)=t. Assume that ψ(t)= t 1 + t .

It is easy to show that for all x,y,u,vX with gxgu and gygv, we have

φ ( d ( F ( x , y ) , F ( u , v ) ) ) 1 2 φ ( d ( g x , g u ) + d ( g y , g v ) ) ψ ( d ( g x , g u ) + d ( g y , g v ) 2 ) .

Thus, it satisfies all the conditions of Theorem 4. So we deduce that F and g have a coupled coincidence point (x,y)X×X. Here, (0,0) is a coupled coincidence point of F and g.

References

  1. Banach S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3: 133–181.

    Google Scholar 

  2. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4

    MathSciNet  Article  Google Scholar 

  3. Altun I, Simsek H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl. 2010., 2010: Article ID 621469

    Google Scholar 

  4. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    MathSciNet  Article  Google Scholar 

  5. Harjani J, Sadarangani K: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal. TMA 2010, 72: 1188–1197. 10.1016/j.na.2009.08.003

    MathSciNet  Article  Google Scholar 

  6. Nieto JJ, Rodriquez-Lopez R: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equation. Order 2005, 22: 223–239. 10.1007/s11083-005-9018-5

    MathSciNet  Article  Google Scholar 

  7. Nieto JJ, Rodriquez-Lopez R: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. Engl. Ser. 2007, 23(12):2205–2212. 10.1007/s10114-005-0769-0

    MathSciNet  Article  Google Scholar 

  8. Lakshmikantham V, Ćirić LB: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2008. 10.1016/j.na.2008.09.020

    Google Scholar 

  9. Agarwal RP, El-Gebeily MA, O’Regan D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87: 1–8. 10.1080/00036810701714164

    MathSciNet  Article  Google Scholar 

  10. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. TMA 2010. 10.1016/j.na.2010.02.026

    Google Scholar 

  11. Aydi H, Karapınar E, Shatanawi W:Coupled fixed point results for (ψ-φ)-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 2011, 62: 4449–4460. 10.1016/j.camwa.2011.10.021

    MathSciNet  Article  Google Scholar 

  12. Choudhury BS, Kundu A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 2010, 73: 2524–2531. 10.1016/j.na.2010.06.025

    MathSciNet  Article  Google Scholar 

  13. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 2010, 72: 4508–4517. 10.1016/j.na.2010.02.026

    MathSciNet  Article  Google Scholar 

  14. Nashine HK, Kadelburg Z, Radenović S:Coupled common fixed point theorems for ω -compatible mappings in ordered cone metric spaces. Appl. Math. Comput. 2012, 218: 5422–5432. 10.1016/j.amc.2011.11.029

    MathSciNet  Article  Google Scholar 

  15. Radenović S, Kadelburg Z: Generalized weak contractions in partially ordered metric spaces. Comput. Math. Appl. 2010, 60: 1776–1783. 10.1016/j.camwa.2010.07.008

    MathSciNet  Article  Google Scholar 

  16. Abbas M, Sintunavarat W, Kumam P: Coupled fixed point of generalized contractive mappings on partially ordered G -metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 31

    Google Scholar 

  17. Sintunavarat W, Cho YJ, Kumam P: Coupled fixed point theorems for weak contraction mapping under F -invariant set. Abstr. Appl. Anal. 2012., 2012: Article ID 324874

    Google Scholar 

  18. Sintunavarat W, Kumam P: Coupled best proximity point theorem in metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 93

    Google Scholar 

  19. Sintunavarat, W, Kumam, P: Coupled coincidence and coupled common fixed point theorems in partially ordered metric spaces. Thai J. Math. (2012, in press)

  20. Sintunavarat W, Cho YJ, Kumam P: Coupled fixed point theorems for contraction mapping induced by cone ball-metric in partially ordered spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 128

    Google Scholar 

  21. Sintunavarat W, Petrusel A, Kumam P: Common coupled fixed point theorems for w -compatible mappings without mixed monotone property. Rend. Circ. Mat. Palermo 2012, 61: 361–383. 10.1007/s12215-012-0096-0

    MathSciNet  Article  Google Scholar 

  22. Sintunavarat W, Kumam P, Cho YJ: Coupled fixed point theorems for nonlinear contractions without mixed monotone property. Fixed Point Theory Appl. 2012., 2012: Article ID 170

    Google Scholar 

  23. Karapınar E, Kumam P, Sintunavarat W: Coupled fixed point theorems in cone metric spaces with a c -distance and applications. Fixed Point Theory Appl. 2012., 2012: Article ID 194

    Google Scholar 

  24. Sintunavarat W, Radenović S, Golubović Z, Kumam P: Coupled fixed point theorems for F -invariant set. Appl. Math. Inform. Sci. 2013, 7(1):247–255. 10.12785/amis/070131

    Article  Google Scholar 

  25. Sintunavarat W, Cho YJ, Kumam P: Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 81

    Google Scholar 

  26. Berinde V: Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 7347–7355. 10.1016/j.na.2011.07.053

    MathSciNet  Article  Google Scholar 

  27. Nashine HK, Shatanawi W: Coupled common fixed point theorems for pair of commuting mappings in partially ordered complete metric spaces. Comput. Math. Appl. 2011, 62: 1984–1993. 10.1016/j.camwa.2011.06.042

    MathSciNet  Article  Google Scholar 

  28. Haghi RH, Rezapour S, Shahzad N: Some fixed point generalizations are not real generalizations. Nonlinear Anal. 2011, 74: 1799–1803. 10.1016/j.na.2010.10.052

    MathSciNet  Article  Google Scholar 

  29. Luong NV, Thuan NX: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 2011, 74: 983–992. 10.1016/j.na.2010.09.055

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzeyyen Sangurlu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally and significantly in writing this paper. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Turkoglu, D., Sangurlu, M. Coupled fixed point theorems for mixed g-monotone mappings in partially ordered metric spaces. Fixed Point Theory Appl 2013, 348 (2013). https://doi.org/10.1186/1687-1812-2013-348

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-348

Keywords

  • coupled fixed point
  • mappings having a mixed monotone property
  • partially ordered metric space