# PPF dependent fixed point theorems for an ${\alpha}_{c}$-admissible non-self mapping in the Razumikhin class

- Ravi P Agarwal
^{1, 2}, - Poom Kumam
^{3}Email author and - Wutiphol Sintunavarat
^{4}Email author

**2013**:280

https://doi.org/10.1186/1687-1812-2013-280

© Agarwal et al.; licensee Springer. 2013

**Received: **2 April 2013

**Accepted: **3 September 2013

**Published: **8 November 2013

## Abstract

In this paper, we introduce the concept of ${\alpha}_{c}$-admissible non-self mappings and prove the existence and convergence of the past-present-future (briefly, PPF) dependent fixed point theorems for such mappings in the Razumikhin class. We use these results to prove the PPF dependent fixed point of Bernfeld *et al.* (Appl. Anal. 6:271-280, 1977) and also apply our results to PPF dependent coincidence point theorems.

**MSC:**47H09, 47H10.

### Keywords

PPF fixed points Razumikhin classes rational type contraction## 1 Introduction

The applications of fixed point theory are very important and useful in diverse disciplines of mathematics. The theory can be applied to solve many problem in real world, for example: equilibrium problems, variational inequalities and optimization problems. A very powerful tool in fixed point theory is the Banach fixed point theorem or Banach’s contraction principle for a single-valued mapping. It is no surprise that there is a great number of generalizations of this principle. Several mathematicians have gone in several directions modifying Banach’s contractive condition, changing the space or extending a single-valued mapping to a multivalued mapping (see [1–10]).

One of the most interesting results is the extension of Banach’s contraction principle in case of non-self mappings. In 1997, Bernfeld *et al.* [11] introduced the concept of fixed point for mappings that have different domains and ranges, the so called past-present-future (briefly, PPF) dependent fixed point or the fixed point with PPF dependence. Furthermore, they gave the notion of Banach-type contraction for a non-self mapping and also proved the existence of PPF dependent fixed point theorems in the Razumikhin class for Banach-type contraction mappings. These results are useful for proving the solutions of nonlinear functional differential and integral equations which may depend upon the past history, present data and future consideration. Several PPF dependence fixed point theorems have been proved by many researchers (see [12–15]).

On the other hand, Samet *et al.* [16] were first to introduce the concept of *α*-admissible self-mappings and they proved the existence of fixed point results using contractive conditions involving an *α*-admissible mapping in complete metric spaces. They also gave some examples and applications to ordinary differential equations of the obtained results. Subsequently, there are a number of results proved for contraction mappings via the concept of *α*-admissible mapping in metric spaces and other spaces (see [17–19] and references therein).

To the best of our knowledge, there has been no discussion so far concerning the PPF dependent fixed point theorems via *α*-admissible mappings. In this paper, we introduce the concept of ${\alpha}_{c}$-admissible non-self mappings and establish the existence and convergence of PPF dependent fixed point theorems for contraction mappings involving ${\alpha}_{c}$-admissible non-self mappings in the Razumikhin class. Furthermore, we apply our results to the existence of PPF dependent fixed point theorems in [11] and also apply to PPF dependent coincidence point theorems.

## 2 Preliminaries

*E*denotes a Banach space with the norm ${\parallel \cdot \parallel}_{E}$,

*I*denotes a closed interval $[a,b]$ in ℝ, and ${E}_{0}=C(I,E)$ denotes the set of all continuous

*E*-valued functions on

*I*equipped with the supremum norm ${\parallel \cdot \parallel}_{{E}_{0}}$ defined by

for $\varphi \in {E}_{0}$.

It is easy to see that the constant function is one of the mapping in ${\mathcal{R}}_{c}$. The class ${\mathcal{R}}_{c}$ is said to be algebraically closed with respect to difference if $\varphi -\xi \in {\mathcal{R}}_{c}$ whenever $\varphi ,\xi \in {\mathcal{R}}_{c}$. Also, we say that the class ${\mathcal{R}}_{c}$ is topologically closed if it is closed with respect to the topology on ${E}_{0}$ generated by the norm ${\parallel \cdot \parallel}_{{E}_{0}}$.

**Definition 2.1** (Bernfeld *et al.* [11])

A point $\varphi \in {E}_{0}$ is said to be *a PPF dependent fixed point* or *a fixed point with PPF dependence* of the non-self mapping $T:{E}_{0}\to E$ if $T\varphi =\varphi (c)$ for some $c\in I$.

**Definition 2.2** (Bernfeld *et al.* [11])

for all $\varphi ,\xi \in {E}_{0}$.

**Definition 2.3** (Samet *et al.* [16])

*X*be a nonempty set, $T:X\to X$ and $\alpha :X\times X\to [0,\mathrm{\infty})$. We say that

*T*is an

*α*-admissible mapping if it satisfies the following condition:

**Example 2.4**Let $X=[1,\mathrm{\infty})$. Define $T:X\to X$ and $\alpha :X\times X\to [0,\mathrm{\infty})$ by $Tx={x}^{2}\text{for all}x\in X$ and

Then *T* is *α*-admissible.

**Example 2.5**Let $X=[1,\mathrm{\infty})$. Define $T:X\to X$ and $\alpha :X\times X\to [0,\mathrm{\infty})$ by $Tx=logx$ for all $x\in X$ and

Then *T* is *α*-admissible.

**Remark 2.6** In the setting of Examples 2.4 and 2.5, every nondecreasing self-mapping *T* is ß-admissible.

**Example 2.7**Let $X=\mathbb{R}$. Define $T:X\to X$ and $\alpha :X\times X\to [0,\mathrm{\infty})$ by

Then *T* is *α*-admissible.

## 3 PPF dependent fixed point theorems for ${\alpha}_{c}$-admissible mappings

First of all, we introduce the concept of ${\alpha}_{c}$-admissible non-self mappings.

**Definition 3.1**Let $c\in I$ and $T:{E}_{0}\to E$, $\alpha :E\times E\to [0,\mathrm{\infty})$. We say that

*T*is an ${\alpha}_{c}$-admissible mapping if for $\varphi ,\xi \in {E}_{0}$,

**Example 3.2**Let $E=\mathbb{R}$ be real Banach spaces with usual norms and $I=[0,1]$. Define $T:{E}_{0}\to E$ and $\alpha :E\times E\to [0,\mathrm{\infty})$ by $T\varphi =\varphi (1)\text{for all}\varphi \in {E}_{0}$ and

Then *T* is ${\alpha}_{1}$-admissible.

Next, we prove the following result for a PPF dependent fixed point.

**Theorem 3.3**

*Let*$T:{E}_{0}\to E$, $\alpha :E\times E\to [0,\mathrm{\infty})$

*be two mappings satisfying the following conditions*:

- (a)
*There exists*$c\in I$*such that*${\mathcal{R}}_{c}$*is topologically closed and algebraically closed with respect to difference*. - (b)
*T**is*${\alpha}_{c}$-*admissible*. - (c)
*For all*$\varphi ,\xi \in {E}_{0}$,$\alpha (\varphi (c),T\varphi )\alpha (\xi (c),T\xi ){\parallel T\varphi -T\xi \parallel}_{E}\le k{\parallel \varphi -\xi \parallel}_{{E}_{0}},$*where*$k\in [0,1)$.

- (d)
*If*$\{{\varphi}_{n}\}$*is a sequence in*${E}_{0}$*such that*${\varphi}_{n}\to \varphi $*as*$n\to \mathrm{\infty}$*and*$\alpha ({\varphi}_{n}(c),T{\varphi}_{n})\ge 1$*for all*$n\in \mathbb{N}$,*then*$\alpha (\varphi (c),T\varphi )\ge 1$.

*If there exists* ${\varphi}_{0}\in {\mathcal{R}}_{c}$ *such that* $\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$, *then* *T* *has a unique PPF dependent fixed point* ${\varphi}^{\ast}$ *in* ${\mathcal{R}}_{c}$ *such that* $\alpha ({\varphi}^{\ast}(c),T{\varphi}^{\ast})\ge 1$.

*Moreover*,

*for a fixed*${\varphi}_{0}\in {\mathcal{R}}_{c}$

*such that*$\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$,

*if a sequence*$\{{\varphi}_{n}\}$

*of iterates of*

*T*

*in*${\mathcal{R}}_{c}$

*is defined by*

*for all* $n\in \mathbb{N}$, *then* $\{{\varphi}_{n}\}$ *converges to a PPF dependent fixed point of* *T* *in* ${\mathcal{R}}_{c}$.

*Proof*Let ${\varphi}_{0}$ be a point in ${\mathcal{R}}_{c}\subseteq {E}_{0}$ such that $\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$. Since $T{\varphi}_{0}\in E$, there exists ${x}_{1}\in E$ such that $T{\varphi}_{0}={x}_{1}$. Choose ${\varphi}_{1}\in {\mathcal{R}}_{c}$ such that

for all $n\in \mathbb{N}$.

for all $n\in \mathbb{N}$.

*T*is ${\alpha}_{c}$-admissible and $\alpha ({\varphi}_{0}(c),{\varphi}_{1}(c))=\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$, we deduce that

By continuing this process, we get $\alpha ({\varphi}_{n-1}(c),T{\varphi}_{n-1})\ge 1$ for all $n\in \mathbb{N}$.

for all $n\in \mathbb{N}$.

This implies that the sequence $\{{\varphi}_{n}\}$ is a Cauchy sequence in ${\mathcal{R}}_{c}\subseteq {E}_{0}$. By the completeness of ${E}_{0}$, we get that $\{{\varphi}_{n}\}$ converges to a limit point ${\varphi}^{\ast}\in {E}_{0}$, that is, ${lim}_{n\to \mathrm{\infty}}{\varphi}_{n}={\varphi}^{\ast}$. Since ${\mathcal{R}}_{c}$ is topologically closed, we have ${\varphi}^{\ast}\in {\mathcal{R}}_{c}$.

*T*. By (d), we have $\alpha ({\varphi}^{\ast}(c),T{\varphi}^{\ast})\ge 1$. From assumption (c), we get

This implies that ${\varphi}^{\ast}$ is a PPF dependent fixed point of *T* in ${\mathcal{R}}_{c}$.

*T*in ${\mathcal{R}}_{c}$. Let ${\varphi}^{\ast}$ and ${\xi}^{\ast}$ be two PPF dependent fixed points of

*T*in ${\mathcal{R}}_{c}$ such that $\alpha ({\varphi}^{\ast}(c),T{\varphi}^{\ast})\ge 1$ and $\alpha ({\xi}^{\ast}(c),T{\xi}^{\ast})\ge 1$. Now we obtain that

Since $0\le k<1$, we get ${\parallel {\varphi}^{\ast}-{\xi}^{\ast}\parallel}_{{E}_{0}}=0$ and then ${\varphi}^{\ast}={\xi}^{\ast}$. Therefore, *T* has a unique PPF dependent fixed point in ${\mathcal{R}}_{c}$. This completes the proof. □

**Theorem 3.4**

*Let*$T:{E}_{0}\to E$, $\alpha :E\times E\to [0,\mathrm{\infty})$

*be two mappings satisfying the following conditions*:

- (a)
*There exists*$c\in I$*such that*${\mathcal{R}}_{c}$*is topologically closed and algebraically closed with respect to difference*. - (b)
*T**is*${\alpha}_{c}$-*admissible*. - (c)
*For all*$\varphi ,\xi \in {E}_{0}$,${({\parallel T\varphi -T\xi \parallel}_{E}+\u03f5)}^{\alpha (\varphi (c),T\varphi )\alpha (\xi (c),T\xi )}\le k{\parallel \varphi -\xi \parallel}_{{E}_{0}}+\u03f5,$*where*$k\in [0,1)$*and*$\u03f5\ge 1$.

- (d)
*If*$\{{\varphi}_{n}\}$*is a sequence in*${E}_{0}$*such that*${\varphi}_{n}\to \varphi $*as*$n\to \mathrm{\infty}$*and*$\alpha ({\varphi}_{n}(c),T{\varphi}_{n})\ge 1$*for all*$n\in \mathbb{N}$,*then*$\alpha (\varphi (c),T\varphi )\ge 1$.

*If there exists* ${\varphi}_{0}\in {\mathcal{R}}_{c}$ *such that* $\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$, *then* *T* *has a unique PPF dependent fixed point* ${\varphi}^{\ast}$ *in* ${\mathcal{R}}_{c}$ *such that* $\alpha ({\varphi}^{\ast}(c),T{\varphi}^{\ast})\ge 1$.

*Moreover*,

*for a fixed*${\varphi}_{0}\in {\mathcal{R}}_{c}$

*such that*$\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$,

*if a sequence*$\{{\varphi}_{n}\}$

*of iterates of*

*T*

*in*${\mathcal{R}}_{c}$

*is defined by*

*for all* $n\in \mathbb{N}$, *then* $\{{\varphi}_{n}\}$ *converges to a PPF dependent fixed point of* *T* *in* ${\mathcal{R}}_{c}$.

*Proof*Let ${\varphi}_{0}$ be a point in ${\mathcal{R}}_{c}\subseteq {E}_{0}$ such that $\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$. Since $T{\varphi}_{0}\in E$, there exists ${x}_{1}\in E$ such that $T{\varphi}_{0}={x}_{1}$. Now, we choose ${\varphi}_{1}\in {\mathcal{R}}_{c}$ such that

for all $n\in \mathbb{N}$.

for all $n\in \mathbb{N}$.

*T*is ${\alpha}_{c}$-admissible and $\alpha ({\varphi}_{0}(c),{\varphi}_{1}(c))=\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$, we have

for all $n\in \mathbb{N}$.

for all $n\in \mathbb{N}$.

This implies that the sequence $\{{\varphi}_{n}\}$ is a Cauchy sequence in ${\mathcal{R}}_{c}\subseteq {E}_{0}$. Since ${\mathcal{R}}_{c}$ is topologically closed and ${E}_{0}$ is complete, we get $\{{\varphi}_{n}\}$ converges to a limit point ${\varphi}^{\ast}\in {\mathcal{R}}_{c}$, that is, ${lim}_{n\to \mathrm{\infty}}{\varphi}_{n}={\varphi}^{\ast}$.

*T*. By (3.3) and assumption (d), we get $\alpha ({\varphi}^{\ast}(c),T{\varphi}^{\ast})\ge 1$. From assumption (c), we get

This implies that $T{\varphi}^{\ast}={\varphi}^{\ast}(c)$ and so ${\varphi}^{\ast}$ is a PPF dependent fixed point of *T* in ${\mathcal{R}}_{c}$.

*T*in ${\mathcal{R}}_{c}$. Let ${\varphi}^{\ast}$ and ${\xi}^{\ast}$ be two PPF dependent fixed points of

*T*in ${\mathcal{R}}_{c}$ such that $\alpha ({\varphi}^{\ast}(c),T{\varphi}^{\ast})\ge 1$ and $\alpha ({\xi}^{\ast}(c),T{\xi}^{\ast})\ge 1$. By assumption (c), we have

and so ${\parallel {\varphi}^{\ast}-{\xi}^{\ast}\parallel}_{{E}_{0}}\le k{\parallel {\varphi}^{\ast}-{\xi}^{\ast}\parallel}_{{E}_{0}}$. Since $0<k<1$, we have ${\parallel {\varphi}^{\ast}-{\xi}^{\ast}\parallel}_{{E}_{0}}=0$ and hence ${\varphi}^{\ast}={\xi}^{\ast}$. Therefore, *T* has a unique PPF dependent fixed point in ${\mathcal{R}}_{c}$. This completes the proof. □

**Theorem 3.5**

*Let*$T:{E}_{0}\to E$, $\alpha :E\times E\to [0,\mathrm{\infty})$

*be two mappings satisfying the following conditions*:

- (a)
*There exists*$c\in I$*such that*${\mathcal{R}}_{c}$*is topologically closed and algebraically closed with respect to difference*. - (b)
*T**is*${\alpha}_{c}$-*admissible*. - (c)
*For all*$\varphi ,\xi \in {E}_{0}$,${(\alpha (\varphi (c),T\varphi )\alpha (\xi (c),T\xi )-1+{\u03f5}^{\prime})}^{{\parallel T\varphi -T\xi \parallel}_{E}}\le {\u03f5}^{k{\parallel \varphi -\xi \parallel}_{{E}_{0}}},$*where*$k\in [0,1)$*and*$1<\u03f5\le {\u03f5}^{\prime}$.

- (d)
*If*$\{{\varphi}_{n}\}$*is a sequence in*${E}_{0}$*such that*${\varphi}_{n}\to \varphi $*as*$n\to \mathrm{\infty}$*and*$\alpha ({\varphi}_{n}(c),T{\varphi}_{n})\ge 1$*for all*$n\in \mathbb{N}$,*then*$\alpha (\varphi (c),T\varphi )\ge 1$.

*If there exists* ${\varphi}_{0}\in {\mathcal{R}}_{c}$ *such that* $\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$, *then* *T* *has a unique PPF dependent fixed point* ${\varphi}^{\ast}$ *in* ${\mathcal{R}}_{c}$ *such that* $\alpha ({\varphi}^{\ast}(c),T{\varphi}^{\ast})\ge 1$.

*Moreover*,

*for a fixed*${\varphi}_{0}\in {\mathcal{R}}_{c}$

*such that*$\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$,

*if a sequence*$\{{\varphi}_{n}\}$

*of iterates of*

*T*

*in*${\mathcal{R}}_{c}$

*is defined by*

*for all* $n\in \mathbb{N}$, *then* $\{{\varphi}_{n}\}$ *converges to a PPF dependent fixed point of* *T* *in *${\mathcal{R}}_{c}$.

*Proof* For fixed ${\varphi}_{0}$ in ${\mathcal{R}}_{c}\subseteq {E}_{0}$ such that $\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$. Here we construct the sequence $\{{\varphi}_{n}\}$ in ${\mathcal{R}}_{c}$.

for all $n\in \mathbb{N}$.

for all $n\in \mathbb{N}$ since ${\mathcal{R}}_{c}$ is algebraically closed with respect to difference.

*T*is ${\alpha}_{c}$-admissible and $\alpha ({\varphi}_{0}(c),{\varphi}_{1}(c))=\alpha ({\varphi}_{0}(c),T{\varphi}_{0})\ge 1$, we have

By continuing this process, we get $\alpha ({\varphi}_{n-1}(c),T{\varphi}_{n-1})\ge 1$ for all $n\in \mathbb{N}$.

for all $n\in \mathbb{N}$.

This implies that the sequence $\{{\varphi}_{n}\}$ is a Cauchy sequence in ${\mathcal{R}}_{c}\subseteq {E}_{0}$.

Since ${\mathcal{R}}_{c}$ is topologically closed, by the completeness of ${E}_{0}$, we get $\{{\varphi}_{n}\}$ converges to a limit point ${\varphi}^{\ast}\in {\mathcal{R}}_{c}$, that is, ${lim}_{n\to \mathrm{\infty}}{\varphi}_{n}={\varphi}^{\ast}$.

*T*. Since $\alpha ({\varphi}_{n-1}(c),T{\varphi}_{n-1})\ge 1$ for all $n\in \mathbb{N}$ and ${lim}_{n\to \mathrm{\infty}}{\varphi}_{n}={\varphi}^{\ast}$, by using condition (d), we have $\alpha ({\varphi}^{\ast}(c),T{\varphi}^{\ast})\ge 1$. From condition (c), we get

for all $n\in \mathbb{N}$.

This implies that $T{\varphi}^{\ast}={\varphi}^{\ast}(c)$ and hence ${\varphi}^{\ast}$ is a PPF dependent fixed point of *T* in ${\mathcal{R}}_{c}$.

*T*in ${\mathcal{R}}_{c}$. Let ${\varphi}^{\ast}$ and ${\xi}^{\ast}$ be two PPF dependent fixed points of

*T*in ${\mathcal{R}}_{c}$ such that $\alpha ({\varphi}^{\ast}(c),T{\varphi}^{\ast})\ge 1$ and $\alpha ({\xi}^{\ast}(c),T{\xi}^{\ast})\ge 1$. Now we obtain that

and then ${\parallel {\varphi}^{\ast}-{\xi}^{\ast}\parallel}_{{E}_{0}}\le k{\parallel {\varphi}^{\ast}-{\xi}^{\ast}\parallel}_{{E}_{0}}$. Since $0\le k<1$, we get ${\parallel {\varphi}^{\ast}-{\xi}^{\ast}\parallel}_{{E}_{0}}=0$ and then ${\varphi}^{\ast}={\xi}^{\ast}$. Therefore, *T* has a unique PPF dependent fixed point in ${\mathcal{R}}_{c}$. This completes the proof. □

**Remark 3.6** If the Razumikhin class ${\mathcal{R}}_{c}$ is not topologically closed, then the limit of the sequence $\{{\varphi}_{n}\}$ in Theorems 3.3, 3.4 and 3.5 may be outside of ${\mathcal{R}}_{c}$, which may not be unique.

## 4 Consequences

In this section, we show that many existing results in the literature can be deduced from and applied easily to our theorems.

### 4.1 Banach contraction theorem

By applying Theorems 3.3, 3.4 and 3.5, we obtain the following results.

**Theorem 4.1**

*Let*$T:{E}_{0}\to E$,

*and there exists a real number*$k\in [0,1)$

*such that*

*for all* $\varphi ,\xi \in {E}_{0}$.

*If there exists* $c\in I$ *such that* ${\mathcal{R}}_{c}$ *is topologically closed and algebraically closed with respect to difference*, *then* *T* *has a unique PPF dependent fixed point in* ${\mathcal{R}}_{c}$.

*Moreover*,

*for a fixed*${\varphi}_{0}\in {\mathcal{R}}_{c}$,

*if a sequence*$\{{\varphi}_{n}\}$

*of iterates of*

*T*

*in*${\mathcal{R}}_{c}$

*is defined by*

*for all* $n\in \mathbb{N}$, *then* $\{{\varphi}_{n}\}$ *converges to a PPF dependent fixed point of* *T* *in* ${\mathcal{R}}_{c}$.

*Proof* Let $\alpha :E\times E\to [0,\mathrm{\infty})$ be the mapping defined by $\alpha (x,y)=1$ for all $x,y\in E$. Then *T* is an ${\alpha}_{c}$-admissible mapping. It is easy to show that all the hypotheses of Theorems 3.3, 3.4 and 3.5 are satisfied. Consequently, *T* has a unique PPF dependent fixed point in ${\mathcal{R}}_{c}$. □

### 4.2 PPF dependent coincidence point theorems

In this section, we discuss some relation between PPF dependent fixed point results and PPF dependent coincidence point results. First, we give the concept of PPF dependent coincidence point.

**Definition 4.2** Let $S:{E}_{0}\to {E}_{0}$ and $T:{E}_{0}\to E$. A point $\varphi \in {E}_{0}$ is said to be a PPF dependent coincidence point or a coincidence point with PPF dependence of *S* and *T* if $T\varphi =(S\varphi )(c)$ for some $c\in I$.

**Definition 4.3**Let $c\in I$ and $S:{E}_{0}\to {E}_{0}$, $T:{E}_{0}\to E$, $\alpha :E\times E\to [0,\mathrm{\infty})$. We say that $(S,T)$ is an ${\alpha}_{c}$-admissible pair if for $\varphi ,\xi \in {E}_{0}$,

**Remark 4.4** It easy to see that if $(S,T)$ is an ${\alpha}_{c}$-admissible pair and *S* is an identity mapping, then *T* is also an ${\alpha}_{c}$-admissible mapping.

Now, we indicate that Theorem 3.3 can be utilized to derive a PPF dependent coincidence point theorem.

**Theorem 4.5**

*Let*$S:{E}_{0}\to {E}_{0}$, $T:{E}_{0}\to E$, $\alpha :E\times E\to [0,\mathrm{\infty})$

*be three mappings satisfying the following conditions*:

- (a)
*There exists*$c\in I$*such that*$S({\mathcal{R}}_{c})$*is topologically closed and algebraically closed with respect to difference*. - (b)
$(S,T)$

*is*${\alpha}_{c}$-*admissible*. - (c)
*For all*$\varphi ,\xi \in {E}_{0}$,$\alpha ((S\varphi )(c),T\varphi )\alpha ((S\xi )(c),T\xi ){\parallel T\varphi -T\xi \parallel}_{E}\le k{\parallel S\varphi -S\xi \parallel}_{{E}_{0}},$*where*$k\in [0,1)$.

- (d)
*If*$\{S{\varphi}_{n}\}$*is a sequence in*${E}_{0}$*such that*$S{\varphi}_{n}\to S\varphi $*as*$n\to \mathrm{\infty}$*and*$\alpha ((S{\varphi}_{n})(c),T{\varphi}_{n})\ge 1$*for all*$n\in \mathbb{N}$,*then*$\alpha ((S\varphi )(c),T\varphi )\ge 1$. - (e)
$S({\mathcal{R}}_{c})\subseteq {\mathcal{R}}_{c}$.

*If there exists* ${\varphi}_{0}\in {\mathcal{R}}_{c}$ *such that* $\alpha (\varphi (c),T\varphi )\ge 1$, *then* *S* *and* *T* *have a PPF dependent coincidence point* *ω* *in* ${\mathcal{R}}_{c}$ *such that* $\alpha ((S\omega )(c),T\omega )\ge 1$.

*Proof*Consider the mapping $S:{E}_{0}\to {E}_{0}$. We obtain that there exists ${F}_{0}\subseteq {E}_{0}$ such that $S({F}_{0})=S({E}_{0})$ and $S{|}_{{F}_{0}}$ is one-to-one. Since $T({F}_{0})\subseteq T({E}_{0})\subseteq E$, we can define a mapping $\mathcal{A}:S({F}_{0})\to E$ by

for all $\varphi \in {F}_{0}$. Since $S{|}_{{F}_{0}}$ is one-to-one, then $\mathcal{A}$ is well defined.

for all $S\varphi ,S\xi \in S({E}_{0})$. This shows that $\mathcal{A}$ satisfies condition (c) of Theorem 3.3.

This implies that *ω* is a PPF dependent coincidence point of *T* and *S*. This completes the proof. □

Similarly, we can apply Theorems 3.4 and 3.5 to the Theorems 4.6 and 4.7. Then, in order to avoid repetition, the proof is omitted.

**Theorem 4.6**

*Let*$S:{E}_{0}\to {E}_{0}$, $T:{E}_{0}\to E$, $\alpha :E\times E\to [0,\mathrm{\infty})$

*be three mappings satisfying the following conditions*:

- (a)
*There exists*$c\in I$*such that*$S({\mathcal{R}}_{c})$*is topologically closed and algebraically closed with respect to difference*. - (b)
$(S,T)$

*is*${\alpha}_{c}$-*admissible*. - (c)
*For all*$\varphi ,\xi \in {E}_{0}$,${({\parallel T\varphi -T\xi \parallel}_{E}+\u03f5)}^{\alpha ((S\varphi )(c),T\varphi )\alpha ((S\xi )(c),T\xi )}\le k{\parallel S\varphi -S\xi \parallel}_{{E}_{0}}+\u03f5,$*where*$k\in [0,1)$*and*$\u03f5\ge 1$.

- (d)
*If*$\{S{\varphi}_{n}\}$*is a sequence in*${E}_{0}$*such that*$S{\varphi}_{n}\to S\varphi $*as*$n\to \mathrm{\infty}$*and*$\alpha ((S{\varphi}_{n})(c),T{\varphi}_{n})\ge 1$*for all*$n\in \mathbb{N}$,*then*$\alpha ((S\varphi )(c),T\varphi )\ge 1$. - (e)
$S({\mathcal{R}}_{c})\subseteq {\mathcal{R}}_{c}$.

*If there exists* ${\varphi}_{0}\in {\mathcal{R}}_{c}$ *such that* $\alpha (\varphi (c),T\varphi )\ge 1$, *then* *S* *and* *T* *have a PPF dependent coincidence point* *ω* *in* ${\mathcal{R}}_{c}$ *such that* $\alpha ((S\omega )(c),T\omega )\ge 1$.

**Theorem 4.7**

*Let*$S:{E}_{0}\to {E}_{0}$, $T:{E}_{0}\to E$, $\alpha :E\times E\to [0,\mathrm{\infty})$

*be three mappings satisfying the following conditions*:

- (a)
*There exists*$c\in I$*such that*$S({\mathcal{R}}_{c})$*is topologically closed and algebraically closed with respect to difference*. - (b)
$(S,T)$

*is*${\alpha}_{c}$-*admissible*. - (c)
*For all*$\varphi ,\xi \in {E}_{0}$,${(\alpha ((S\varphi )(c),T\varphi )\alpha ((S\xi )(c),T\xi )-1+{\u03f5}^{\prime})}^{{\parallel T\varphi -T\xi \parallel}_{E}}\le {\u03f5}^{k{\parallel S\varphi -S\xi \parallel}_{{E}_{0}}},$*where*$k\in [0,1)$*and*$1<\u03f5\le {\u03f5}^{\prime}$.

- (d)
*If*$\{S{\varphi}_{n}\}$*is a sequence in*${E}_{0}$*such that*$S{\varphi}_{n}\to S\varphi $*as*$n\to \mathrm{\infty}$*and*$\alpha ((S{\varphi}_{n})(c),T{\varphi}_{n})\ge 1$*for all*$n\in \mathbb{N}$,*then*$\alpha ((S\varphi )(c),T\varphi )\ge 1$. - (e)
$S({\mathcal{R}}_{c})\subseteq {\mathcal{R}}_{c}$.

*If there exists* ${\varphi}_{0}\in {\mathcal{R}}_{c}$ *such that* $\alpha (\varphi (c),T\varphi )\ge 1$, *then* *S* *and* *T* *have a PPF dependent coincidence point* *ω* *in* ${\mathcal{R}}_{c}$ *such that* $\alpha ((S\omega )(c),T\omega )\ge 1$.

## Declarations

### Acknowledgements

This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (under NRU-CSEC project No. NRU56000508).

## Authors’ Affiliations

## References

- Alber YI, Guerre-Delabriere S: Principles of weakly contractive maps in Hilbert spaces. Operator Theory: Advances and Applications 98. In
*New Results in Operator Theory and Its Applications*. Edited by: Gohberg Y, Lyubich Y. Birkhäuser, Basel; 1997:7–22.View ArticleGoogle Scholar - Azam A, Brian F, Khan M: Common fixed point theorems in complex valued metric spaces.
*Numer. Funct. Anal. Optim.*2011, 32: 243–253. 10.1080/01630563.2011.533046MathSciNetView ArticleGoogle Scholar - C̀iric̀ LB: A generalization of Banach principle.
*Proc. Am. Math. Soc.*1974, 45: 267–273.MathSciNetGoogle Scholar - Geraghty M: On contractive mappings.
*Proc. Am. Math. Soc.*1973, 40: 604–608. 10.1090/S0002-9939-1973-0334176-5MathSciNetView ArticleGoogle Scholar - Huang LG, Zhang X: Cone metric spaces and fixed point theorems of contractive mappings.
*J. Math. Anal. Appl.*2007, 332: 1468–1476. 10.1016/j.jmaa.2005.03.087MathSciNetView ArticleGoogle Scholar - Meir A, Keeler E: A theorem on contraction mappings.
*J. Math. Anal. Appl.*1969, 28: 326–329. 10.1016/0022-247X(69)90031-6MathSciNetView ArticleGoogle Scholar - Mizoguchi N, Takahashi W: Fixed point theorems for multivalued mappings on complete metric spaces.
*J. Math. Anal. Appl.*1989, 141: 177–188. 10.1016/0022-247X(89)90214-XMathSciNetView ArticleGoogle Scholar - Nadler SB Jr.: Multi-valued contraction mappings.
*Pac. J. Math.*1969, 30: 475–488. 10.2140/pjm.1969.30.475MathSciNetView ArticleGoogle Scholar - Kaneko H, Sessa S: Fixed point theorems for compatible multivalued and single valued mappings.
*Int. J. Math. Math. Sci.*1989, 12: 257–262. 10.1155/S0161171289000293MathSciNetView ArticleGoogle Scholar - Suzuki T: A generalized Banach contraction principle that characterizes metric completeness.
*Proc. Am. Math. Soc.*2008, 136: 1861–1869.View ArticleGoogle Scholar - Bernfeld SR, Lakshmikantham V, Reddy YM: Fixed point theorems of operators with PPF dependence in Banach spaces.
*Appl. Anal.*1977, 6: 271–280. 10.1080/00036817708839165MathSciNetView ArticleGoogle Scholar - Dhage BC: On some common fixed point theorems with PPF dependence in Banach spaces.
*J. Nonlinear Sci. Appl.*2012, 5: 220–232.MathSciNetGoogle Scholar - Drici Z, McRae FA, Vasundhara Devi J: Fixed-point theorems in partially ordered metric spaces for operators with PPF dependence.
*Nonlinear Anal.*2007, 67: 641–647. 10.1016/j.na.2006.06.022MathSciNetView ArticleGoogle Scholar - Drici Z, McRae FA, Vasundhara Devi J: Fixed point theorems for mixed monotone operators with PPF dependence.
*Nonlinear Anal.*2008, 69: 632–636. 10.1016/j.na.2007.05.044MathSciNetView ArticleGoogle Scholar - Sintunavarat, W, Kumam, P: PPF dependent fixed point theorems for rational type contraction mappings in Banach spaces. J. Nonlinear Analysis Optim., Theory Appl. (in press)Google Scholar
- Samet B, Vetro C, Vetro P: Fixed point theorem for
*α*-*ψ*contractive type mappings.*Nonlinear Anal.*2012, 75: 2154–2165. 10.1016/j.na.2011.10.014MathSciNetView ArticleGoogle Scholar - Alghamdi MA, Karapinar E:
*G*-*β*-*ψ*Contractive-type mappings and related fixed point theorems.*J. Inequal. Appl.*2013., 2013: Article ID 70Google Scholar - Hussain N, Karapinar E, Salimi P, Vetro P:Fixed point results for ${G}^{m}$-Meir-Keeler contractive and $G\text{-}(\alpha ,\psi )$-Meir-Keeler contractive mappings.
*Fixed Point Theory Appl.*2013., 2013: Article ID 34Google Scholar - Karapinar E, Samet B: Generalized
*α*-*ψ*contractive type mappings and related fixed point theorems with applications.*Abstr. Appl. Anal.*2012., 2012: Article ID 793486Google Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.