Skip to main content

Some fixed point results in ordered G p -metric spaces

Abstract

In this paper, first we present some coincidence point results for six mappings satisfying the generalized (ψ,φ)-weakly contractive condition in the framework of partially ordered G p -metric spaces. Secondly, we consider α-admissible mappings in the setup of G p -metric spaces. An example is also provided to support our results.

MSC:47H10, 54H25.

1 Introduction and mathematical preliminaries

Recently, Zand and Nezhad [1] have introduced a new generalized metric space, a G p -metric space, as a generalization of both partial metric spaces [2] and G-metric spaces [3].

We will use the following definition of a G p -metric space.

Definition 1.1 [4]

Let X be a nonempty set. Suppose that a mapping G p :X×X×X R + satisfies:

( G p 1) x=y=z if G p (x,y,z)= G p (z,z,z)= G p (y,y,y)= G p (x,x,x);

( G p 2) G p (x,x,x) G p (x,x,y) G p (x,y,z) for all x,y,zX with zy;

( G p 3) G p (x,y,z)= G p (p{x,y,z}), where p is any permutation of x, y, z (symmetry in all three variables);

( G p 4) G p (x,y,z) G p (x,a,a)+ G p (a,y,z) G p (a,a,a) for all x,y,z,aX (rectangle inequality).

Then G p is called a G p -metric and (X, G p ) is called a G p -metric space.

The G p -metric G p is called symmetric if

G p (x,x,y)= G p (x,y,y)
(1)

holds for all x,yX. Otherwise, G p is an asymmetric G p -metric.

Remark 1 In [1] (see also [5]), instead of ( G p 2), the following condition was used:

( G p 2 ) G p (x,x,x) G p (x,x,y) G p (x,y,z) for all x,y,zX.

However, with this assumption, it is very easy to obtain that (1) holds for all x,yX, i.e., the respective space is symmetric. On the other hand, there are a lot of examples of non-symmetric G-metric spaces. Hence, the conclusion stated in [1, 5] that each G-metric space is a G p -metric space (satisfying ( G p 2 )) does not hold. With our assumption ( G p 2), this conclusion holds true.

The following are some easy examples of G p -metric spaces.

Example 1.1 Let X=[0,+), and let G p : X 3 R + be given by G p (x,y,z)=max{x,y,z}. Obviously, (X, G p ) is a symmetric G p -metric space which is not a G-metric space.

Example 1.2 Let X={0,1,2,3,}. Define G p : X 3 X by

G p (x,y,z)={ x + y + z + 1 , x y z , x + z + 1 , y = z x , y + z + 1 , x = z y , x + z + 1 , x = y z , 1 , x = y = z .

It is easy to see that (X, G p ) is a symmetric G p -metric space.

Example 1.3 [4]

Let X={0,1,2,3}. Let

A = { ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) , ( 2 , 0 , 0 ) , ( 0 , 2 , 0 ) , ( 0 , 0 , 2 ) , ( 3 , 0 , 0 ) , ( 0 , 3 , 0 ) , ( 0 , 0 , 3 ) , ( 1 , 2 , 2 ) , ( 2 , 1 , 2 ) , ( 2 , 2 , 1 ) , ( 2 , 3 , 3 ) , ( 3 , 2 , 3 ) , ( 3 , 3 , 2 ) } , B = { ( 0 , 1 , 1 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) , ( 0 , 2 , 2 ) , ( 2 , 0 , 2 ) , ( 2 , 2 , 0 ) , ( 0 , 3 , 3 ) , ( 3 , 0 , 3 ) , ( 3 , 3 , 0 ) , ( 2 , 1 , 1 ) , ( 1 , 2 , 1 ) , ( 1 , 1 , 2 ) , ( 3 , 2 , 2 ) , ( 2 , 3 , 2 ) , ( 2 , 2 , 3 ) } .

Define G p : X 3 R + by

G(x,y,z)={ 1 if  x = y = z 2 , 0 if  x = y = z = 2 , 2 if  ( x , y , z ) A , 5 2 if  ( x , y , z ) B , 3 if  x y z .

It is easy to see that (X, G p ) is an asymmetric G p -metric space.

Proposition 1.1 [1]

Every G p -metric space (X, G p ) defines a metric space (X, d G p ) where

d G p (x,y)= G p (x,y,y)+ G p (y,x,x) G p (x,x,x) G p (y,y,y)

for all x,yX.

Proposition 1.2 [1]

Let X be a G p -metric space. Then, for each x,y,z,aX, it follows that:

  1. (1)

    G p (x,y,z) G p (x,a,a)+ G p (y,a,a)+ G p (z,a,a)2 G p (a,a,a);

  2. (2)

    G p (x,y,z) G p (x,x,y)+ G p (x,x,z) G p (x,x,x);

  3. (3)

    G p (x,y,y)2 G p (x,x,y) G p (x,x,x);

  4. (4)

    G p (x,y,z) G p (x,a,z)+ G p (a,y,z) G p (a,a,a), az.

Definition 1.2 [1]

Let (X, G p ) be a G p -metric space. Let { x n } be a sequence of points of X.

  1. 1.

    A point xX is said to be a limit of the sequence { x n }, denoted by x n x, if lim n , m G p (x, x n , x m )= G p (x,x,x).

  2. 2.

    { x n } is said to be a G p -Cauchy sequence if lim n , m G p ( x n , x m , x m ) exists (and is finite).

  3. 3.

    (X, G p ) is said to be G p -complete if every G p -Cauchy sequence in X is G p -convergent to xX.

Using the above definitions, one can easily prove the following proposition.

Proposition 1.3 [1]

Let (X, G p ) be a G p -metric space. Then, for any sequence { x n } in X and a point xX, the following are equivalent:

  1. (1)

    { x n } is G p -convergent to x.

  2. (2)

    G p ( x n , x n ,x) G p (x,x,x) as n.

  3. (3)

    G p ( x n ,x,x) G p (x,x,x) as n.

Lemma 1.1 [4]

If G p is a G p -metric on X, then the mappings d G p , d G p :X×X R + , given by

d G p (x,y)= G p (x,y,y)+ G p (y,x,x) G p (x,x,x) G p (y,y,y)

and

d G p (x,y)=max { G p ( x , y , y ) G p ( x , x , x ) , G p ( y , x , x ) G p ( y , y , y ) } ,

define equivalent metrics on X.

Proof a + b 2 max{a,b}a+b for all nonnegative real numbers a, b. □

Based on Lemma 2.2 of [6], Parvaneh et al. have proved the following essential lemma.

Lemma 1.2 [4]

  1. (1)

    A sequence { x n } is a G p -Cauchy sequence in a G p -metric space (X, G p ) if and only if it is a Cauchy sequence in the metric space (X, d G p ).

  2. (2)

    A G p -metric space (X, G p ) is G p -complete if and only if the metric space (X, d G p ) is complete. Moreover, lim n d G p (x, x n )=0 if and only if

    lim n G p ( x , x n , x n ) = lim n G p ( x n , x , x ) = lim n , m G p ( x n , x n , x m ) = lim n , m G p ( x n , x m , x m ) = G p ( x , x , x ) .

Lemma 1.3 [4]

Assume that x n x as n in a G p -metric space (X, G p ) such that G p (x,x,x)=0. Then, for every yX,

  1. (i)

    lim n G p ( x n ,y,y)= G p (x,y,y),

  2. (ii)

    lim n G p ( x n , x n ,y)= G p (x,x,y).

Lemma 1.4 [4]

Assume that { x n }, { y n } and { z n } are three sequences in a G p -metric space X such that

lim n G p ( x n , x , x ) = lim n G p ( x n , x n , x n ) = G p ( x , x , x ) , lim n G p ( y n , y , y ) = lim n G p ( y n , y n , y n ) = G p ( y , y , y )

and

lim n G p ( z n ,z,z)= lim n G p ( z n , z n , z n )= G p (z,z,z).

Then

  1. (i)

    lim n G p ( x n , y n , z n )= G p (x,y,z) and

  2. (ii)

    lim n G p ( x n , x n ,y)= G p (x,x,y)

for every y,zX.

Lemma 1.5 [5]

Let (X, G p ) be a G p -metric space. Then

  1. (A)

    If G p (x,y,z)=0, then x=y=z.

  2. (B)

    If xy, then G p (x,y,y)>0.

Definition 1.3 [1]

Let ( X 1 , G 1 ) and ( X 2 , G 2 ) be two G p -metric spaces, and let f:( X 1 , G 1 )( X 2 , G 2 ) be a mapping. Then f is said to be G p -continuous at a point a X 1 if for a given ε>0, there exists δ>0 such that x,y X 1 and G 1 (a,x,y)<δ+ G 1 (a,a,a) imply that G 2 (f(a),f(x),f(y))<ε+ G 2 (f(a),f(a),f(a)). The mapping f is G p -continuous on X 1 if it is G p -continuous at all a X 1 .

Proposition 1.4 [1]

Let ( X 1 , G 1 ) and ( X 2 , G 2 ) be two G p -metric spaces. Then a mapping f: X 1 X 2 is G p -continuous at a point x X 1 if and only if it is G p -sequentially continuous at x; that is, whenever { x n } is G p -convergent to x, {f( x n )} is G p -convergent to f(x).

The concept of an altering distance function was introduced by Khan et al. [7] as follows.

Definition 1.4 The function ψ:[0,)[0,) is called an altering distance function if the following properties are satisfied:

  1. 1.

    ψ is continuous and nondecreasing.

  2. 2.

    ψ(t)=0 if and only if t=0.

A self-mapping f on X is called a weak contraction if the following contractive condition is satisfied:

d(fx,fy)d(x,y)φ ( d ( x , y ) ) ,

for all x,yX, where φ is an altering distance function.

The concept of a weakly contractive mapping was introduced by Alber and Guerre-Delabrere [8] in the setup of Hilbert spaces. Rhoades [9] considered this class of mappings in the setup of metric spaces and proved that a weakly contractive mapping defined on a complete metric space has a unique fixed point.

Zhang and Song [10] introduced the concept of a generalized φ-weakly contractive mapping as follows.

Definition 1.5 Self-mappings f and g on a metric space X are called generalized φ-weak contractions if there exists a lower semicontinuous function φ:[0,)[0,) with φ(0)=0 and φ(t)>0 for all t>0 such that for all x,yX,

d(fx,gy)N(x,y)φ ( N ( x , y ) ) ,

where

N(x,y)=max { d ( x , y ) , d ( x , f x ) , d ( y , g y ) , 1 2 [ d ( x , g y ) + d ( y , f x ) ] } .

Based on the above definition, they proved the following common fixed point result.

Theorem 1.1 [10]

Let (X,d) be a complete metric space. If f,g:XX are generalized φ-weakly contractive mappings, then there exists a unique point uX such that u=fu=gu.

So far, many authors extended Theorem 1.1 (see [1113] and [14]). Moreover, Ðorić [12] generalized it by the definition of generalized (ψ,φ)-weak contractions.

Definition 1.6 Two mappings f,g:XX are called generalized (ψ,φ)-weakly contractive if there exist two maps ψ,φ:[0,)[0,) such that

ψ ( d ( f x , g y ) ) ψ ( N ( x , y ) ) φ ( N ( x , y ) ) ,

for all x,yX, where N and φ are as in Definition 1.5 and ψ:[0,)[0,) is an altering distance function.

Theorem 1.2 [12]

Let (X,d) be a complete metric space, and let f,g:XX be generalized (ψ,φ)-weakly contractive self-mappings. Then there exists a unique point uX such that u=fu=gu.

Recently, many researchers have focused on different contractive conditions in various metric spaces endowed with a partial order and studied fixed point theory in the so-called bi-structured spaces. For more details on fixed point results, their applications, comparison of different contractive conditions and related results in ordered various metric spaces, we refer the reader to [1529] and the references mentioned therein.

Let X be a nonempty set and f:XX be a given mapping. For every xX, let f 1 (x)={uX:fu=x}.

Definition 1.7 [24]

Let (X,) be a partially ordered set, and let f,g,h:XX be given mappings such that fXhX and gXhX. We say that f and g are weakly increasing with respect to h if for all xX, we have

fxgyfor all y h 1 (fx)

and

gxfyfor all y h 1 (gx).

If f=g, we say that f is weakly increasing with respect to h.

If h=I (the identity mapping on X), then the above definition reduces to that of a weakly increasing mapping [30] (see also [24, 31]).

Definition 1.8 A partially ordered G p -metric space (X,, G p ) is said to have the sequential limit comparison property if for every nondecreasing sequence (nonincreasing sequence) { x n } in X, x n x implies that x n x (x x n ).

The aim of this paper is to prove some coincidence and common fixed point theorems for weakly (ψ,φ)-contractive mappings in partially ordered G p -metric spaces.

2 Main results

Let (X,, G p ) be an ordered G p -metric space and f,g,h,R,S,T:XX be six self-mappings. Throughout this paper, unless otherwise stated, for all x,y,zX, let

M ( x , y , z ) = max { G p ( T x , R y , S z ) , G p ( T x , f x , f x ) , G p ( R y , g y , g y ) , G p ( S z , h z , h z ) , G p ( T x , T x , f x ) + G p ( R y , R y , g y ) + G p ( S z , S z , h z ) 3 } .

Theorem 2.1 Let (X,, G p ) be a partially ordered G p -metric space with the sequential limit comparison property. Let f,g,h,R,S,T:XX be six mappings such that f(X)R(X), g(X)S(X) and h(X)T(X), and RX, SX and TX are G p -complete subsets of X. Suppose that for comparable elements Tx,Ry,SzX, we have

ψ ( 2 G p ( f x , g y , h z ) ) ψ ( M ( x , y , z ) ) φ ( M ( x , y , z ) ) ,
(2)

where ψ,φ:[0,)[0,) are altering distance functions. Then the pairs (f,T), (g,R) and (h,S) have a coincidence point z in X provided that the pairs (f,T), (g,R) and (h,S) are weakly compatible and the pairs (f,g), (g,h) and (h,f) are partially weakly increasing with respect to R, S and T, respectively. Moreover, if R z , S z and T z are comparable, then z X is a coincidence point of f, g, h, R, S and T.

Proof Let x 0 be an arbitrary point of X. Choose x 1 X such that f x 0 =R x 1 , x 2 X such that g x 1 =S x 2 and x 3 X such that h x 2 =T x 3 . This can be done as f(X)R(X), g(X)S(X) and h(X)T(X).

Continuing this way, construct a sequence { z n } defined by z 3 n + 1 =R x 3 n + 1 =f x 3 n , z 3 n + 2 =S x 3 n + 2 =g x 3 n + 1 and z 3 n + 3 =T x 3 n + 3 =h x 3 n + 2 for all n0. The sequence { z n } in X is said to be a Jungck-type iterative sequence with initial guess x 0 .

As x 1 R 1 (f x 0 ), x 2 S 1 (g x 1 ) and x 3 T 1 (h x 2 ) and the pairs (f,g), (g,h) and (h,f) are partially weakly increasing with respect to R, S and T, respectively, we have

R x 1 =f x 0 g x 1 =S x 2 h x 2 =T x 3 f x 3 =R x 4 .

Continuing this process, we obtain R x 3 n + 1 S x 3 n + 2 T x 3 n + 3 for all n0.

We will complete the proof in three steps.

Step I. We will prove that { z n } is a G p -Cauchy sequence. First, we show that lim k G p ( z k , z k + 1 , z k + 2 )=0.

Define G p k = G p ( z k , z k + 1 , z k + 2 ). Suppose G p k 0 =0 for some k 0 . Then z k 0 = z k 0 + 1 = z k 0 + 2 . In the case that k 0 =3n, then z 3 n = z 3 n + 1 = z 3 n + 2 gives z 3 n + 1 = z 3 n + 2 = z 3 n + 3 . Indeed,

ψ ( 2 G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) = ψ ( 2 G p ( f x 3 n , g x 3 n + 1 , h x 3 n + 2 ) ) ψ ( M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) ) φ ( M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) ) ,

where

M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) = max { G p ( T x 3 n , R x 3 n + 1 , S x 3 n + 2 ) , G p ( T x 3 n , f x 3 n , f x 3 n ) , G p ( R x 3 n + 1 , g x 3 n + 1 , g x 3 n + 1 ) , G p ( S x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G p ( T x 3 n , T x 3 n , f x 3 n ) + G p ( R x 3 n + 1 , R x 3 n + 1 , g x 3 n + 1 ) + G p ( S x 3 n + 2 , S x 3 n + 2 , h x 3 n + 2 ) 3 } = max { G p ( z 3 n , z 3 n + 1 , z 3 n + 2 ) , G p ( z 3 n , z 3 n + 1 , z 3 n + 1 ) , G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 2 ) , G p ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ) , G p ( z 3 n , z 3 n , z 3 n + 1 ) + G p ( z 3 n + 1 , z 3 n + 1 , z 3 n + 2 ) + G p ( z 3 n + 2 , z 3 n + 2 , z 3 n + 3 ) 3 } = max { 0 , 0 , 0 , G p ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ) , 0 + 0 + G p ( z 3 n + 2 , z 3 n + 2 , z 3 n + 3 ) 3 } = G p ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ) 2 G p ( z 3 n + 2 , z 3 n + 2 , z 3 n + 3 ) = 2 G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) .

Thus

ψ ( 2 G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) ψ ( 2 G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) φ ( G p ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ) )

implies that φ( G p ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ))=0, that is, z 3 n + 1 = z 3 n + 2 = z 3 n + 3 . Similarly, if k 0 =3n+1, then z 3 n + 1 = z 3 n + 2 = z 3 n + 3 gives z 3 n + 2 = z 3 n + 3 = z 3 n + 4 . Also, if k 0 =3n+2, then z 3 n + 2 = z 3 n + 3 = z 3 n + 4 implies that z 3 n + 3 = z 3 n + 4 = z 3 n + 5 . Consequently, the sequence { z k } becomes constant for k k 0 , hence { z k } is G p -Cauchy.

Suppose that

z k z k + 1 z k + 2
(3)

for each k. We now claim that the following inequality holds:

G p ( z k + 1 , z k + 2 , z k + 3 ) G p ( z k , z k + 1 , z k + 2 )=M( x k , x k + 1 , x k + 2 )
(4)

for each k=1,2,3, .

Let k=3n and for n0, G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 )> G p ( z 3 n , z 3 n + 1 , z 3 n + 2 )>0. Then, as T x 3 n R x 3 n + 1 S x 3 n + 2 , using (2) we obtain that

ψ ( G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) ψ ( 2 G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) = ψ ( 2 G p ( f x 3 n , g x 3 n + 1 , h x 3 n + 2 ) ) ψ ( M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) ) φ ( M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) ) ,
(5)

where

M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) = max { G p ( T x 3 n , R x 3 n + 1 , S x 3 n + 2 ) , G p ( T x 3 n , f x 3 n , f x 3 n ) , G p ( R x 3 n + 1 , g x 3 n + 1 , g x 3 n + 1 ) , G p ( S x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G p ( T x 3 n , T x 3 n , f x 3 n ) + G p ( R x 3 n + 1 , R x 3 n + 1 , g x 3 n + 1 ) + G p ( S x 3 n + 2 , S x 3 n + 2 , h x 3 n + 2 ) 3 } = max { G p ( z 3 n , z 3 n + 1 , z 3 n + 2 ) , G p ( z 3 n , z 3 n + 1 , z 3 n + 1 ) , G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 2 ) , G p ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ) , G p ( z 3 n , z 3 n , z 3 n + 1 ) + G p ( z 3 n + 1 , z 3 n + 1 , z 3 n + 2 ) + G p ( z 3 n + 2 , z 3 n + 2 , z 3 n + 3 ) 3 } max { G p ( z 3 n , z 3 n + 1 , z 3 n + 2 ) , G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) , 2 G p ( z 3 n , z 3 n + 1 , z 3 n + 2 ) + G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) 3 } = G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) .

Hence (5) implies that

ψ ( G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) ψ ( G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) φ ( M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) ) ,

which is possible only if M( x 3 n , x 3 n + 1 , x 3 n + 2 )=0, that is, G p ( z 3 n , z 3 n + 1 , z 3 n + 2 )=0. A contradiction to (3). Hence, G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) G p ( z 3 n , z 3 n + 1 , z 3 n + 2 ) and

M( x 3 n , x 3 n + 1 , x 3 n + 2 )= G p ( z 3 n , z 3 n + 1 , z 3 n + 2 ).

Therefore, (4) is proved for k=3n.

Similarly, it can be shown that

G p ( z 3 n + 2 , z 3 n + 3 , z 3 n + 4 ) G p ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 )=M( x 3 n + 1 , x 3 n + 2 , x 3 n + 3 )
(6)

and

G p ( z 3 n + 3 , z 3 n + 4 , z 3 n + 5 ) G p ( z 3 n + 2 , z 3 n + 3 , z 3 n + 4 )=M( x 3 n + 2 , x 3 n + 3 , x 3 n + 4 ).
(7)

Hence, { G p ( z k , z k + 1 , z k + 2 )} is a nonincreasing sequence of nonnegative real numbers. Therefore, there is r0 such that

lim k G p ( z k , z k + 1 , z k + 2 )=r.
(8)

Since

G p ( z k + 1 , z k + 2 , z k + 3 )M( x k , x k + 1 , x k + 2 ) G p ( z k , z k + 1 , z k + 2 ),
(9)

taking the limit as k in (9), we obtain

lim k M( x k , x k + 1 , x k + 2 )=r.
(10)

Taking the limit as n in (5), using (8), (10) and the continuity of ψ and φ, we have ψ(r)ψ(r)φ(r). Therefore, φ(r)=0. Hence

lim k G p ( z k , z k + 1 , z k + 2 )=0
(11)

from our assumptions about φ. Also, from Definition 1.1, part ( G p 2), we have

lim k G p ( z k , z k + 1 , z k + 1 )=0,
(12)

and since G p (x,y,y)2 G p (x,x,y) for all x,yX, we have

lim k G p ( z k , z k , z k + 1 )=0.
(13)

Step II. We now show that { z n } is a G p -Cauchy sequence in X. Therefore, we will show that

lim m , n G p ( z m , z n , z n )=0.

Because of (11), (12) and (13), it is sufficient to show that

lim m , n G p ( z 3 m , z 3 n , z 3 n )=0,

i.e., we prove that { z 3 n } is G p -Cauchy.

Suppose the opposite. Then there exists ε>0 for which we can find subsequences { z 3 m ( k ) } and { z 3 n ( k ) } of { z 3 n } such that n(k)>m(k)k and

G p ( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) )ε,
(14)

and n(k) is the smallest number such that the above statement holds; i.e.,

G p ( z 3 m ( k ) , z 3 n ( k ) 3 , z 3 n ( k ) 3 )<ε.
(15)

From the rectangle inequality and (15), we have

G p ( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) ) G p ( z 3 m ( k ) , z 3 n ( k ) 3 , z 3 n ( k ) 3 ) + G p ( z 3 n ( k ) 3 , z 3 n ( k ) , z 3 n ( k ) ) < ε + G p ( z 3 n ( k ) 3 , z 3 n ( k ) , z 3 n ( k ) ) < ε + G p ( z 3 n ( k ) 3 , z 3 n ( k ) 2 , z 3 n ( k ) 2 ) + G p ( z 3 n ( k ) 2 , z 3 n ( k ) 1 , z 3 n ( k ) 1 ) + G p ( z 3 n ( k ) 1 , z 3 n ( k ) , z 3 n ( k ) ) .
(16)

Taking limit as k in (16), from (12) and (14) we obtain that

lim k G p ( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) )=ε.
(17)

Using the rectangle inequality and ( G p 2), we have

G p ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G p ( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) ) + G p ( z 3 n ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G p ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 1 ) + G p ( z 3 n ( k ) + 1 , z 3 n ( k ) , z 3 n ( k ) ) + G p ( z 3 n ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G p ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) + G p ( z 3 n ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 2 ) + G p ( z 3 n ( k ) + 1 , z 3 n ( k ) , z 3 n ( k ) ) + G p ( z 3 n ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) .
(18)

Taking limit as k, we have

lim k G p ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 )ε lim k G p ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ).

Finally,

G p ( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) G p ( z 3 m ( k ) + 1 , z 3 m ( k ) , z 3 m ( k ) ) + G p ( z 3 m ( k ) , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) G p ( z 3 m ( k ) + 1 , z 3 m ( k ) , z 3 m ( k ) ) + G p ( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) ) + G p ( z 3 n ( k ) , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) .
(19)

Taking limit as k and using (17), we have

lim k G p ( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 )ε.

Consider,

G p ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G p ( z 3 m ( k ) , z 3 m ( k ) + 1 , z 3 m ( k ) + 1 ) + G p ( z 3 m ( k ) + 1 , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G p ( z 3 m ( k ) , z 3 m ( k ) + 1 , z 3 m ( k ) + 1 ) + G p ( z 3 m ( k ) + 1 , z 3 n ( k ) + 3 , z 3 n ( k ) + 3 ) + G p ( z 3 n ( k ) + 3 , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G p ( z 3 m ( k ) , z 3 m ( k ) + 1 , z 3 m ( k ) + 1 ) + G p ( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) + G p ( z 3 n ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) .
(20)

Taking limit as k and using (11), (12) and (13), we have

ε lim k G p ( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ).

Therefore,

lim k G p ( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 )=ε.
(21)

As T x m ( k ) R x n ( k ) + 1 S x n ( k ) + 2 , so from (2) we have

ψ ( G p ( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) ) = ψ ( G p ( f x 3 m ( k ) , g x 3 n ( k ) + 1 , h x 3 n ( k ) + 2 ) ) ψ ( M ( x 3 m ( k ) , x 3 n ( k ) + 1 , x 3 n ( k ) + 2 ) ) φ ( M ( x 3 m ( k ) , x 3 n ( k ) + 1 , x 3 n ( k ) + 2 ) ) ,
(22)

where

M ( x 3 m ( k ) , x 3 n ( k ) + 1 , x 3 n ( k ) + 2 ) = max { G p ( T x 3 m ( k ) , R x 3 n ( k ) + 1 , S x 3 n ( k ) + 2 ) , G p ( T x 3 m ( k ) , f x 3 m ( k ) , f x 3 m ( k ) ) , G p ( R x 3 n ( k ) + 1 , g x 3 n ( k ) + 1 , g x 3 n ( k ) + 1 ) , G p ( S x 3 n ( k ) + 2 , h x 3 n ( k ) + 2 , h x 3 n ( k ) + 2 ) , G p ( T x 3 m ( k ) , T x 3 m ( k ) , f x 3 m ( k ) ) + G p ( R x 3 n ( k ) + 1 , R x 3 n ( k ) + 1 , g x 3 n ( k ) + 1 ) + G p ( S x 3 n ( k ) + 2 , S x 3 n ( k ) + 2 , h x 3 n ( k ) + 2 ) 3 } = max { G p ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) , G p ( z 3 m ( k ) , z 3 m ( k ) + 1 , z 3 m ( k ) + 1 ) , G p ( z 3 n ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 2 ) , G p ( z 3 n ( k ) + 2 , z 3 n ( k ) + 3 , z 3 n ( k ) + 3 ) , G p ( z 3 m ( k ) , z 3 m ( k ) , z 3 m ( k ) + 1 ) + G p ( z 3 n ( k ) + 1 , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) + G p ( z 3 n ( k ) + 2 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) 3 } .

Taking limit as k and using (12), (13), (17), (21) in (22), we have

ψ(ε)ψ(ε)φ(ε)<ψ(ε),

a contradiction. Hence, { z n } is a G p -Cauchy sequence.

Step III. We will show that f, g, h, R, S and T have a coincidence point.

Since { z n } is a G p -Cauchy sequence in the complete G p -metric space X, from Lemma 1.2, { z n } is a Cauchy sequence in the metric space (X, d G p ). Completeness of (X, G p ) yields that (X, d G p ) is also complete. Then there exists z X such that

lim n d G p ( z n , z ) =0.
(23)

Now, since lim m , n G p ( z m , z n , z n )=0, (23) and part (2) of Lemma 1.2 yield that G p ( z , z , z )=0.

Since R(X) is G p -complete and { z 3 n + 1 }R(X), there exists uX such that z =Ru and

lim n G p ( z 3 n + 1 , z 3 n + 1 , R u ) = lim n G p ( R x 3 n + 1 , R x 3 n + 1 , R u ) = lim n G p ( f x 3 n , f x 3 n , R u ) = G ( R u , R u , R u ) = 0 .
(24)

By similar arguments, there exist v,wX such that z =Sv=Tw and

lim n G p ( z 3 n + 2 , z 3 n + 2 , z ) = lim n G p ( S x 3 n + 2 , S x 3 n + 2 , z ) = lim n G p ( g x 3 n + 1 , g x 3 n + 1 , z ) = G ( z , z , z ) = 0
(25)

and

lim n G p ( z 3 n + 3 , z 3 n + 3 , z ) = lim n G p ( T x 3 n + 3 , T x 3 n + 3 , z ) = lim n G p ( h x 3 n + 2 , h x 3 n + 2 , z ) = G ( z , z , z ) = 0 .
(26)

Now, we prove that w is a coincidence point of f and T.

Since S x 3 n + 2 z =Tw=Ru as n, so S x 3 n + 2 Tw=Ru. Therefore, from (2), we have

ψ ( G p ( f w , g u , h x 3 n + 2 ) ) ψ ( M ( w , u , x 3 n + 2 ) ) φ ( M ( w , u , x 3 n + 2 ) ) ,
(27)

where

M ( w , u , x 3 n + 2 ) = max { G p ( T w , R u , S x 3 n + 2 ) , G ( T w , f w , f w ) , G p ( R u , g u , g u ) , G ( S x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G p ( T w , T w , f w ) + G ( R u , R u , g u ) + G p ( S x 3 n + 2 , S x 3 n + 2 , h x 3 n + 2 ) 3 } .

Taking limit as n in (27), as G( z , z , z )=0, from Lemma 1.3, we obtain that

ψ ( G p ( f w , g u , z ) ) ψ ( G p ( f w , g u , z ) ) φ ( max { G p ( z , f w , f w ) , G p ( z , g u , g u ) , G p ( z , z , f w ) + G p ( z , z , g u ) 3 } ) ,

which implies that gu=fw= z =Tw=Ru.

As f and T are weakly compatible, we have f z =fTw=Tfw=T z . Thus z is a coincidence point of f and T.

Similarly it can be shown that z is a coincidence point of the pairs (g,R) and (h,S).

Now, let R z , S z and T z be comparable. By (2) we have

ψ ( G p ( f z , g z , h z ) ) ψ ( M ( z , z , z ) ) φ ( M ( z , z , z ) ) ,
(28)

where

M ( z , z , z ) = max { G p ( T z , R z , S z ) , G p ( T z , f z , f z ) , G p ( R z , g z , g z ) , G p ( S z , h z , h z ) , G p ( T z , T z , f z ) + G p ( R z , R z , g z ) + G p ( S z , S z , h z ) 3 } = G p ( T z , R z , S z ) = G p ( f z , g z , h z ) .

Hence (28) gives

ψ ( G p ( f z , g z , h z ) ) ψ ( G p ( f z , g z , h z ) ) φ ( G p ( f z , g z , h z ) ) =0.

Therefore f z =g z =h z =T z =R z =S z . □

Theorem 2.2 Let (X,, G p ) be a partially ordered complete G p -metric space. Let f,g,h:XX be three mappings. Suppose that for every three comparable elements x,y,zX, we have

ψ ( 2 G p ( f x , g y , h z ) ) ψ ( M ( x , y , z ) ) φ ( M ( x , y , z ) ) ,
(29)

where

M ( x , y , z ) = max { G p ( x , y , z ) , G p ( x , f x , f x ) , G p ( y , g y , g y ) , G p ( z , h z , h z ) , G p ( x , x , f x ) + G p ( y , y , g y ) + G p ( z , z , h z ) 3 }

and ψ,φ:[0,)[0,) are altering distance functions. Let f, g, h be continuous and the pairs (f,g), (g,h) and (h,f) be partially weakly increasing. Then f, g and h have a common fixed point z in X.

Proof Let x 0 be an arbitrary point and x 3 n + 1 =f x 3 n , x 3 n + 2 =g x 3 n + 1 and x 3 n + 3 =h x 3 n + 2 for all n0.

Following the proof of the previous theorem, we can show that there exists z X such that

G p ( z , z , z ) =0
(30)

and

lim n G p ( x 3 n , x 3 n , z ) =0.
(31)

Continuity of f yields that

lim n G p ( f x 3 n , f x 3 n , f z ) = G p ( f z , f z , f z ) .
(32)

By the rectangle inequality, we have

G p ( f z , z , z ) G p ( f z , f x 3 n , f x 3 n ) + G p ( x 3 n + 1 , z , z )
(33)

and

G p ( f z , f z , z ) G p ( z , f x 3 n , f x 3 n ) + G p ( f x 3 n , f z , f z ) .
(34)

Taking limit as n in (33) and (34), from (30) we obtain

G p ( f z , z , z ) G p ( f z , f z , f z )

and

G p ( f z , f z , z ) G p ( f z , f z , f z ) .

Similar inequalities are obtained for g and h.

On the other hand, as z z z , using (29) we obtain that

ψ ( G p ( f z , g z , h z ) ) ψ ( 2 G p ( f z , g z , h z ) ) ψ ( M ( z , z , z ) ) φ ( M ( z , z , z ) ) ,
(35)

where

M ( z , z , z ) = max { G p ( z , z , z ) , G p ( z , f z , f z ) , G p ( z , g z , g z ) , G p ( z , h z , h z ) , G p ( z , z , f z ) + G p ( z , z , g z ) + G p ( z , z , h z ) 3 } max { G p ( f z , f z , f z ) , G p ( g z , g z , g z ) , G p ( h z , h z , h z ) } .
(36)

We consider three cases as follows:

  1. 1.

    f z =g z =h z .

  2. 2.

    f z g z h z .

  3. 3.

    a. f z =g z h z , or b. f z g z =h z .

For case 1, by (36), M( z , z , z ) G p (f z ,g z ,h z ).

For case 2, by ( G p 2), M( z , z , z ) G p (f z ,g z ,h z ).

Now, from (35),

ψ ( G p ( f z , g z , h z ) ) ψ ( G p ( f z , g z , h z ) ) φ ( M ( z , z , z ) ) ,
(37)

hence M( z , z , z )=0. Therefore, z =f z =g z =h z .

On the other hand, for case 3, part a, by ( G p 2), M( z , z , z )2 G p (f z ,g z ,h z ) and hence from (35), we have

ψ ( 2 G p ( f z , g z , h z ) ) ψ ( 2 G p ( f z , g z , h z ) ) φ ( M ( z , z , z ) ) ,
(38)

hence M( z , z , z )=0. Therefore, z =f z =g z =h z .

Now, let x and y as two fixed points of f, g and h be comparable. So, from (29) we have

ψ ( 2 G p ( x , x , y ) ) = ψ ( 2 G p ( f x , g x , h y ) ) ψ ( M ( x , x , y ) ) φ ( M ( x , x , y ) ) ,
(39)

where

M ( x , x , y ) = max { G p ( x , x , y ) , G p ( x , f x , f x ) , G p ( x , g x , g x ) , G p ( y , h y , h y ) , G p ( x , x , f x ) + G p ( x , x , g x ) + G p ( y , y , h y ) 3 } 2 G p ( x , x , y ) .

Hence (39) gives

ψ ( 2 G p ( x , x , y ) ) ψ ( 2 G p ( x , x , y ) ) φ ( M ( x , x , y ) ) .

Therefore, φ(M( x , x , y ))=0 and hence x = y . □

The following corollaries are special cases of the above results.

Corollary 2.1 Let (X,, G p ) be a partially ordered complete G p -metric space. Let f:XX be a mapping such that for every three comparable elements x,y,zX, we have

ψ ( 2 G p ( f x , f y , f z ) ) ψ ( M ( x , y , z ) ) φ ( M ( x , y , z ) ) ,
(40)

where

M ( x , y , z ) = max { G p ( x , y , z ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) , G p ( z , f z , f z ) , G p ( x , x , f x ) + G p ( y , y , f y ) + G p ( z , z , f z ) 3 }

and ψ,φ:[0,)[0,) are altering distance functions. Then f has a fixed point in X provided that fxf(fx) for all xX and either

  1. a.

    f is continuous, or

  2. b.

    X has the sequential limit comparison property.

Moreover, f has a unique fixed point provided that the fixed points of f are comparable.

Taking y=z in Corollary 2.1, we obtain the following common fixed point result.

Corollary 2.2 Let (X,, G p ) be a partially ordered complete G p -metric space, and let f be a self-mapping on X such that for every comparable elements x,yX,

ψ ( 2 G p ( f x , f y , f y ) ) ψ ( M ( x , y , y ) ) φ ( M ( x , y , y ) ) ,
(41)

where

M(x,y,y)=max { G p ( x , y , y ) , G ( x , f x , f x ) , G p ( y , f y , f y ) , G p ( x , x , f x ) + 2 G p ( y , y , f y ) 3 } ,

and ψ,φ:[0,)[0,) are altering distance functions. Then f has a fixed point in X provided that fxf(fx) for all xX and either

  1. a.

    f is continuous, or

  2. b.

    X has the sequential limit comparison property.

3 Fixed point results via an α-admissible mapping with respect to η in G p -metric spaces

Samet et al. [32] defined the notion of α-admissible mappings and proved the following result.

Definition 3.1 Let T be a self-mapping on X and α:X×X[0,+) be a function. We say that T is an α-admissible mapping if

x,yX,α(x,y)1α(Tx,Ty)1.

Denote with Ψ the family of all nondecreasing functions ψ:[0,+)[0,+) such that n = 1 ψ n (t)<+ for all t>0, where ψ n is the n th iterate of ψ.

Theorem 3.1 Let (X,d) be a complete metric space and T be an α-admissible mapping. Assume that

α(x,y)d(Tx,Ty)ψ ( d ( x , y ) ) ,
(42)

where ψΨ. Also suppose that the following assertions hold:

  1. (i)

    there exists x 0 X such that α( x 0 ,T x 0 )1;

  2. (ii)

    either T is continuous or for any sequence { x n } in X with α( x n , x n + 1 )1 for all nN{0} and x n x as n+, we have α( x n ,x)1 for all nN{0}.

Then T has a fixed point.

For more details on α-admissible mappings, we refer the reader to [3337].

Very recently, Salimi et al. [38] modified and generalized the notions of α-ψ-contractive mappings and α-admissible mappings as follows.

Definition 3.2 [38]

Let T be a self-mapping on X and α,η:X×X[0,+) be two functions. We say that T is an α-admissible mapping with respect to η if

x,yX,α(x,y)η(x,y)α(Tx,Ty)η(Tx,Ty).

Note that if we take η(x,y)=1, then this definition reduces to Definition 3.1. Also, if we take α(x,y)=1, then we say that T is an η-subadmissible mapping.

The following result properly contains Theorem 3.1 and Theorems 2.3 and 2.4 of [37].

Theorem 3.2 [38]

Let (X,d) be a complete metric space and T be an α-admissible mapping with respect to η. Assume that

x,yX,α(x,y)η(x,y)d(Tx,Ty)ψ ( M ( x , y ) ) ,
(43)

where ψΨ and

M(x,y)=max { d ( x , y ) , d ( x , T x ) + d ( y , T y ) 2 , d ( x , T y ) + d ( y , T x ) 2 } .

Also, suppose that the following assertions hold:

  1. (i)

    there exists x 0 X such that α( x 0 ,T x 0 )η( x 0 ,T x 0 );

  2. (ii)

    either T is continuous or for any sequence { x n } in X with α( x n , x n + 1 )η( x n , x n + 1 ) for all nN{0} and x n x as n+, we have α( x n ,x)η( x n ,x) for all nN{0}.

Then T has a fixed point.

In fact, the Banach contraction principle and Theorem 3.2 hold for the following example, but Theorem 3.1 does not hold.

Example 3.1 [38]

Let X=[0,) be endowed with the usual metric d(x,y)=|xy| for all x,yX, and let T:XX be defined by Tx= 1 4 x. Also, define α: X 2 [0,) by α(x,y)=3 and ψ:[0,)[0,) by ψ(t)= 1 2 t.

Theorem 3.3 Let (X, G p ) be a G p -complete G p -metric space, f be a continuous α-admissible mapping with respect to η on X, there exists x 0 X such that α( x 0 ,f x 0 )η( x 0 ,f x 0 ) and if any sequence { x n } in X converges to a point x, then we have α(x,x)η(x,x). Assume that

α ( x , y ) η ( x , y ) G p ( f x , f y , f y ) r max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(44)

for all x,yX, where 0r<1. Then f has a fixed point.

Proof Let x 0 X and define a sequence { x n } by x n = f n x 0 for all nN. Since f is an α-admissible mapping with respect to η and α( x 0 , x 1 )=α( x 0 ,f x 0 )η( x 0 ,f x 0 )=η( x 0 , x 1 ), we deduce that α( x 1 , x 2 )=α(f x 0 ,f x 1 )η(f x 0 ,f x 1 )=η( x 1 , x 2 ). Continuing this process, we get α( x n , x n + 1 )η( x n , x n + 1 ) for all nN{0}. Now, from (44) we have

G p ( f f n x 0 , f 2 f n x 0 , f 2 f n x 0 ) r max { G p ( f n x 0 , f f n x 0 , f f n x 0 ) , G p ( f f n x 0 , f 2 f n x 0 , f 2 f n x 0 ) } ,

which implies

G p ( f n + 1 x 0 , f n + 2 x 0 , f n + 2 x 0 ) r G p ( f n x 0 , f n + 1 x 0 , f n + 1 x 0 ) .
(45)

Continuing the above process, we can obtain

G p ( f n x 0 , f n + 1 x 0 , f n + 1 x 0 ) r G p ( f n 1 x 0 , f n x 0 , f n x 0 ) r n G p ( x 0 ,f x 0 ,f x 0 ).
(46)

Then, for any m>n, by (46) we get

G p ( f n x 0 , f m x 0 , f m x 0 ) G p ( f n x 0 , f n + 1 x 0 , f n + 1 x 0 ) + G p ( f n + 1 x 0 , f m x 0 , f m x 0 ) G p ( f n x 0 , f n + 1 x 0 , f n + 1 x 0 ) + G p ( f n + 1 x 0 , f n + 2 x 0 , f n + 2 x 0 ) + G p ( f n + 2 x 0 , f m x 0 , f m x 0 ) G ( f n x 0 , f n + 1 x 0 , f n + 1 x 0 ) + G p ( f n + 1 x 0 , f n + 2 x 0 , f n + 2 x 0 ) + G p ( f n + 2 x 0 , f n + 3 x 0 , f n + 3 x 0 ) + + G p ( f m 1 x 0 , f m x 0 , f m x 0 ) r n 1 r G p ( x 0 , f x 0 , f x 0 ) .

This implies that lim m , n + G p ( f n x 0 , f m x 0 , f m x 0 )=0, that is, { x n } is a G p -Cauchy sequence.

Since { x n } is a G p -Cauchy sequence in the complete G p -metric space X, from Lemma 1.2, { x n } is a Cauchy sequence in the metric space (X, d G p ). Completeness of (X, G p ) yields that (X, d G p ) is also complete. Then there exists zX such that

lim n d G p ( x n ,z)=0.
(47)

Since lim m , n + G p ( x n , x m , x m )=0, from Lemma 1.2 we get

lim n + G p ( x n ,z,z)= lim n + G p ( x n , x n ,z)= G p (z,z,z)=0.
(48)

From the continuity of f, we have

lim n + G p ( x n + 1 ,fz,fz)= G p (fz,fz,fz),

and hence we get

G p (z,fz,fz) lim n + G(z, x n + 1 , x n + 1 )+ lim n + G( x n + 1 ,fz,fz)= G p (fz,fz,fz).

So, we get that G p (z,fz,fz) G p (fz,fz,fz). Since the opposite inequality always holds, we get that

G p (z,fz,fz)= G p (fz,fz,fz).

As α(z,z)η(z,z) we have

G p (z,fz,fz)= G p (fz,fz,fz)rmax { G p ( z , z , z ) , G p ( z , f z , f z ) , G p ( z , f z , f z ) } ,
(49)

where 0r<1. Hence, G p (z,fz,fz)r G p (z,fz,fz). Thus, G p (z,fz,fz)=0, that is, z=fz. □

If in Theorem 3.3 we take η(x,y)=1, then we deduce the following corollary.

Corollary 3.1 Let (X, G p ) be a G p -complete G p -metric space, f be a continuous α-admissible mapping on X, and there exists x 0 X such that α( x 0 ,f x 0 )1. Assume that

α(x,y)1 G p (fx,fy,fy)rmax { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }

for all x,yX, where 0r<1, and if any sequence { x n } in X converges to a point x, then we have α(x,x)1. Then f has a fixed point.

If in Theorem 3.3 we take α(x,y)=1, then we deduce the following corollary.

Corollary 3.2 Let (X, G p ) be a G p -complete G p -metric space, f be a continuous η-subadmissible mapping on X, and there exists x 0 X such that η( x 0 ,f x 0 )1. Assume that

η(x,y)1 G p (fx,fy,fy)rmax { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(50)

for all x,yX, where 0r<1, and if any sequence { x n } in X converges to a point x, then we have 1η(x,x). Then f has a fixed point.

In the following theorem, we omit the continuity of the mapping f.

Theorem 3.4 Let (X, G p ) be a G p -complete G p -metric space and f be an α-admissible mapping with respect to η on X such that

α ( x , y ) η ( x , y ) G p ( f x , f y , f y ) r max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(51)

for all x,yX, where 0r<1. Assume that the following conditions hold:

  1. (i)

    there exists x 0 X such that α( x 0 ,f x 0 )η( x 0 ,f x 0 );

  2. (ii)

    if { x n } is a sequence in X such that α( x n , x n + 1 )η( x n , x n + 1 ) for all n and x n x as n+, then α( x n ,x)η( x n ,x) for all nN{0}.

Then f has a fixed point.

Proof Let x 0 X be such that α( x 0 ,f x 0 )η( x 0 ,f x 0 ) and define a sequence { x n } in X by x n = f n x 0 =f x n 1 for all nN. Following the proof of Theorem 3.1, we have α( x n , x n + 1 )η( x n , x n + 1 ) for all nN{0} and there exists xX such that x n x as n+. Hence, from (ii) we deduce that α( x n ,x)η( x n ,x) for all nN{0}.

Hence, by (51), it follows that for all n,

G p ( x n + 1 ,fx,fx)rmax { G p ( x n , x , x ) , G p ( x n , x n + 1 , x n + 1 ) , G p ( x , f x , f x ) } .

Taking the limit as n+ in the above inequality, from Lemma 1.3 we obtain (1r)G(x,fx,fx)0, which implies that x=fx. □

Corollary 3.3 Let (X, G p ) be a G p -complete G p -metric space and f be an α-admissible mapping on X such that

α(x,y)1 G p (fx,fy,fy)rmax { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(52)

for all x,yX, where 0r<1. Assume that the following conditions hold:

  1. (i)

    there exists x 0 X such that α( x 0 ,f x 0 )1;

  2. (ii)

    if { x n } is a sequence in X such that α( x n , x n + 1 )1 for all n and x n x as n+, then α( x n ,x)1 for all nN{0}.

Then f has a fixed point.

Example 3.2 Let X=[0,+) and G p (x,y,z)=max{x,y,z} be a G p -metric on X. Define f:XX by

fx={ x 24 if  x [ 0 , 1 ] { 2 } = U , 37 / 12 if  x = 3 , ( 1 + x ) x if  x [ 0 , + ) ( [ 0 , 1 ] { 2 , 3 } ) = V ,

and α:X×X[0,+) by

α(x,y)={ 1 if  x , y [ 0 , 1 ] , 1 / 8 if  x = 2  and  y = 3 , 0 otherwise .

Now, we prove that all the hypotheses of Corollary 3.3 are satisfied and hence f has a fixed point.

Let x,yX, if α(x,y)1, then x,y[0,1]. On the other hand, for all x[0,1], we have fx1 and hence α(fx,fy)1. This implies that f is an α-admissible mapping on X. Obviously, α(0,f0)1.

Now, if { x n } is a sequence in X such that α( x n , x n + 1 )1 for all nN{0} and x n x as n+, then { x n }[0,1] and hence x[0,1]. This implies that α( x n ,x)1 for all nN{0}.

If α(x,y)1, then x,y[0,1]. Hence,

G p ( f x , f y , f y ) = max { f x , f y } = max { x 24 , y 24 } 1 12 max { x , y } 1 12 max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) } .

Thus, all the conditions of Corollary 3.3 are satisfied and therefore f has a fixed point (x=0).

Corollary 3.4 Let (X, G p ) be a G p -complete G p -metric space and f be an η-subadmissible mapping on X such that

η(x,y)1 G p (fx,fy,fy)rmax { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }

for all x,yX, where 0r<1. Assume that the following conditions hold:

  1. (i)

    there exists x 0 X such that η( x 0 ,f x 0 )1;

  2. (ii)

    if { x n } is a sequence in X such that η( x n , x n + 1 )1 for all n and x n x as n+, then η( x n ,x)1 for all nN{0}.

Then f has a fixed point.

4 Consequences

Theorem 4.1 Let (X, G p ) be a G p -complete G p -metric space, f be a continuous α-admissible mapping on X, and there exists x 0 X such that α( x 0 ,f x 0 )1. Assume that

α(x,y) G p (fx,fy,fy)rmax { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(53)

for all x,yX, where 0r<1 and if any sequence { x n } in X converges to a point x, then we have α(x,x)η(x,x). Then f has a fixed point.

Proof Assume that α(x,y)1, then from (53) we get

G p (fx,fy,fy)rmax { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) } .

That is,

α(x,y)1 G p (fx,fy,fy)rmax { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) } .

Hence all the conditions of Corollary 3.1 hold and f has a fixed point. □

Similarly, we can deduce the following results.

Theorem 4.2 Let (X, G p ) be a G p -complete G p -metric space, f be a continuous α-admissible mapping on X, and there exists x 0 X such that α( x 0 ,f x 0 )1. Assume that

( G p ( f x , f y , f y ) + ) α ( x , y ) rmax { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) } +

for all x,yX, where 0r<1 and 1, and if any sequence { x n } in X converges to a point x, then we have α(x,x)1. Then f has a fixed point.

Theorem 4.3 Let (X, G p ) be a G p -complete G p -metric space, f be a continuous α-admissible mapping on X, and there exists x 0 X such that α( x 0 ,f x 0 )1. Assume that

( α ( x , y ) + ) G p ( f x , f y , f y ) ( 1 + ) r max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(54)

for all x,yX, where 0r<1 and >0, and if any sequence { x n } in X converges to a point x, then we have α(x,x)1. Then f has a fixed point.

Theorem 4.4 Let (X, G p ) be a G p -complete G p -metric space, f be a continuous η-subadmissible mapping on X, and there exists x 0 X such that η( x 0 ,f x 0 )1. Assume that

G p (fx,fy,fy)rη(x,y)max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(55)

for all x,yX, where 0r<1, and if any sequence { x n } in X converges to a point x, then we have 1η(x,x). Then f has a fixed point.

Theorem 4.5 Let (X, G p ) be a G p -complete G p -metric space, f be a continuous η-subadmissible mapping on X, and there exists x 0 X such that η( x 0 ,f x 0 )1. Assume that

G p (fx,fy,fy)+ ( r max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) } + ) η ( x , y )

for all x,yX, where 0r<1 and 1, and if any sequence { x n } in X converges to a point x, then we have 1η(x,x). Then f has a fixed point.

Theorem 4.6 Let (X, G p ) be a G p -complete G p -metric space, f be a continuous η-subadmissible mapping on X, and there exists x 0 X such that η( x 0 ,f x 0 )1. Assume that

( 1 + ) G p ( f x , f y , f y ) ( η ( x , y ) + ) r max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(56)

for all x,yX, where 0r<1 and >0, and if any sequence { x n } in X converges to a point x, then we have 1η(x,x). Then f has a fixed point.

Theorem 4.7 Let (X, G p ) be a G p -complete G p -metric space, f be an α-admissible mapping on X, and there exists x 0 X such that α( x 0 ,f x 0 )1. Assume that

α(x,y) G p (fx,fy,fy)rmax { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }

for all x,yX, where 0r<1. If { x n } is a sequence in X such that α( x n , x n + 1 )1 for all n and x n x as n+, then α( x n ,x)1 for all nN{0}, then f has a fixed point.

Theorem 4.8 Let (X, G p ) be a G p -complete G p -metric space, f be an α-admissible mapping on X, and there exists x 0 X such that α( x 0 ,f x 0 )1. Assume that

( G p ( f x , f y , f y ) + ) α ( x , y ) rmax { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) } +

for all x,yX, where 0r<1 and 1. If { x n } is a sequence in X such that α( x n , x n + 1 )1 for all n and x n x as n+, then α( x n ,x)1 for all nN{0}, then f has a fixed point.

Theorem 4.9 Let (X, G p ) be a G p -complete G p -metric space, f be an α-admissible mapping on X, and there exists x 0 X such that α( x 0 ,f x 0 )1. Assume that

( α ( x , y ) + ) G p ( f x , f y , f y ) ( 1 + ) r max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(57)

for all x,yX, where 0r<1 and >0. If { x n } is a sequence in X such that α( x n , x n + 1 )1 for all n and x n x as n+, then α( x n ,x)1 for all nN{0}, then f has a fixed point.

Theorem 4.10 Let (X, G p ) be a G p -complete G p -metric space, f be an η-subadmissible mapping on X, and there exists x 0 X such that η( x 0 ,f x 0 )1. Assume that

G p (fx,fy,fy)rη(x,y)max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(58)

for all x,yX, where 0r<1. If { x n } is a sequence in X such that η( x n , x n + 1 )1 for all n and x n x as n+, we have η( x n ,x)1 for all nN{0}, then f has a fixed point.

Theorem 4.11 Let (X, G p ) be a G p -complete G p -metric space, f be an η-subadmissible mapping on X and there exists x 0 X such that η( x 0 ,f x 0 )1. Assume that

G p (fx,fy,fy)+ ( r max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) } + ) η ( x , y )

for all x,yX, where 0r<1 and 1. If { x n } is a sequence in X such that η( x n , x n + 1 )1 for all n and x n x as n+, we have η( x n ,x)1 for all nN{0}, then f has a fixed point.

Theorem 4.12 Let (X, G p ) be a G p -complete G p -metric space, f be an η-subadmissible mapping on X, and there exists x 0 X such that η( x 0 ,f x 0 )1. Assume that

( 1 + ) G p ( f x , f y , f y ) ( η ( x , y ) + ) r max { G p ( x , y , y ) , G p ( x , f x , f x ) , G p ( y , f y , f y ) }
(59)

for all x,yX, where 0r<1 and >0. If { x n } is a sequence in X such that η( x n , x n + 1 )1 for all n and x n x as n+, then η( x n ,x)1 for all nN{0}, then f has a fixed point.

References

  1. Zand MRA, Nezhad AD: A generalization of partial metric spaces. J. Contemp. Appl. Math. 2011, 24: 86–93.

    MathSciNet  Google Scholar 

  2. Matthews SG: Partial metric topology. Annals of the New York Academy of Sciences 728. General Topology and Its Applications. Proc. 8th Summer Conf. Queen’s College 1992 1994, 183–197.

    Google Scholar 

  3. Mustafa Z, Sims B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7(2):289–297.

    MathSciNet  MATH  Google Scholar 

  4. Parvaneh V, Roshan JR, Kadelburg Z: On generalized weakly GP -contractive mappings in ordered GP -metric spaces. Gulf J. Math. 2013, 1: 78–97.

    MATH  Google Scholar 

  5. Aydi H, Karapınar E, Salimi P: Some fixed point results in GP -metric spaces. J. Appl. Math. 2012., 2012: Article ID 891713 10.1155/2012/891713

    Google Scholar 

  6. Oltra S, Valero O: Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 2004, 36(1–2):17–26.

    MathSciNet  MATH  Google Scholar 

  7. Khan MS, Swaleh M, Sessa S: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30: 1–9. 10.1017/S0004972700001659

    Article  MathSciNet  MATH  Google Scholar 

  8. Alber YI, Guerre-Delabriere S: Principle of weakly contractive maps in Hilbert spaces. Advances and Appl. 98. In New Results in Operator Theory. Edited by: Gohberg I, Lyubich Y. Birkhäuser, Basel; 1997:7–22.

    Chapter  Google Scholar 

  9. Rhoades BE: Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47: 2683–2693. 10.1016/S0362-546X(01)00388-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang Q, Song Y: Fixed point theory for generalized φ -weak contractions. Appl. Math. Lett. 2009, 22: 75–78. 10.1016/j.aml.2008.02.007

    Article  MathSciNet  MATH  Google Scholar 

  11. Abbas M, Ðorić D: Common fixed point theorem for four mappings satisfying generalized weak contractive condition. Filomat 2010, 24(2):1–10. 10.2298/FIL1002001A

    Article  MathSciNet  MATH  Google Scholar 

  12. Ðorić D:Common fixed point for generalized (ψ,φ)-weak contractions. Appl. Math. Lett. 2009, 22: 1896–1900. 10.1016/j.aml.2009.08.001

    Article  MathSciNet  MATH  Google Scholar 

  13. Moradi S, Fathi Z, Analouee E:Common fixed point of single valued generalized φ f -weak contractive mappings. Appl. Math. Lett. 2011, 24(5):771–776. 10.1016/j.aml.2010.12.036

    Article  MathSciNet  MATH  Google Scholar 

  14. Razani A, Parvaneh V, Abbas M:A common fixed point for generalized ( ψ , φ ) f , g -weak contractions. Ukr. Math. J. 2012., 63: Article ID 11

    Google Scholar 

  15. Abbas M, Nazir T, Radenović S: Common fixed points of four maps in partially ordered metric spaces. Appl. Math. Lett. 2011, 24: 1520–1526. 10.1016/j.aml.2011.03.038

    Article  MathSciNet  MATH  Google Scholar 

  16. Abbas M, Parvaneh V, Razani A: Periodic points of T -Ćirić generalized contraction mappings in ordered metric spaces. Georgian Math. J. 2012, 19(4):597–610.

    Article  MathSciNet  MATH  Google Scholar 

  17. Agarwal RP, El-Gebeily MA, O’Regan D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87(1):109–116. 10.1080/00036810701556151

    Article  MathSciNet  MATH  Google Scholar 

  18. Al-Khaleel M, Al-Sharif S, Khandaqji M: Fixed point for contraction mappings in generalized cone metric spaces. Jordan J. Math. Stat. 2012, 5(4):291–307.

    MATH  Google Scholar 

  19. Aghajani A, Radenović S, Roshan JR:Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces. Appl. Math. Comput. 2012, 218: 5665–5670. 10.1016/j.amc.2011.11.061

    Article  MathSciNet  MATH  Google Scholar 

  20. Khan MA, Sumitra , Kumar R: Subcompatible and subsequential continuous maps in non Archimedean Menger PM-spaces. Jordan J. Math. Stat. 2012, 5(2):137–150.

    MATH  Google Scholar 

  21. Khan MA, Sumitra , Kumar R: Semi-compatible maps and common fixed point theorems in non-Archimedean Menger PM-spaces. Jordan J. Math. Stat. 2012, 5(3):185–199.

    MATH  Google Scholar 

  22. Esmaily J, Vaezpour SM, Rhoades BE: Coincidence point theorem for generalized weakly contractions in ordered metric spaces. Appl. Math. Comput. 2012, 219: 1536–1548. 10.1016/j.amc.2012.07.054

    Article  MathSciNet  MATH  Google Scholar 

  23. Harjani J, López B, Sadarangani K: Fixed point theorems for weakly C -contractive mappings in ordered metric spaces. Comput. Math. Appl. 2011, 61: 790–796. 10.1016/j.camwa.2010.12.027

    Article  MathSciNet  MATH  Google Scholar 

  24. Nashine HK, Samet B:Fixed point results for mappings satisfying(ψ,φ)-weakly contractive condition in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 2201–2209. 10.1016/j.na.2010.11.024

    Article  MathSciNet  MATH  Google Scholar 

  25. Nieto JJ, López RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22: 223–239. 10.1007/s11083-005-9018-5

    Article  MathSciNet  MATH  Google Scholar 

  26. Nieto JJ, López RR: Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. Engl. Ser. 2007, 23: 2205–2212. 10.1007/s10114-005-0769-0

    Article  MathSciNet  MATH  Google Scholar 

  27. Radenović S, Kadelburg Z: Generalized weak contractions in partially ordered metric spaces. Comput. Math. Appl. 2010, 60: 1776–1783. 10.1016/j.camwa.2010.07.008

    Article  MathSciNet  MATH  Google Scholar 

  28. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some application to matrix equations. Proc. Am. Math. Soc. 2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4

    Article  MathSciNet  MATH  Google Scholar 

  29. Shatanawi W, Samet B:On (ψ,ϕ)-weakly contractive condition in partially ordered metric spaces. Comput. Math. Appl. 2011, 62: 3204–3214. 10.1016/j.camwa.2011.08.033

    Article  MathSciNet  MATH  Google Scholar 

  30. Altun I, Simsek H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl. 2010., 2010: Article ID 621492

    Google Scholar 

  31. Lakshmikantham V, Ćirić LB: Coupled fixed point theorems for nonlinear contractions in partially ordered metric space. Nonlinear Anal. TMA 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020

    Article  MATH  Google Scholar 

  32. Samet B, Vetro C, Vetro P: Fixed point theorem for α - ψ -contractive type mappings. Nonlinear Anal. 2012, 75: 2154–2165. 10.1016/j.na.2011.10.014

    Article  MathSciNet  MATH  Google Scholar 

  33. Hussain N, Karapınar E, Salimi P, Akbar F: α -Admissible mappings and related fixed point theorems. Fixed Point Theory Appl. 2013., 2013: Article ID 114

    Google Scholar 

  34. Karapınar E, Kumam P, Salimi P: On α - ψ -Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013., 2013: Article ID 94

    Google Scholar 

  35. Salimi P, Vetro C, Vetro P: Fixed point theorems for twisted (α,β)- ψ -contractive type mappings and applications. Filomat 2013, 27(4):605–615. 10.2298/FIL1304605S

    Article  MathSciNet  MATH  Google Scholar 

  36. Salimi P, Vetro C, Vetro P: Some new fixed point results in non-Archimedean fuzzy metric spaces. Nonlinear Anal.: Model. Control 2013, 18(3):344–358.

    MathSciNet  MATH  Google Scholar 

  37. Salimi P, Karapınar E: Suzuki-Edelstein type contractions via auxiliary functions. Math. Probl. Eng. 2013., 2013: Article ID 648528

    Google Scholar 

  38. Salimi P, Latif A, Hussain N: Modified α - ψ -contractive mappings with applications. Fixed Point Theory Appl. 2013., 2013: Article ID 151

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. The authors, therefore, acknowledge with thanks the DSR financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ljubomir Ćirić or Vahid Parvaneh.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in this research. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Ćirić, L., Alsulami, S.M., Parvaneh, V. et al. Some fixed point results in ordered G p -metric spaces. Fixed Point Theory Appl 2013, 317 (2013). https://doi.org/10.1186/1687-1812-2013-317

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-317

Keywords