Skip to main content

Fixed point theorems of contractive mappings of integral type

Abstract

Three fixed point theorems for three general classes of contractive mappings of integral type in complete metric spaces are proved. Three examples are included.

MSC:54H25.

1 Introduction

Branciari [1] was the first to study the existence of fixed points for the contractive mapping of integral type. He established a nice integral version of the Banach contraction principle and proved the following fixed point theorem.

Theorem 1.1 Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtc 0 d ( x , y ) φ(t)dt,x,yX,

where c(0,1) is a constant and φ Φ 1 . Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Afterwards, many authors continued the study of Branciari and obtained many fixed point theorems for several classes of contractive mappings of integral type; see, e.g., [18] and the references therein. In particular, in 2011, Liu et al. [5] extended the result of Branciari [1] and deduced the following fixed point theorems.

Theorem 1.2 Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtα ( d ( x , y ) ) 0 d ( x , y ) φ(t)dt,x,yX,

where φ Φ 1 and α: R + [0,1) is a function with

lim sup s t α(s)<1,t>0.

Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Theorem 1.3 Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtα ( d ( x , y ) ) 0 d ( x , f x ) φ(t)dt+β ( d ( x , y ) ) 0 d ( y , f y ) φ(t)dt,x,yX,

where φ Φ 1 and α,β: R + [0,1) are two functions with

α(t)+β(t)<1,t R + , lim sup s 0 + β(s)<1, lim sup s t + α ( s ) 1 β ( s ) <1,t>0.

Then f has a unique fixed point aX such that lim n f n x=a for each xX.

In 2008, Dutta and Choudhuty [9] proved the following result.

Theorem 1.4 Let f be a mapping from a complete metric space (X,d) into itself satisfying

ψ ( d ( f x , f y ) ) ψ ( d ( x , y ) ) φ ( d ( x , y ) ) ,x,yX,

where ψ,φ: R + R + are both continuous and monotone nondecreasing functions with ψ(t)=φ(t)=0 if and only if t=0. Then f has a unique fixed point aX such that lim n f n x=a for each xX.

However, to the best of our knowledge, no one studied the following contractive mappings of integral type:

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) ψ ( 0 d ( x , y ) φ ( t ) d t ) ϕ ( 0 d ( x , y ) φ ( t ) d t ) ,x,yX,
(1.1)

where (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 ;

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) α ( d ( x , y ) ) ψ ( 0 d ( x , y ) φ ( t ) d t ) ,x,yX,
(1.2)

where (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 ;

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) , x , y X ,
(1.3)

where (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 and (α,β) Φ 6 .

It is clear that the above contractive mappings of integral type include these mappings in Theorems 1.1-1.4 as special cases. The purpose of this paper is to investigate the existence of fixed points for contractive mappings (1.1)-(1.3) of integral type. Under certain conditions, we prove the existence, uniqueness and iterative approximations of fixed points for contractive mappings (1.1)-(1.3) of integral type in complete metric spaces. Three examples with uncountably many points are constructed.

2 Preliminaries

Throughout this paper, we assume that R + =[0,+), N 0 =N{0}, denotes the set of all positive integers, (X,d) is a metric space, f:XX is a self-mapping and

d n =d ( f n x , f n + 1 x ) ,(n,x) N 0 ×X,

Φ 1 = {φ:φ: R + R + is Lebesgue integrable, summable on each compact subset of R + and 0 ε φ(t)dt>0 for each ε>0};

Φ 2 = {φ:φ: R + R + satisfies that lim inf n φ( a n )>0 lim inf n a n >0 for each { a n } n N R + };

Φ 3 = {φ:φ: R + R + is nondecreasing continuous and φ(t)=0t=0};

Φ 4 = {φ:φ: R + R + satisfies that φ(0)=0};

Φ 5 = {φ:φ: R + [0,1) satisfies that lim sup s t φ(s)<1 for each t>0};

Φ 6 = {(α,β):α,β: R + [0,1) satisfy that lim sup s 0 + β(s)<1, lim sup s t + α ( s ) 1 β ( s ) <1 and α(t)+β(t)<1 for each t>0}.

The following lemmas play important roles in this paper.

Lemma 2.1 ([5])

Let φ Φ 1 and { r n } n N be a nonnegative sequence with lim n r n =a. Then

lim n 0 r n φ(t)dt= 0 a φ(t)dt.

Lemma 2.2 ([5])

Let φ Φ 1 and { r n } n N be a nonnegative sequence. Then

lim n 0 r n φ(t)dt=0

if and only if lim n r n =0.

Lemma 2.3 Let φ Φ 2 . Then φ(t)>0 if and only if t>0.

Proof Let t>0. Put a n =t for each nN. It is easy to see that t= lim inf n a n >0, which together with φ Φ 2 ensures that

φ(t)= lim inf n φ( a n )>0.

Conversely, suppose that φ(t)>0 for some t R + . Set a n =t for each nN. It is clear that φ(t)= lim inf n φ( a n )>0, which together with φ Φ 2 guarantees that

t= lim inf n a n >0.

This completes the proof. □

3 Main results

In this section we show the existence, uniqueness and iterative approximations of fixed points for contractive mappings (1.1)-(1.3) of integral type, respectively.

Theorem 3.1 Let f be a mapping from a complete metric space (X,d) into itself satisfying (1.1). Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Proof Let x be an arbitrary point in X. Firstly, we show that

d n d n 1 ,nN.
(3.1)

Suppose that (3.1) does not hold. It follows that there exists some n 0 N satisfying

d n 0 > d n 0 1 .
(3.2)

Note that (3.2) and φ Φ 1 imply that

0 d n 0 φ(t)dt>0.
(3.3)

Using (1.1), (3.2) and (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 , we conclude immediately that

ψ ( 0 d n 0 1 φ ( t ) d t ) ψ ( 0 d n 0 φ ( t ) d t ) = ψ ( 0 d ( f n 0 x , f n 0 + 1 x ) φ ( t ) d t ) ψ ( 0 d ( f n 0 1 x , f n 0 x ) φ ( t ) d t ) ϕ ( 0 d ( f n 0 1 x , f n 0 x ) φ ( t ) d t ) = ψ ( 0 d n 0 1 φ ( t ) d t ) ϕ ( 0 d n 0 1 φ ( t ) d t ) ψ ( 0 d n 0 1 φ ( t ) d t ) ,

which yields that

ψ ( 0 d n 0 φ ( t ) d t ) =ψ ( 0 d n 0 1 φ ( t ) d t )
(3.4)

and

ϕ ( 0 d n 0 1 φ ( t ) d t ) =0.
(3.5)

Combining (3.5) and Lemma 2.3, we get that

0 d n 0 1 φ(t)dt=0,

which together with ψ Φ 3 and (3.4) means that

ψ ( 0 d n 0 φ ( t ) d t ) =ψ ( 0 d n 0 1 φ ( t ) d t ) =ψ(0)=0,

that is,

0 d n 0 φ(t)dt=0,

which contradicts (3.3). Hence (3.1) holds.

Secondly, we show that

lim n d n =0.
(3.6)

In view of (3.1), we deduce that the nonnegative sequence { d n } n N 0 is nonincreasing, which means that there exists a constant c with lim n d n =c0. Suppose that c>0. It follows from (1.1) that

ψ ( 0 d n φ ( t ) d t ) = ψ ( 0 d ( f n x , f n + 1 x ) φ ( t ) d t ) ψ ( 0 d ( f n x , f n 1 x ) φ ( t ) d t ) ϕ ( 0 d ( f n x , f n 1 x ) φ ( t ) d t ) = ψ ( 0 d n 1 φ ( t ) d t ) ϕ ( 0 d n 1 φ ( t ) d t ) , n N .
(3.7)

Taking upper limit in (3.7) and using Lemma 2.1 and (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 , we conclude that

ψ ( 0 c φ ( t ) d t ) = lim sup n ψ ( 0 d n φ ( t ) d t ) lim sup n [ ψ ( 0 d n 1 φ ( t ) d t ) ϕ ( 0 d n 1 φ ( t ) d t ) ] lim sup n ψ ( 0 d n 1 φ ( t ) d t ) lim inf n ϕ ( 0 d n 1 φ ( t ) d t ) = ψ ( 0 c φ ( t ) d t ) lim inf n ϕ ( 0 d n 1 φ ( t ) d t ) < ψ ( 0 c φ ( t ) d t ) ,

which is a contradiction. Hence c=0.

Thirdly, we show that { f n x } n N is a Cauchy sequence. Suppose that { f n x } n N is not a Cauchy sequence, which means that there is a constant ε>0 such that for each positive integer k, there are positive integers m(k) and n(k) with m(k)>n(k)>k satisfying

d ( f m ( k ) x , f n ( k ) x ) >ε.
(3.8)

For each positive integer k, let m(k) denote the least integer exceeding n(k) and satisfying (3.8). It follows that

d ( f m ( k ) x , f n ( k ) x ) >εandd ( f m ( k ) 1 x , f n ( k ) x ) ε,kN.
(3.9)

Note that

d ( f m ( k ) x , f n ( k ) x ) d ( f n ( k ) x , f m ( k ) 1 x ) + d m ( k ) 1 , k N ; | d ( f m ( k ) x , f n ( k ) + 1 x ) d ( f m ( k ) x , f n ( k ) x ) | d n ( k ) , k N ; | d ( f m ( k ) + 1 x , f n ( k ) + 1 x ) d ( f m ( k ) x , f n ( k ) + 1 x ) | d m ( k ) , k N ; | d ( f m ( k ) + 1 x , f n ( k ) + 1 x ) d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) | d n ( k ) + 1 , k N .
(3.10)

In light of (3.9) and (3.10), we get that

ε = lim k d ( f n ( k ) x , f m ( k ) x ) = lim k d ( f m ( k ) x , f n ( k ) + 1 x ) = lim k d ( f m ( k ) + 1 x , f n ( k ) + 1 x ) = lim k d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) .
(3.11)

In view of (1.1), we deduce that

ψ ( 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) ψ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) ϕ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) , k N .
(3.12)

Taking upper limit in (3.12) and using (3.11), (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 and Lemma 2.1, we deduce that

ψ ( 0 ε φ ( t ) d t ) = lim sup k ψ ( 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) lim sup k [ ψ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) ϕ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) ] lim sup k ψ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) lim inf k ϕ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) = ψ ( 0 ε φ ( t ) d t ) lim inf k ϕ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) < ψ ( 0 ε φ ( t ) d t ) ,

which is impossible. Thus { f n x } n N is a Cauchy sequence.

Since (X,d) is complete, it follows that there exists a point aX satisfying lim n f n x=a. By virtue of (1.1), we infer that

ψ ( 0 d ( f n + 1 x , f a ) φ ( t ) d t ) ψ ( 0 d ( f n x , a ) φ ( t ) d t ) ϕ ( 0 d ( f n x , a ) φ ( t ) d t ) ,nN,

which together with (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 and Lemmas 2.1 and 2.2 gives that

ψ ( 0 d ( a , f a ) φ ( t ) d t ) = lim sup n ψ ( 0 d ( f n + 1 x , f a ) φ ( t ) d t ) lim sup n [ ψ ( 0 d ( f n x , a ) φ ( t ) d t ) ϕ ( 0 d ( f n x , a ) φ ( t ) d t ) ] lim sup n ψ ( 0 d ( f n x , a ) φ ( t ) d t ) lim inf n ϕ ( 0 d ( f n x , a ) φ ( t ) d t ) = ψ ( 0 ) 0 = 0 ,

which together with ψ Φ 3 yields that

0 d ( a , f a ) φ(t)dt=0,

that is, a=fa.

Finally, we show that a is a unique fixed point of f in X. Suppose that f has another fixed point bX{a}. It follows from (1.1) and (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 that

ψ ( 0 d ( a , b ) φ ( t ) d t ) = ψ ( 0 d ( f a , f b ) φ ( t ) d t ) ψ ( 0 d ( a , b ) φ ( t ) d t ) ϕ ( 0 d ( a , b ) φ ( t ) d t ) < ψ ( 0 d ( a , b ) φ ( t ) d t ) ,

which is a contradiction. This completes the proof. □

Theorem 3.2 Let f be a mapping from a complete metric space (X,d) into itself satisfying (1.2). Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Proof Let x be an arbitrary point in X. Suppose that (3.2) holds for some n 0 N. Using (1.2), (3.2) and (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 , we get that

ψ ( 0 d n 0 φ ( t ) d t ) >0

and

ψ ( 0 d n 0 1 φ ( t ) d t ) ψ ( 0 d n 0 φ ( t ) d t ) = ψ ( 0 d ( f n 0 x , f n 0 + 1 x ) φ ( t ) d t ) α ( d ( f n 0 1 x , f n 0 x ) ) ψ ( 0 d ( f n 0 1 x , f n 0 x ) φ ( t ) d t ) = α ( d n 0 1 ) ψ ( 0 d n 0 1 φ ( t ) d t ) < ψ ( 0 d n 0 1 φ ( t ) d t ) ,

which is a contradiction, and hence (3.2) does not hold. Consequently, (3.1) is true. Notice that the nonnegative sequence { d n } n N 0 is nonincreasing, which implies that there exists a constant c0 with lim n d n =c. Suppose that c>0. In light of (1.2), we infer that

ψ ( 0 d n φ ( t ) d t ) = ψ ( 0 d ( f n x , f n + 1 x ) φ ( t ) d t ) α ( d ( f n 1 x , f n x ) ) ψ ( 0 d ( f n 1 x , f n x ) φ ( t ) d t ) = α ( d n 1 ) ψ ( 0 d n 1 φ ( t ) d t ) , n N .
(3.13)

Taking upper limit in (3.13) and using Lemma 2.1 and (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 , we know that

ψ ( 0 c φ ( t ) d t ) = lim sup n ψ ( 0 d n φ ( t ) d t ) lim sup n [ α ( d n 1 ) ψ ( 0 d n 1 φ ( t ) d t ) ] lim sup n α ( d n 1 ) lim sup n ψ ( 0 d n 1 φ ( t ) d t ) < ψ ( 0 c φ ( t ) d t ) ,

which is a contradiction, and hence c=0, that is, (3.6) holds.

Now we show that { f n x } n N is a Cauchy sequence. Suppose that { f n x } n N is not a Cauchy sequence. As in the proof of Theorem 3.1, we conclude that there exist ε>0 and {m(k),n(k):kN}N with m(k)>n(k)>k for each kN satisfying (3.8)-(3.11). By means of (1.2), (3.11), Lemma 2.1 and (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 , we get that

ψ ( 0 ε φ ( t ) d t ) = lim sup k ψ ( 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) = lim sup k [ α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ψ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) ] lim sup k α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) lim sup k ψ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) < ψ ( 0 ε φ ( t ) d t ) ,

which is a contradiction. Hence { f n x } n N is a Cauchy sequence.

It follows from completeness of (X,d) that there exists aX with lim n f n x=a. In view of (1.2), we have

ψ ( 0 d ( f n + 1 x , f a ) φ ( t ) d t ) α ( d ( f n x , a ) ) ψ ( 0 d ( f n x , a ) φ ( t ) d t ) ,n N 0 .
(3.14)

Taking upper limit in (3.14) and making use of (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 and Lemmas 2.1 and 2.2, we get that

ψ ( 0 d ( a , f a ) φ ( t ) d t ) = lim sup n ψ ( 0 d ( f n + 1 x , f a ) φ ( t ) d t ) lim sup n [ α ( d ( f n x , a ) ) ψ ( 0 d ( f n x , a ) φ ( t ) d t ) ] lim sup n α ( d ( f n x , a ) ) lim sup n ψ ( 0 d ( f n x , a ) φ ( t ) d t ) = 0 ,

which means that

ψ ( 0 d ( a , f a ) φ ( t ) d t ) =0,

that is, fa=a.

Next we prove that a is a unique fixed point of f in X. Suppose that f has another fixed point bX{a}. It follows from (1.2) and (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 that

ψ ( 0 d ( a , b ) φ ( t ) d t ) = ψ ( 0 d ( f a , f b ) φ ( t ) d t ) α ( d ( a , b ) ) ψ ( 0 d ( a , b ) φ ( t ) d t ) < ψ ( 0 d ( a , b ) φ ( t ) d t ) ,

which is a contradiction. This completes the proof. □

Theorem 3.3 Let f be a mapping from a complete metric space (X,d) into itself satisfying (1.3) and

ϕ(t)ψ(t),t R + .
(3.15)

Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Proof Let x be an arbitrary point in X. If there exists n 0 N 0 satisfying d n 0 =0, it is clear that f n 0 x is a fixed point of f and lim n f n x= f n 0 x. Now we assume that d n 0 for all n N 0 . Suppose that (3.2) holds for some n 0 N. It follows from (1.3) that

ψ ( 0 d n 0 φ ( t ) d t ) = ψ ( 0 d ( f n 0 x , f n 0 + 1 x ) φ ( t ) d t ) α ( d ( f n 0 1 x , f n 0 x ) ) ϕ ( 0 d ( f n 0 1 x , f n 0 x ) φ ( t ) d t ) + β ( d ( f n 0 1 x , f n 0 x ) ) ψ ( 0 d ( f n 0 x , f n 0 + 1 x ) φ ( t ) d t ) = α ( d n 0 1 ) ϕ ( 0 d n 0 1 φ ( t ) d t ) + β ( d n 0 1 ) ψ ( 0 d n 0 φ ( t ) d t ) ,

which together with (3.2), (3.15), (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 and (α,β) Φ 6 implies that

0 < ψ ( 0 d n 0 1 φ ( t ) d t ) ψ ( 0 d n 0 φ ( t ) d t ) α ( d n 0 1 ) 1 β ( d n 0 1 ) ϕ ( 0 d n 0 1 φ ( t ) d t ) α ( d n 0 1 ) 1 β ( d n 0 1 ) ψ ( 0 d n 0 1 φ ( t ) d t ) < ψ ( 0 d n 0 1 φ ( t ) d t ) ,

which is a contradiction, and hence (3.2) does not hold. Consequently, (3.1) holds.

Next we show that lim n d n =0. Note that the nonnegative sequence { d n } n N is nonincreasing, which implies that there exists a constant c0 with lim n d n =c. Suppose that c>0. It follows from (1.3) that

ψ ( 0 d n φ ( t ) d t ) = ψ ( 0 d ( f n x , f n + 1 x ) φ ( t ) d t ) α ( d ( f n 1 x , f n x ) ) ϕ ( 0 d ( f n 1 x , f n x ) φ ( t ) d t ) + β ( d ( f n 1 x , f n x ) ) ψ ( 0 d ( f n x , f n + 1 x ) φ ( t ) d t ) = α ( d n 1 ) ϕ ( 0 d n 1 φ ( t ) d t ) + β ( d n 1 ) ψ ( 0 d n φ ( t ) d t ) , n N ,

which means that

ψ ( 0 d n φ ( t ) d t ) α ( d n 1 ) 1 β ( d n 1 ) ϕ ( 0 d n 1 φ ( t ) d t ) ,nN.
(3.16)

Taking upper limit in (3.16) and using (3.15), (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 , (α,β) Φ 6 and Lemma 2.1, we arrive at

ψ ( 0 c φ ( t ) d t ) = lim sup n ψ ( 0 d n φ ( t ) d t ) lim sup n [ α ( d n 1 ) 1 β ( d n 1 ) ϕ ( 0 d n 1 φ ( t ) d t ) ] lim sup n α ( d n 1 ) 1 β ( d n 1 ) lim sup n ψ ( 0 d n 1 φ ( t ) d t ) lim sup s c + α ( s ) 1 β ( s ) ψ ( 0 c φ ( t ) d t ) < ψ ( 0 c φ ( t ) d t ) ,

which is impossible. Therefore c=0, that is, lim n d n =0.

Next we show that { f n x } n N is a Cauchy sequence. Suppose that { f n x } n N is not a Cauchy sequence. As in the proof of Theorem 3.1, we conclude that there exist ε>0 and {m(k),n(k):kN}N with m(k)>n(k)>k for each kN satisfying (3.8)-(3.11). By means of (3.12), we deduce that

ψ ( 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ϕ ( 0 d ( f m ( k ) x , f m ( k ) + 1 x ) φ ( t ) d t ) + β ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ψ ( 0 d ( f n ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) = α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ϕ ( 0 d m ( k ) φ ( t ) d t ) + β ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ψ ( 0 d n ( k ) φ ( t ) d t ) , k N .
(3.17)

Taking upper limit in (3.17) and making use of (1.3), (3.11), Lemma 2.1, (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 and (α,β) Φ 6 , we deduce that

0 < ψ ( 0 ε φ ( t ) d t ) = lim sup k ψ ( 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) lim sup k [ α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ϕ ( 0 d m ( k ) φ ( t ) d t ) + β ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ψ ( 0 d n ( k ) φ ( t ) d t ) ] lim sup k α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) lim sup k ψ ( 0 d m ( k ) φ ( t ) d t ) + lim sup k β ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) lim sup k ψ ( 0 d n ( k ) φ ( t ) d t ) lim sup s ε α ( s ) ψ ( 0 0 φ ( t ) d t ) + lim sup s ε β ( s ) ψ ( 0 0 φ ( t ) d t ) = 0 ,

which is a contradiction. Hence { f n x } n N is a Cauchy sequence.

Completeness of (X,d) implies that there exists a point aX such that lim n f n x=a. In view of (1.3), (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 , (α,β) Φ 6 and Lemma 2.1, we infer that

ψ ( 0 d ( a , f a ) φ ( t ) d t ) = lim sup n ψ ( 0 d ( f n + 1 x , f a ) φ ( t ) d t ) lim sup n [ α ( d ( f n x , a ) ) ϕ ( 0 d ( f n x , f n + 1 x ) φ ( t ) d t ) + β ( d ( f n x , a ) ) ψ ( 0 d ( a , f a ) φ ( t ) d t ) ] lim sup n α ( d ( f n x , a ) ) lim sup n ψ ( 0 d n φ ( t ) d t ) + lim sup n β ( d ( f n x , a ) ) ψ ( 0 d ( a , f a ) φ ( t ) d t ) lim sup s 0 + β ( s ) ψ ( 0 d ( a , f a ) φ ( t ) d t ) ,

which together with (α,β) Φ 6 yields that

ψ ( 0 d ( a , f a ) φ ( t ) d t ) =0,

which gives that d(fa,a)=0, that is, fa=a.

Finally, we prove that a is a unique fixed point of f in X. Suppose that f has another fixed point bX{a}. It follows from (1.3) and (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 and (α,β) Φ 6 that

0 ψ ( 0 d ( f a , f b ) φ ( t ) d t ) α ( d ( a , b ) ) ϕ ( 0 d ( a , f a ) φ ( t ) d t ) + β ( d ( a , b ) ) ψ ( 0 d ( b , f b ) φ ( t ) d t ) = 0 ,

which is a contradiction. This completes the proof. □

4 Three examples

Now we construct three examples to explain Theorems 3.1-3.3.

Example 4.1 Let X=[0, 1 2 ]{1}{3} be endowed with the Euclidean metric d=||. Assume that f:XX and φ,ϕ,ψ: R + R + are defined by

f ( x ) = { x 2 , x [ 0 , 1 2 ] , 0 , x = 1 , 1 , x = 3 , φ ( t ) = { t 2 , t [ 0 , 1 ] , 1 , t ( 1 , + ) , ϕ ( t ) = { t 2 4 , t [ 0 , 1 ] , t 2 8 , t ( 1 , + ) , ψ ( t ) = { t , t [ 0 , 1 ] , t 2 + 1 2 , t ( 1 , + ) .

Clearly, (X,d) is a complete metric and (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 . Let x,yX with x<y. In order to verify (1.1), we have to consider the following four cases.

Case 1. Let x,y[0, 1 2 ]. Note that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 1 2 | x y | φ ( t ) d t ) = ψ ( | x y | 2 16 ) = | x y | 2 16 | x y | 2 4 | x y | 4 16 = ψ ( | x y | 2 4 ) ϕ ( | x y | 2 4 ) = ψ ( 0 | x y | φ ( t ) d t ) ϕ ( 0 | x y | φ ( t ) d t ) = ψ ( 0 d ( x , y ) φ ( t ) d t ) ϕ ( 0 d ( x , y ) φ ( t ) d t ) .

Case 2. Let x[0, 1 2 ] and y=1. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 x 2 φ ( t ) d t ) = ψ ( x 2 16 ) = x 2 16 ( 1 x ) 2 4 ( 1 x ) 4 16 = ψ ( ( 1 x ) 2 4 ) ϕ ( ( 1 x ) 2 4 ) = ψ ( 0 | x 1 | φ ( t ) d t ) ϕ ( 0 | x 1 | φ ( t ) d t ) = ψ ( 0 d ( x , y ) φ ( t ) d t ) ϕ ( 0 d ( x , y ) φ ( t ) d t ) .

Case 3. Let x[0, 1 2 ] and y=3. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 2 x 2 φ ( t ) d t ) = ψ ( ( 2 x ) 2 16 ) = ( 2 x ) 2 16 < 1 2 1 2 [ ( 9 4 x ) 2 + 1 ] 1 8 ( 9 4 x ) 2 = ψ ( 9 4 x ) ϕ ( 9 4 x ) = ψ ( 0 1 φ ( t ) d t + 1 3 x φ ( t ) d t ) ϕ ( 0 1 φ ( t ) d t + 1 3 x φ ( t ) d t ) = ψ ( 0 3 x φ ( t ) d t ) ϕ ( 0 3 x φ ( t ) d t ) = ψ ( 0 d ( x , y ) φ ( t ) d t ) ϕ ( 0 d ( x , y ) φ ( t ) d t ) .

Case 4. Let x=1 and y=3. Note that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 1 φ ( t ) d t ) = ψ ( 1 4 ) = 1 4 < 139 128 = 1 2 ( 25 16 + 1 ) 1 8 25 16 = ψ ( 5 4 ) ϕ ( 5 4 ) = ψ ( 0 1 φ ( t ) d t + 1 2 φ ( t ) d t ) ϕ ( 0 1 φ ( t ) d t + 1 2 φ ( t ) d t ) = ψ ( 0 2 φ ( t ) d t ) ϕ ( 0 2 φ ( t ) d t ) = ψ ( 0 d ( x , y ) φ ( t ) d t ) ϕ ( 0 d ( x , y ) φ ( t ) d t ) .

That is, (1.1) holds. Thus Theorem 3.1 guarantees that f has a unique fixed point 0X such that lim n f n x=0 for each xX.

Example 4.2 Let X=[0,1][4,5] be endowed with the Euclidean metric d=||. Assume that f:XX and φ,ψ: R + R + and α: R + [0,1) are defined by

f ( x ) = { x 2 4 , x [ 0 , 1 ] , x 2 26 , x [ 4 , 5 ] , φ ( t ) = { 4 t 3 , t [ 0 , 1 ] , 2 t , t [ 4 , 5 ] , ψ ( t ) = t 1 2 , t R + , α ( t ) = { 1 3 + t 2 2 , t [ 0 , 1 ] , 1 2 t , t ( 1 , 3 ) , 1 t , t ( 3 , + ) .

Obviously, (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 . Put x,yX with x<y. In order to verify (1.2), we have to consider three possible cases as follows.

Case 1. Let x,y[0,1]. It is clear that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ( 0 y 2 x 2 4 4 t 3 d t ) 1 2 = ( x + y ) 2 16 | x y | 2 1 4 | x y | 2 ( 1 3 + 1 2 | x y | 2 ) | x y | 2 = α ( d ( x , y ) ) ψ ( 0 d ( x , y ) φ ( t ) d t ) .

Case 2. Let x,y[4,5]. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ( 0 y 2 x 2 26 4 t 3 d t ) 1 2 = ( x + y 26 ) 2 | x y | 2 25 169 | x y | 2 ( 1 3 + 1 2 | x y | 2 ) | x y | 2 = α ( d ( x , y ) ) ψ ( 0 d ( x , y ) φ ( t ) d t ) .

Case 3. Let x[0,1] and y[4,5]. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ( 0 y 2 26 x 2 4 4 t 3 d t ) 1 2 = ( y 2 26 x 2 4 ) 2 ( 25 26 ) 2 < 1 < | x y | = α ( | x y | ) | x y | = α ( | x y | ) ( 0 1 4 t 3 d t + 1 | x y | 2 t d t ) 1 2 = α ( d ( x , y ) ) ( 0 | x y | φ ( t ) d t ) 1 2 = α ( d ( x , y ) ) ψ ( 0 d ( x , y ) φ ( t ) d t ) .

That is, (1.2) holds. Consequently, the conditions of Theorem 3.2 are satisfied. It follows from Theorem 3.2 that f has a unique fixed point 0X such that lim n f n x=0 for each xX.

Example 4.3 Let X=[ 1 2 ,1][ 3 2 ,2] be endowed with the Euclidean metric d=||. Assume that f:XX, φ,ϕ,ψ: R + R + and α,β: R + [0,1) are defined by

f ( x ) = { 1 , x [ 1 2 , 1 ] , x 2 , x [ 3 2 , 2 ] , ϕ ( t ) = { 0 , t [ 0 , 9 16 ) 32 t 2 9 , t [ 9 16 , + ) , φ ( t ) = 2 t , ψ ( t ) = 4 t 2 , α ( t ) = t ( 1 2 + t ) 2 , β ( t ) = t 2 ( 1 2 + t ) 2 , t R + .

It is easy to see that (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 , (α,β) Φ 6 and (3.15) holds. In order to verify (1.3), we have to consider the five possible cases below.

Case 1. Let x,y[ 3 2 ,2] with xy. Note that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 | x y | 2 φ ( t ) d t ) = ψ ( ( x y ) 2 4 ) = ( x y ) 4 4 x y 2 x y 2 x 4 ( 1 2 + x y ) 2 x y ( 1 2 + x y ) 2 32 9 ( x 2 4 ) 2 = α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) d + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) .

Case 2. Let x,y[ 3 2 ,2] with y>x. Note that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 | y x | 2 φ ( t ) d t ) = ( y x ) 4 4 ( y x ) 2 4 y 4 ( 1 2 + y x ) 2 = ( y x ) 2 ( 1 2 + y x ) 2 y 4 4 = β ( d ( x , y ) ) ψ ( y 2 4 ) = β ( d ( x , y ) ) ψ ( 0 y 2 φ ( t ) d t ) = β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) .

Case 3. Let x[ 3 2 ,2] and y[ 1 2 ,1]. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 x 2 2 φ ( t ) d t ) = ψ ( ( x 2 ) 2 4 ) = ( x 2 ) 4 4 1 64 < 27 64 = 3 8 2 9 81 16 x y ( 1 2 + x y ) 2 2 9 x 4 = α ( d ( x , y ) ) ϕ ( x 2 4 ) = α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) .

Case 4. Let x[ 1 2 ,1] and y[ 3 2 ,2]. Note that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 | y 2 | 2 2 t d t ) = ( y 2 ) 4 4 1 64 < 1 4 81 64 ( y x ) 2 ( 1 2 + y x ) 2 y 4 4 = β ( d ( x , y ) ) ψ ( y 2 4 ) = β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) .

Case 5. Let x,y[ 1 2 ,1]. Notice that fx=fy=1. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = 0 α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) .

That is, (1.3) holds. Thus all the conditions of Theorem 3.3 are satisfied. It follows from Theorem 3.3 that f has a unique fixed point 1X such that lim n f n x=1 for each xX.

References

  1. Branciari A: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2002, 29: 531–536. 10.1155/S0161171202007524

    Article  MathSciNet  Google Scholar 

  2. Altun I, Türkoǧlu D, Rhoades BE: Fixed points of weakly compatible maps satisfying a general contractive of integral type. Fixed Point Theory Appl. 2007., 2007: Article ID 17301 10.1155/2007/17301

    Google Scholar 

  3. Djoudi A, Merghadi F: Common fixed point theorems for maps under a contractive condition of integral type. J. Math. Anal. Appl. 2008, 341: 953–960. 10.1016/j.jmaa.2007.10.064

    Article  MathSciNet  Google Scholar 

  4. Jachymski J: Remarks on contractive conditions of integral type. Nonlinear Anal. 2009, 71: 1073–1081. 10.1016/j.na.2008.11.046

    Article  MathSciNet  Google Scholar 

  5. Liu Z, Li X, Kang SM, Cho SY: Fixed point theorems for mappings satisfying contractive conditions of integral type and applications. Fixed Point Theory Appl. 2011., 2011: Article ID 64 10.1186/1687-1812-2011-64

    Google Scholar 

  6. Rhoades BE: Two fixed point theorems for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2003, 63: 4007–4013. 10.1155/S0161171203208024

    Article  MathSciNet  Google Scholar 

  7. Suzuki T: Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Int. J. Math. Math. Sci. 2007., 2007: Article ID 39281 10.1155/2007/39281

    Google Scholar 

  8. Vijayaraju P, Rhoades BE, Mohanraj R: A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2005, 15: 2359–2364. 10.1155/IJMMS.2005.2359

    Article  MathSciNet  Google Scholar 

  9. Dutta PN, Choudhury BS: A generalization of contraction principle in metric spaces. Fixed Point Theory Appl. 2008., 2008: Article ID 406368 10.1155/2008/406368

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Science Research Foundation of Educational Department of Liaoning Province (L2012380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Min Kang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Liu, Z., Li, J. & Kang, S.M. Fixed point theorems of contractive mappings of integral type. Fixed Point Theory Appl 2013, 300 (2013). https://doi.org/10.1186/1687-1812-2013-300

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-300

Keywords