Skip to main content

Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces

Abstract

Very recently, Haghi et al. (Topol. Appl. 160:450-454, 2013) proved that some fixed point theorems in partial metric spaces can be obtained from metric spaces. In this paper, we prove some common fixed point theorems for four mappings f, g, S and T satisfying a nonlinear contraction in ordered metric spaces, where the mappings f and g are dominating and weak annihilators of the mappings T and S, respectively. We utilize the techniques of Haghi et al. to derive our main result, which is a generalization of the result of Shobkolaei et al. (Appl. Math. Comput. 219:443-452, 2012). Also, we introduce an example to support the usability of our results.

MSC:54H25, 47H10.

1 Introduction

One of the most important problems in mathematical analysis is to establish existence and uniqueness theorems for some integral and differential equations. Fixed point theory, in ordered metric spaces, plays a major role in solving such kind of problems. The first result in this direction was obtained by Ran and Reurings [1]. This one was extended for nondecreasing mappings by Nieto and Lopez [2, 3]. Meanwhile, Agarwal et al. [5] and O’Regan and Petruşel [4] studied some results for generalized contractions in ordered metric spaces. Then, many authors obtained fixed point results in ordered metric spaces. For some works in ordered metric spaces, we refer the reader to [6–19].

Berinde [20–24] initiated the concept of almost contraction and studied existence fixed point results for almost contraction in complete metric spaces. Later, many authors studied different types of almost contractions and studied fixed point results; for example, see [25–31].

In 1994 Matthews [32] introduced the concept of partial metric spaces and proved the Banach contraction principle in these spaces. Then, many authors obtained interesting results in partial metric spaces [33, 36–38]. Very recently, Haghi et al. [33] proved that some fixed point theorems in partial metric spaces can be obtained from metric spaces.

The purpose of this paper is to prove some common fixed point theorems for four mappings f, g, S and T satisfying a nonlinear contraction in ordered metric spaces, where the mappings f and g are dominating and weak annihilators of the mappings T and S, respectively. We utilize the results of Haghi et al. [33] to derive Theorem 2.1.

2 Previous notations and results

In the sequel, we have to recall previous notations and results.

Let f and g be self-mappings of a set X. If w=fx=gx for some x∈X, then x is called a coincidence point of f and g, and w is called a point of coincidence of f and g. Two self-mappings f and g are said to be weakly compatible if they commute at their coincidence point, that is, if fx=gx, then fgx=gfx. For details, please see [34].

Now, consider (X,⪯) to be a partially ordered set. According to [35], a mapping f is called weak annihilator of g if fgx⪯x for all x∈X and f is called dominating if x⪯fx for all x∈X.

Recently, Shobkolaei et al. [38] initiated the concept of almost generalized (S,T)-contractive condition in a partial metric space and studied some common fixed point results in partial metric spaces.

Definition 2.1 [38]

Let f, g, S and T be self-maps on a partial metric space (X,p). Then f and g are said to satisfy almost generalized (S,T)-contractive condition if there exists δ∈[0,1) such that

p(fx,gy)≤δmax { p ( S x , T y ) , p ( f x , S x ) , p ( g y , T y ) , p ( S x , g y ) + p ( f x , T y ) 2 }
(2.1)

for all x,y∈X.

Theorem 2.1 [38]Let (X,p,⪯) be a complete ordered partial metric space. Let f,g,T,S:X→X be mappings with fX⊆TX and gX⊆SX, and the dominating mappings f and g are weak annihilators of T and S, respectively. Suppose that f and g satisfy almost generalized (S,T)-contractive condition (2.1) for any two comparable elements x,y∈X. If for a nondecreasing sequence { x n } with x n ⪯ y n for all n but finitely many and y n →u implies that x n ⪯u, and furthermore

  1. (1)

    {f,S} and {g,T} are weakly compatible;

  2. (2)

    one of fX, gX, SX and TX is a closed subspace of X,

then f, g, S and T have a common fixed point.

Moreover, the set of common fixed points of f, g, S and T is well ordered if and only if f, g, S and T have one and only one common fixed point.

3 Main result

Let Ψ denote all functions ψ:[0,+∞)→[0,+∞) such that

  1. (1)

    ψ is continuous and nondecreasing;

  2. (2)

    ψ(t)=0 if and only if t=0.

Also, let Φ denote all functions ϕ:[0,+∞)×[0,+∞)×[0,+∞)→[0,+∞) such that

  1. (1)

    Ï• is continuous;

  2. (2)

    Ï•(t,s,u)=0 if and only if u=s=t=0.

If ψ∈Ψ, then ψ is called an altering distance function (see [39]).

Now, we introduce our definition.

Definition 3.1 Let f, g, S and T be self-mappings on a metric space (X,d). Then f and g are said to satisfy the almost nonlinear (S,T,L,ψ,ϕ)-contractive condition if there exist ψ∈Ψ, ϕ∈Φ and L∈[0,+∞) such that

ψ ( d ( f x , g y ) ) ≤ ψ ( max { d ( S x , T y ) , d ( f x , S x ) , d ( g y , T y ) , 1 2 ( d ( S x , g y ) + d ( f x , T y ) ) } ) − ϕ ( d ( S x , T y ) , d ( S x , g y ) , d ( f x , T y ) ) + L min { d ( S x , T y ) , d ( S x , g y ) , d ( f x , T y ) }
(3.1)

for all x,y∈X.

Now, let (X,d,⪯) be an ordered metric space. We say that X satisfies the property (π) if the following statement holds true.

(π) If { x n } is a nondecreasing sequence in X and { y n } is a sequence in X such that x n ⪯ y n for all n but finitely many and y n →u, then x n ⪯u for all n but finitely many.

In the rest of this paper, â„• stands for the set of nonnegative integer numbers.

Theorem 3.1 Let (X,d,⪯) be a complete ordered metric space. Let f,g,T,S:X→X be four mappings such that f and g satisfy the nonlinear (S,T,L,ψ,ϕ)-contractive condition (3.1) for any two comparable elements x,y∈X. Suppose that f, g, S and T satisfy the following conditions:

  1. (1)

    fX⊆TX;

  2. (2)

    gX⊆SX;

  3. (3)

    La−ϕ(a,a,a)<0 for all a>0;

  4. (4)

    f is dominating and weak annihilator of T;

  5. (5)

    g is dominating and weak annihilator of S;

  6. (6)

    {f,S} and {g,T} are weakly compatible;

  7. (7)

    one of fX, gX, SX and TX is a closed subspace of X.

If X has the property (Ï€), then f, g, S and T have a common fixed point.

Proof Let x 0 ∈X. Since fX⊆TX, we choose x 1 ∈X such that f x 0 =T x 1 . Also, since gX⊆SX, we choose x 2 ∈X such that g x 1 =S x 2 . Continuing this process, we can construct a sequence { y n } in X such y 2 n :=f x 2 n =T x 2 n + 1 and y 2 n + 1 :=g x 2 n + 1 =S x 2 n + 2 . Since f is dominating and weak annihilator of T and g is dominating and weak annihilator of S,

x 2 n ⪯f x 2 n =T x 2 n + 1 ⪯fT x 2 n + 1 ⪯ x 2 n + 1 ⪯g x 2 n + 1 =S x 2 n + 2 ⪯gS x 2 n + 2 ⪯ x 2 n + 2 .

Thus, for all n≥0, we have x n ⪯ x n + 1 .

Suppose y 2 n = y 2 n + 1 for some n∈N. We claim that y 2 n + 1 = y 2 n + 2 . Since x 2 n + 2 and x 2 n + 3 are comparable, we have

ψ ( d ( y 2 n + 2 , y 2 n + 1 ) ) = ψ ( d ( f x 2 n + 2 , g x 2 n + 1 ) ) ≤ ψ ( max { d ( S x 2 n + 2 , T x 2 n + 1 ) , d ( f x 2 n + 2 , S x 2 n + 2 ) , d ( g x 2 n + 1 , T x 2 n + 1 ) , 1 2 ( d ( S x 2 n + 2 , g x 2 n + 1 ) + d ( f x 2 n + 2 , T x 2 n + 1 ) ) } ) − ϕ ( d ( S x 2 n + 2 , T x 2 n + 1 ) , d ( S x 2 n + 2 , g x 2 n + 1 ) , d ( f x 2 n + 2 , T x 2 n + 1 ) ) + L min { d ( S x 2 n + 2 , T x 2 n + 1 ) , d ( S x 2 n + 2 , g x 2 n + 1 ) , d ( f x 2 n + 2 , T x 2 n + 1 ) } = ψ ( max { d ( y 2 n + 1 , y 2 n ) , d ( y 2 n + 2 , y 2 n + 1 ) , d ( y 2 n + 1 , y 2 n ) , 1 2 ( d ( y 2 n + 1 , y 2 n + 1 ) + d ( y 2 n + 2 , y 2 n ) ) } ) − ϕ ( d ( y 2 n + 1 , y 2 n ) , d ( y 2 n + 1 , y 2 n + 1 ) , d ( y 2 n + 2 , y 2 n ) ) + L min { d ( y 2 n + 1 , y 2 n ) , d ( y 2 n + 1 , y 2 n + 1 ) , d ( y 2 n + 2 , y 2 n ) } = ψ ( max { 0 , d ( y 2 n + 2 , y 2 n + 1 ) , 1 2 ( d ( y 2 n + 2 , y 2 n + 1 ) ) } ) − ϕ ( 0 , 0 , d ( y 2 n + 2 , y 2 n + 1 ) ) = ψ ( d ( y 2 n + 2 , y 2 n + 1 ) ) − ϕ ( 0 , 0 , d ( y 2 n + 2 , y 2 n + 1 ) ) ≤ ψ ( d ( y 2 n + 2 , y 2 n + 1 ) ) .

Therefore, Ï•(0,0,d( y 2 n + 2 , y 2 n + 1 ))=0 and hence y 2 n + 2 = y 2 n + 1 . Similarly, we may show that y 2 n + 3 = y 2 n + 2 . Thus { y n } is a constant sequence in X, hence it is a Cauchy sequence in (X,d).

Suppose y 2 n ≠ y 2 n + 1 for all n∈N. Given n∈N. If n is even, then n=2t for some t∈N. Since x 2 t and x 2 t + 1 are comparable, we have

ψ ( d ( y n , y n + 1 ) ) = ψ ( d ( y 2 t , y 2 t + 1 ) ) = ψ ( d ( f x 2 t , g x 2 t + 1 ) ) ≤ ψ ( max { d ( S x 2 t , T x 2 t + 1 ) , d ( f x 2 t , S x 2 t ) , d ( g x 2 t + 1 , T x 2 t + 1 ) , 1 2 ( d ( S x 2 t , g x 2 t + 1 ) + d ( f x 2 t , T x 2 t + 1 ) ) } ) − ϕ ( d ( S x 2 t , T x 2 t + 1 ) , d ( S x 2 t , g x 2 t + 1 ) , d ( f x 2 t , T x 2 t + 1 ) ) + L min { d ( S x 2 t , T x 2 t + 1 ) , d ( S x 2 t , g x 2 t + 1 ) , d ( f x 2 t , T x 2 t + 1 ) } = ψ ( max { d ( y 2 t − 1 , y 2 t ) , d ( y 2 t , y 2 t + 1 ) , 1 2 ( d ( y 2 t − 1 , y 2 t + 1 ) ) } ) − ϕ ( d ( y 2 t − 1 , y 2 t ) , d ( y 2 t − 1 , y 2 t + 1 ) , 0 ) ≤ ψ ( max { d ( y 2 t − 1 , y 2 t ) , d ( y 2 t , y 2 t + 1 ) , 1 2 ( d ( y 2 t − 1 , y 2 t ) + d ( y 2 t , y 2 t + 1 ) ) } ) − ϕ ( d ( y 2 t − 1 , y 2 t ) , d ( y 2 t − 1 , y 2 t + 1 ) , 0 ) = ψ ( max { d ( y 2 t − 1 , y 2 t ) , d ( y 2 t , y 2 t + 1 ) } ) − ϕ ( d ( y 2 t − 1 , y 2 t ) , d ( y 2 t − 1 , y 2 t + 1 ) , 0 ) ≤ ψ ( max { d ( y 2 t − 1 , y 2 t ) , d ( y 2 t , y 2 t + 1 ) } ) .

If

max { d ( y 2 t − 1 , y 2 t ) , d ( y 2 t , y 2 t + 1 ) } =d( y 2 t , y 2 t + 1 ),

then

ϕ ( d ( y 2 t − 1 , y 2 t ) , d ( y 2 t − 1 , y 2 t + 1 ) , 0 ) =0,

and hence d( y 2 t − 1 , y 2 t )=d( y 2 t − 1 , y 2 t + 1 )=0. Thus y 2 t − 1 = y 2 t , a contradiction.

Thus,

max { d ( y 2 t − 1 , y 2 t ) , d ( y 2 t , y 2 t + 1 ) } =d( y 2 t − 1 , y 2 t ).
(3.2)

Therefore,

ψ ( d ( y 2 t , y 2 t + 1 ) ) ≤ψ ( d ( y 2 t − 1 , y 2 t ) ) −ϕ ( d ( y 2 t − 1 , y 2 t ) , d ( y 2 t − 1 , y 2 t + 1 ) , 0 ) .
(3.3)

If n is odd, then n=2t+1 for some t∈N. Since x 2 t + 2 and x 2 t + 1 are comparable, we have

ψ ( d ( y n , y n + 1 ) = ψ ( d ( y 2 t + 2 , y 2 t + 1 ) ) = ψ ( d ( f x 2 t + 2 , g x 2 t + 1 ) ) ≤ ψ ( max { d ( S x 2 t + 2 , T x 2 t + 1 ) , d ( f x 2 t + 2 , S x 2 t + 2 ) , d ( g x 2 t + 1 , T x 2 t + 1 ) , 1 2 ( d ( S x 2 t + 2 , g x 2 t + 1 ) + d ( f x 2 t + 2 , T x 2 t + 1 ) ) } ) − ϕ ( d ( S x 2 t + 2 , T x 2 t + 1 ) , d ( S x 2 t + 2 , g x 2 t + 1 ) , d ( f x 2 t + 2 , T x 2 t + 1 ) ) + L min { d ( S x 2 t + 2 , T x 2 t + 1 ) , d ( S x 2 t + 2 , g x 2 t + 1 ) , d ( f x 2 t + 2 , T x 2 t + 1 ) } = ψ ( max { d ( y 2 t + 1 , y 2 t ) , d ( y 2 t + 2 , y 2 t + 1 ) , 1 2 ( d ( y 2 t + 2 , y 2 t ) ) } ) − ϕ ( d ( y 2 t + 1 , y 2 t ) , 0 , d ( y 2 t + 2 , y 2 t ) ) ≤ ψ ( max { d ( y 2 t + 1 , y 2 t ) , d ( y 2 t + 2 , y 2 t + 1 ) , 1 2 ( d ( y 2 t + 2 , y 2 t + 1 ) + d ( d ( y 2 t + 1 , y 2 t ) ) ) } ) − ϕ ( d ( y 2 t + 1 , y 2 t ) , 0 , d ( y 2 t + 2 , y 2 t ) ) = ψ ( max { d ( y 2 t + 1 , y 2 t ) , d ( y 2 t + 2 , y 2 t + 1 ) } ) − ϕ ( d ( y 2 t + 1 , y 2 t ) , 0 , d ( y 2 t + 2 , y 2 t ) ) ≤ ψ ( max { d ( y 2 t + 1 , y 2 t ) , d ( y 2 t + 2 , y 2 t + 1 ) } ) .

If

max { d ( y 2 t + 1 , y 2 t ) , d ( y 2 t + 2 , y 2 t + 1 ) } =d( y 2 t + 2 , y 2 t + 1 ),

then

Ï• ( d ( y 2 t + 1 , y 2 t ) , 0 , d ( y 2 t + 2 , y 2 t ) ) =0,

and hence d( y 2 t + 1 , y 2 t )=d( y 2 t + 2 , y 2 t )=0. Thus y 2 t + 1 = y 2 t , a contradiction. So,

max { d ( y 2 t + 1 , y 2 t ) , d ( y 2 t + 2 , y 2 t + 1 ) } =d( y 2 t + 1 , y 2 t ).
(3.4)

Therefore

ψ ( d ( y 2 t + 2 , y 2 t + 1 ) ) ≤ψ ( d ( y 2 t + 1 , y 2 t ) ) −ϕ ( d ( y 2 t + 1 , y 2 t ) , 0 , d ( y 2 t + 2 , y 2 t ) ) .
(3.5)

From (3.2) and (3.4), we have

d( y n , y n + 1 )≤d( y n − 1 , y n ).
(3.6)

Therefore {d( y n + 1 , y n ):n∈N} is a nonincreasing sequence. Thus there exists r≥0 such that

lim n → + ∞ d( y n , y n + 1 )=r.

On taking lim sup in (3.3) and (3.5), we have

ψ(r)≤ψ(r)− lim inf t → + ∞ ϕ ( d ( y 2 t − 1 , y 2 t ) , d ( y 2 t − 1 , y 2 t + 1 ) , 0 )

and

ψ(r)≤ψ(r)− lim inf t → + ∞ ϕ ( d ( y 2 t + 1 , y 2 t ) , 0 , d ( y 2 t , y 2 t + 2 ) ) .

Thus

lim inf t → + ∞ d( y 2 t − 1 , y 2 t )= lim inf t → + ∞ d( y 2 t − 1 , y 2 t + 1 )= lim inf t → + ∞ d( y 2 t , y 2 t + 2 )= lim inf t → + ∞ d( y 2 t , y 2 t + 1 )=0.

Therefore, r=0 and hence

lim n → + ∞ d( y n , y n + 1 )=0.
(3.7)

Now, we show that { y n } is a Cauchy sequence in the metric space (X,d). It is sufficient to show that { y 2 n } is a Cauchy sequence in (X,d). Suppose to the contrary; that is, { y 2 n } is not a Cauchy sequence in (X,d). Then there exists ϵ>0 for which we can find two subsequences { y 2 m ( i ) } and { y 2 n ( i ) } of { y 2 n } such that n(i) is the smallest index for which

n(i)>m(i)>i,d( y 2 m ( i ) , y 2 n ( i ) )≥ϵ
(3.8)

and

d( y 2 m ( i ) , y 2 n ( i ) − 2 )<ϵ.
(3.9)

From (3.8), (3.9) and the triangular inequality, we get that

ϵ ≤ d ( y 2 m ( i ) , y 2 n ( i ) ) ≤ d ( y 2 m ( i ) , y 2 n ( i ) − 2 ) + d ( y 2 n ( i ) − 2 , y 2 n ( i ) − 1 ) + d ( y 2 n ( i ) − 1 , y 2 n ( i ) ) < ϵ + d ( y 2 n ( i ) − 2 , y 2 n ( i ) − 1 ) + d ( y 2 n ( i ) − 1 , y 2 n ( i ) ) .

On letting i→+∞ in the above inequalities and using (3.7), we have

lim i → + ∞ d( y 2 m ( i ) , y 2 n ( i ) )=ϵ.
(3.10)

Again, from (3.8) and the triangular inequality, we get that

ϵ ≤ d ( y 2 m ( i ) , y 2 n ( i ) ) ≤ d ( y 2 n ( i ) , y 2 n ( i ) − 1 ) + d ( y 2 n ( i ) − 1 , y 2 m ( i ) ) ≤ d ( y 2 n ( i ) , y 2 n ( i ) − 1 ) + d ( y 2 n ( i ) − 1 , y 2 m ( i ) + 1 ) + d ( y 2 m ( i ) + 1 , y 2 m ( i ) ) ≤ d ( y 2 n ( i ) , y 2 n ( i ) − 1 ) + d ( y 2 n ( i ) − 1 , y 2 m ( i ) ) + 2 d ( y 2 m ( i ) + 1 , y 2 m ( i ) ) ≤ 2 d ( y 2 n ( i ) , y 2 n ( i ) − 1 ) + d ( y 2 n ( i ) , y 2 m ( i ) ) + 2 d ( y 2 m ( i ) + 1 , y 2 m ( i ) ) .

Letting i→+∞ in the above inequalities and using (3.7) and (3.10), we get that

lim i → + ∞ d ( y 2 m ( i ) , y 2 n ( i ) ) = lim i → + ∞ d ( y 2 m ( i ) + 1 , y 2 n ( i ) − 1 ) = lim i → + ∞ d ( y 2 m ( i ) + 1 , y 2 n ( i ) ) = lim i → + ∞ d ( y 2 m ( i ) , y 2 n ( i ) − 1 ) = ϵ .

Since x 2 n ( i ) and x 2 m ( i ) + 1 are comparable, we have

ψ ( d ( y 2 n ( i ) , y 2 m ( i ) + 1 ) ) = ψ ( d ( f x 2 n ( i ) , g x 2 m ( i ) + 1 ) ) ≤ ψ ( max { d ( S x 2 n ( i ) , T x 2 m ( i ) + 1 ) , d ( f x 2 n ( i ) , S x 2 n ( i ) ) , d ( g x 2 m ( i ) + 1 , T x 2 m ( i ) + 1 ) , 1 2 ( d ( S x 2 n ( i ) , g x 2 m ( i ) + 1 ) + d ( f x 2 n ( i ) , T x 2 m ( i ) + 1 ) ) } ) − ϕ ( d ( S x 2 n ( i ) , T x 2 m ( i ) + 1 ) , d ( S x 2 n ( i ) , g x 2 m ( i ) + 1 ) , d ( f x 2 n ( i ) , T x 2 m ( i ) + 1 ) ) + L min { d ( S x 2 n ( i ) , T x 2 m ( i ) + 1 ) , d ( S x 2 n ( i ) , g x 2 m ( i ) + 1 ) , d ( f x 2 n ( i ) , T x 2 m ( i ) + 1 ) } = ψ ( max { d ( y 2 n ( i ) − 1 , y 2 m ( i ) ) , d ( y 2 n ( i ) , y 2 n ( i ) − 1 ) , d ( y 2 m ( i ) + 1 , y 2 m ( i ) ) , 1 2 ( d ( y 2 n ( i ) , y 2 m ( i ) ) + d ( y 2 n ( i ) − 1 , y 2 m ( i ) + 1 ) ) } ) − ϕ ( d ( y 2 n ( i ) − 1 , y 2 m ( i ) ) , d ( y 2 n ( i ) − 1 , y 2 m ( i ) + 1 ) , d ( y 2 n ( i ) , y 2 m ( i ) ) ) + L min { d ( y 2 n ( i ) − 1 , y 2 m ( i ) ) , d ( y 2 n ( i ) − 1 , y 2 m ( i ) + 1 ) , d ( y 2 n ( i ) , y 2 m ( i ) ) } .

Letting i→+∞ and using the continuity of ψ, we get that

ψ(ϵ)≤ψ(ϵ)−ϕ(ϵ,ϵ,ϵ)+Lϵ.

By condition (3), we get ψ(ϵ)=0 and hence ϵ=0, a contradiction. Thus { y n } is a Cauchy sequence in (X,d).

Since (X,d) is complete, there is y∈X such that y n →y in the metric space (X,d). Thus

lim n → + ∞ d( y n ,y)=0.
(3.11)

Now we show that y is the fixed point of g and T. Assume that TX is closed, since { y 2 n =T x 2 n + 1 } is a sequence in TX converging to y, we have y∈TX. So, there exists u∈X such that y=Tu. Therefore,

lim n → + ∞ f x 2 n = lim n → + ∞ g x 2 n + 1 = lim n → + ∞ T x 2 n + 1 = lim n → + ∞ S x 2 n + 2 =y=Tu.

Now, we show that gu=y. Since x 2 n ⪯f x 2 n and y 2 n =f x 2 n →y, we have x 2 n ⪯y. Since the mapping f is dominating and weak annihilator of T, we obtain x 2 n ⪯y=Tu⪯fTu⪯u. Thus

ψ ( d ( y 2 n , g u ) ) = ψ ( d ( f x 2 n , g u ) ) ≤ ψ ( max { d ( S x 2 n , T u ) , d ( f x 2 n , S x 2 n ) , d ( g u , T u ) , 1 2 ( d ( S x 2 n , g u ) + d ( f x 2 n , T u ) ) } ) − ϕ ( d ( S x 2 n , T u ) , d ( S x 2 n , g u ) , d ( f x 2 n , T u ) ) + L min { d ( S x 2 n , T u ) , d ( S x 2 n , g u ) , d ( f x 2 n , T u ) } = ψ ( max { d ( y 2 n − 1 , y ) , d ( y 2 n , y 2 n − 1 ) , d ( g u , y ) , 1 2 ( d ( y 2 n − 1 , g u ) + d ( y 2 n , y ) ) } ) − ϕ ( d ( y 2 n − 1 , y ) , d ( y 2 n − 1 , g u ) , d ( y 2 n , y ) ) + L min { d ( y 2 n − 1 , y ) , d ( y 2 n − 1 , g u ) , d ( y 2 n , y ) } .

Letting n→+∞ in the above inequalities and using (3.7), we get that

ψ ( d ( y , g u ) ) ≤ψ ( d ( g u , y ) ) −ϕ ( 0 , d ( y , g u ) , 0 ) .

Therefore Ï•(0,d(y,gu),0)=0 and hence d(gu,y)=0. Thus gu=y. Since g and T are weakly compatible and gu=gTu=Tgu=Ty, we have

gy=gTu=Tgu=Ty.

Again, since x 2 n and y are comparable, we have

ψ ( d ( y 2 n , g y ) ) = ψ ( d ( f x 2 n , g y ) ) ≤ ψ ( max { d ( S x 2 n , T y ) , d ( f x 2 n , S x 2 n ) , d ( g y , T y ) , 1 2 ( d ( S x 2 n , g y ) + d ( f x 2 n , T y ) ) } ) − ϕ ( d ( S x 2 n , T y ) , d ( S x 2 n , g y ) , d ( f x 2 n , T y ) ) + L min { d ( S x 2 n , T y ) , d ( S x 2 n , g y ) , d ( f x 2 n , T y ) } = ψ ( max { d ( y 2 n − 1 , g y ) , d ( y 2 n , y 2 n − 1 ) , d ( g y , g y ) , 1 2 ( d ( y 2 n − 1 , g y ) + d ( y 2 n , g y ) ) } ) − ϕ ( d ( y 2 n − 1 , g y ) , d ( y 2 n − 1 , g y ) , d ( y 2 n , g y ) ) + min { d ( y 2 n − 1 , g y ) , d ( y 2 n − 1 , g y ) , d ( y 2 n , g y ) } .

On letting n→+∞ in the above inequalities and using (3.7), we have

ψ ( d ( y , g y ) ) ≤ψ ( d ( y , g y ) ) −ϕ ( d ( y , g y ) , d ( y , g y ) , d ( y , g y ) ) +Ld(y,gy).

Using condition (3), we get ψ(d(y,gy))=0. Thus d(y,gy)=0 and hence gy=y.

Finally, we have to show that y is also a fixed point of f and T. Since gX⊆SX, there exists v∈X such that y=gy=Sv. Since the mapping g is dominating and weak annihilator of S, we have y⪯gy=Sv⪯gSv⪯v. Thus y and v are comparable, and hence

ψ ( d ( f v , S v ) ) = ψ ( d ( f v , g y ) ) ≤ ψ ( max { d ( S v , T y ) , d ( f v , S v ) , d ( g y , T y ) , 1 2 ( d ( S v , g y ) + d ( f v , T y ) ) } ) − ϕ ( d ( S v , T y ) , d ( S v , g y ) , d ( f v , T y ) ) + L min { d ( S v , T y ) , d ( S v , g y ) , d ( f v , T y ) } = ψ ( max { d ( S v , S v ) , d ( f v , S v ) , d ( S v , S v ) , 1 2 ( d ( S v , S v ) + d ( f v , S v ) ) } ) − ϕ ( d ( S v , S v ) , d ( S v , S v ) , d ( f v , S v ) ) + L min { d ( S v , S v ) , d ( S v , S v ) , d ( f v , S v ) } = ψ ( d ( f v , S v ) ) − ϕ ( 0 , 0 , d ( f v , S v ) ) + L d ( f v , S v ) .

Using condition (3), we get ψ(d(fv,Sv))=0. Thus d(fv,Sv)=0 and hence fv=Sv=gy=y. Since f and S are weakly compatible, we have fy=fSv=Sfv=Sy. Since y and y are comparable, we have

ψ ( d ( f y , y ) ) = ψ ( d ( f y , g y ) ) ≤ ψ ( max { d ( S y , T y ) , d ( f y , S y ) , d ( g y , T y ) , 1 2 ( d ( S y , g y ) + d ( f y , T y ) ) } ) − ϕ ( d ( S y , T y ) , d ( S y , g y ) , d ( f y , T y ) ) + L min { d ( S y , T y ) , d ( S y , g y ) , d ( f y , T y ) } = ψ ( max { d ( f y , y ) , d ( f y , f y ) , d ( y , y ) , 1 2 ( d ( f y , y ) + d ( f y , y ) ) } ) − ϕ ( d ( f y , y ) , d ( f y , y ) , d ( f y , y ) ) + L min { d ( f y , y ) , d ( f y , y ) , d ( f y , y ) } = ψ ( d ( f y , y ) ) − ϕ ( d ( f y , y ) , d ( f y , y ) , d ( f y , y ) ) + L d ( f y , y ) .

Using condition (3), we get ψ(d(fy,y))=0. Thus d(fy,y)=0 and hence fy=y. So, y is a common fixed point of f, g, T and S. In case SX, fX or gX is closed, the proof of the existence of a common fixed point is similar to the arguments above. □

Corollary 3.1 Let (X,d,⪯) be a complete ordered metric space, and let f,g,T,S:X→X be four mappings. Assume that there exist ψ∈Ψ and ϕ∈Φ such that

ψ ( d ( f x , g y ) ) ≤ ψ ( max { d ( S x , T y ) , d ( f x , S x ) , d ( g y , T y ) , 1 2 ( d ( S x , g y ) + d ( f x , T y ) ) } ) − ϕ ( max { d ( S x , T y ) , d ( S x , g y ) , d ( f x , T y ) } )

holds for any two comparable elements x,y∈X. Suppose that f, g, S and T satisfy the following conditions:

  1. (1)

    fX⊆TX;

  2. (2)

    gX⊆SX;

  3. (3)

    f is dominating and weak annihilator of T;

  4. (4)

    g is dominating and weak annihilator of S;

  5. (5)

    {f,S} and {g,T} are weakly compatible;

  6. (6)

    one of fX, gX, SX and TX is a closed subspace of X.

If X satisfies the property (Ï€), then f, g, S and T have a common fixed point.

Corollary 3.2 Let (X,d,⪯) be a complete ordered metric space, and let f,g,T,S:X→X be four mappings. Assume that there exist ϕ 1 ,ψ∈Ψ such that

ψ ( d ( f x , g y ) ) ≤ ψ ( max { d ( S x , T y ) , d ( f x , S x ) , d ( g y , T y ) , 1 2 ( d ( S x , g y ) + d ( f x , T y ) ) } ) − ϕ 1 ( max { d ( S x , T y ) , d ( S x , g y ) , d ( f x , T y ) } )

holds for any two comparable elements x,y∈X. Suppose that f, g, S and T satisfy the following conditions:

  1. (1)

    fX⊆TX;

  2. (2)

    gX⊆SX;

  3. (3)

    f is dominating and weak annihilator of T;

  4. (4)

    g is dominating and weak annihilator of S;

  5. (5)

    {f,S} and {g,T} are weakly compatible;

  6. (6)

    one of fX, gX, SX and TX is a closed subspace of X.

If X satisfies the property (Ï€), then f, g, S and T have a common fixed point.

Proof Follows from Corollary 3.1 by defining ϕ:[0,+∞)×[0,+∞)×[0,+∞)→[0,+∞) via ϕ(s,t,u)= ϕ 1 (max{s,t,u}) and noting that ϕ∈Φ. □

Corollary 3.3 Let (X,d,⪯) be a complete ordered metric space, and let f,g,T,S:X→X be four mappings. Assume that there exist ϕ 1 ,ψ∈Ψ such that

ψ ( d ( f x , g y ) ) ≤ ψ ( max { d ( S x , T y ) , d ( f x , S x ) , d ( g y , T y ) , 1 2 ( d ( S x , g y ) + d ( f x , T y ) ) } ) − ϕ 1 ( max { d ( S x , T y ) , d ( f x , S x ) , d ( g y , T y ) , 1 2 ( d ( S x , g y ) + d ( f x , T y ) ) } )

holds for any two comparable elements x,y∈X. Suppose that f, g, S and T satisfy the following conditions:

  1. (1)

    fX⊆TX;

  2. (2)

    gX⊆SX;

  3. (3)

    f is dominating and weak annihilator of T;

  4. (4)

    g is dominating and weak annihilator of S;

  5. (5)

    {f,S} and {g,T} are weakly compatible;

  6. (6)

    one of fX, gX, SX and TX is a closed subspace of X.

If X satisfies the property (Ï€), then f, g, S and T have a common fixed point.

Proof By noting that

ϕ 1 ( max { d ( S x , T y ) , d ( S x , g y ) , d ( f x , T y ) } ) ≤ ϕ 1 ( max { d ( S x , T y ) , d ( f x , S x ) , d ( g y , T y ) , 1 2 ( d ( S x , g y ) + d ( f x , T y ) ) } ) ,

the proof follows from Corollary 3.2. □

Jachymski [40] proved that some conditions for generalized contractions in (ordered) metric spaces are equivalent. By the aid of Lemma 1 [40], we have the following result.

Theorem 3.2 Let f, g, S and T be self-mappings on a partial ordered metric space (X,d), and set

M(x,y)=max { d ( S x , T y ) , d ( f x , S x ) , d ( g y , T y ) , 1 2 ( d ( S x , g y ) + d ( f x , T y ) ) } .

Then the following are equivalent:

  1. (i)

    There exist α∈[0,1) and ψ∈Ψ such that

    ψ ( d ( f x , g y ) ) ≤αψ ( M ( x , y ) )

    for all comparable elements x,y∈X.

  2. (ii)

    There exist ψ,ϕ∈Ψ such that

    ψ ( d ( f x , g y ) ) ≤ψ ( M ( x , y ) ) −ϕ ( M ( x , y ) )

    for all comparable elements x,y∈X.

  3. (iii)

    There exists a continuous nondecreasing function ϕ:[0,+∞)→[0,+∞) such that ϕ(t)<t for all t>0 and for any x,y∈X,

    d(fx,gy)≤ϕ ( M ( x , y ) ) .

Proof Set D={(M(x,y),d(fx,gy)):x,y are two comparable elements in X}. Then the proof follows from Lemma 1 of [40]. □

By the aid of Theorem 3.2 and Corollary 3.3, we have the following results.

Theorem 3.3 Let (X,d,⪯) be a complete ordered metric space, and let f,g,T,S:X→X be four mappings. Assume that there exist ψ∈Ψ and k∈[0,1) such that

ψ ( d ( f x , g y ) ) ≤kψ ( max { d ( S x , T y ) , d ( f x , S x ) , d ( g y , T y ) , 1 2 ( d ( S x , g y ) + d ( f x , T y ) ) } )

holds, for any two comparable elements x,y∈X. Suppose that f, g, S and T satisfy the following conditions:

  1. (1)

    fX⊆TX;

  2. (2)

    gX⊆SX;

  3. (3)

    f is dominating and weak annihilator of T;

  4. (4)

    g is dominating and weak annihilator of S;

  5. (5)

    {f,S} and {g,T} are weakly compatible;

  6. (6)

    one of fX, gX, SX and TX is a closed subspace of X.

If X satisfies the property (Ï€), then f, g, S and T have a common fixed point.

Theorem 3.4 Let (X,d,⪯) be a complete ordered metric space, and let f,g,T,S:X→X be four mappings. Assume that there exists a continuous and nondecreasing function ϕ:[0,+∞)→[0,+∞) with ϕ(t)<t for all t>0 such that

d(fx,gy)≤ϕ ( max { d ( S x , T y ) , d ( f x , S x ) , d ( g y , T y ) , 1 2 ( d ( S x , g y ) + d ( f x , T y ) ) } )

holds for any two comparable elements x,y∈X. Suppose that f, g, S and T satisfy the following conditions:

  1. (1)

    fX⊆TX;

  2. (2)

    gX⊆SX;

  3. (3)

    f is dominating and weak annihilator of T;

  4. (4)

    g is dominating and weak annihilator of S;

  5. (5)

    {f,S} and {g,T} are weakly compatible;

  6. (6)

    one of fX, gX, SX and TX is a closed subspace of X.

If X satisfies the property (Ï€), then f, g, S and T have a common fixed point.

As a direct result of our theorems, we have the following result.

Corollary 3.4 Let (X,d,⪯) be a complete ordered metric space, and let f,g,T,S:X→X be four mappings. Assume that there exists k∈[0,1) such that

d(fx,gy)≤kmax { d ( S x , T y ) , d ( f x , S x ) , d ( g y , T y ) , 1 2 ( d ( S x , g y ) + d ( f x , T y ) ) }

holds for any two comparable elements x,y∈X. Suppose that f, g, S and T satisfy the following conditions:

  1. (1)

    fX⊆TX;

  2. (2)

    gX⊆SX;

  3. (3)

    f is dominating and weak annihilator of T;

  4. (4)

    g is dominating and weak annihilator of S;

  5. (5)

    {f,S} and {g,T} are weakly compatible;

  6. (6)

    one of fX, gX, SX and TX is a closed subspace of X.

If X satisfies the property (Ï€), then f, g, S and T have a common fixed point.

Remark 3.1 By using the method of Haghi et al. [33], its an easy matter to show that Theorem 2.1 is a consequence result of Corollary 3.4.

To support our results, we introduce the following example.

Example 3.1 On X={0,1,2,3,…}, define

d:X×X→X,d(x,y)={ 0 if  x = y ; max { x , y } if  x ≠ y .

We introduce a relation on X by x⪯y if and only if y≤x. Also, define f,g,S,T:X→X by the formulas

fx=gx={ 0 if  x ∈ { 0 , 1 , 2 } ; 3 if  x ∈ { 3 , 4 } ; x − 2 if  x ≥ 5

and

Tx=Sx={ 0 if  x = 0 ; x + 2 if  x ≥ 1 .

Consider ψ:[0,+∞)→[0,+∞), ψ(t)= t 2 and ϕ:[0,+∞)×[0,+∞)×[0,+∞)→[0,+∞), ϕ(t,s,u)=max{t,s,u}. Then, for every two comparable elements x,y∈X, we have

ψ ( d ( f x , f y ) ) ≤ ψ ( max { d ( T x , T y ) , d ( f x , T x ) , d ( f y , T y ) , 1 2 ( d ( T x , f y ) + d ( f x , T y ) ) } ) − ϕ ( d ( T x , T y ) , d ( T x , f y ) , d ( f x , T y ) ) .
(3.12)

Proof Let

M(x,y)=max { d ( T x , T y ) , d ( f x , T x ) , d ( f y , T y ) , 1 2 ( d ( T x , f y ) + d ( f x , T y ) ) }

and

N(x,y)=Ï• ( d ( T x , T y ) , d ( T x , f y ) , d ( f x , T y ) ) =max { d ( T x , T y ) , d ( T x , f y ) , d ( f x , T y ) } .

Given x,y∈X, without loss of generality, we assume that x≤y.

Now, we divide the proof into the following cases:

  • Case i:x=y. Here, we have ψ(d(fx,fy))=0 and get (3.12).

  • Case ii:x<y and x,y∈{0,1,2}. Here, ψ(d(fx,fy))=0, hence (3.12) holds.

  • Case iii:x∈{0,1,2} and y=3. Here, fx=0, fy=3, Tx∈{0,3,4} and Ty=5. Thus, d(fx,fy)=3, M(x,y)=5 and N(x,y)=5. Since 9≤25−5, we obtain (3.12).

  • Case iv:x∈{0,1,2} and y=4. Here, fx=0, fy=3, Tx∈{0,3,4} and Ty=6. Thus, d(fx,fy)=3, M(x,y)=6 and N(x,y)=6. Since 9≤36−6, we deduce (3.12).

  • Case v:x∈{0,1,2} and y≥5. Here, fx=0, fy=y−2, Tx∈{0,3,4} and Ty=y+2. Thus, d(fx,fy)=y−2, M(x,y)=y+2 and N(x,y)=y+2. Since ( y − 2 ) 2 ≤ ( y + 2 ) 2 −(y+2), we have (3.12).

  • Case vi:x=3 and y=4. Here, fx=0, fy=3, Tx=5 and Ty=6. Thus, d(fx,fy)=3, M(x,y)=6 and N(x,y)=6. Since 9≤36−6, we get (3.12).

  • Case vii:x=3 and y≥5. Here, fx=3, fy=y−2, Tx=5 and Ty=y+2. Thus, d(fx,fy)=y−2, M(x,y)=y+2 and N(x,y)=y+2. Since ( y − 2 ) 2 ≤ ( y + 2 ) 2 −(y+2), we have (3.12) and

    ψ ( p ( f x , g y ) ) ≤ e − 1 ψ ( max { p ( S x , T y ) , p ( f x , S x ) , p ( g y , T y ) , 1 2 ( p ( S x , g y ) + p ( f x , T y ) ) } ) .
    (3.13)
  • Case viii:x=4 and y≥5. Here, fx=3, fy=y−2, Tx=6 and Ty=y+2. Thus, d(fx,fy)=y−2, M(x,y)=y+2 and N(x,y)=y+2. Since ( y − 2 ) 2 ≤ ( y + 2 ) 2 −(y+2), we have (3.12) and (3.13).

  • Case ix:y>x≥5. Here, fx=x−2, fy=y−2, Tx=x+2 and Ty=y+2. Thus, d(fx,fy)=y−2, M(x,y)=y+2 and N(x,y)=y+2. Since ( y − 2 ) 2 ≤ ( y + 2 ) 2 −(y+2), we have (3.12) and (3.13).

 □

Remark 3.2 Note that Example 3.1 satisfies all the hypotheses of Corollary 3.1. But Example 3.1 does not satisfy the hypotheses of Theorem 2.1.

4 Conclusions

In this paper, we proved some common fixed point theorems for four mappings f, g, S and T satisfying a nonlinear contraction in ordered metric spaces, where the mappings f and g are dominating and weak annihilators of the mappings T and S, respectively. We utilized the techniques of Haghi et al. [33] to derive our main result, which is a generalization of the result of Shobkolaei et al. [38]. Also, we introduced an example to support the usability of our results.

References

  1. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132(5):1435–1443. 10.1090/S0002-9939-03-07220-4

    Article  MathSciNet  Google Scholar 

  2. Nieto JJ, Lopez RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22: 223–239. 10.1007/s11083-005-9018-5

    Article  MathSciNet  Google Scholar 

  3. Nieto JJ, Lopez RR: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. 2007, 23(12):2205–2212. 10.1007/s10114-005-0769-0

    Article  MathSciNet  Google Scholar 

  4. O’Regan D, Petruşel A: Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl. 2008, 341(2):241–1252.

    Google Scholar 

  5. Agarwal RP, El-Gebeily MA, O’Regan D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87: 1–8. 10.1080/00036810701714164

    Article  MathSciNet  Google Scholar 

  6. Aghajani A, Radenović S, Roshan JR:Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces. Appl. Math. Comput. 2012, 218: 5665–5670. 10.1016/j.amc.2011.11.061

    Article  MathSciNet  Google Scholar 

  7. Aydi H, Shatanawi W, Postolache M, Mustafa Z, Tahat N: Theorems for Boyd-Wong type contractions in ordered metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 359054

    Google Scholar 

  8. Aydi H, Karapınar E, Postolache M: Tripled coincidence point theorems for weak φ -contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 44

    Google Scholar 

  9. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012., 2012: Article ID 8

    Google Scholar 

  10. Ćirić L, et al.: Common fixed points of almost generalized contractive mappings in ordered metric spaces. Appl. Math. Comput. 2011, 217: 5784–5789. 10.1016/j.amc.2010.12.060

    Article  MathSciNet  Google Scholar 

  11. Gholizadeh L, Saadati R, Shatanawi W, Vaezpour SM: Contractive mapping in generalized, ordered metric spaces with application in integral equations. Math. Probl. Eng. 2011., 2011: Article ID 380784

    Google Scholar 

  12. Luong NV, Thuan N: Fixed point theorem for generalized weak contractions satisfying rational expressions in ordered metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 46

    Google Scholar 

  13. Radenović S, Kadelburg Z: Generalized weak contractions in partially ordered metric spaces. Comput. Math. Appl. 2010, 60: 1776–1783. 10.1016/j.camwa.2010.07.008

    Article  MathSciNet  Google Scholar 

  14. Nashine HK, Samet B:Fixed point results for mappings satisfying (ϕ,ψ)-weakly contractive condition in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 2201–2209. 10.1016/j.na.2010.11.024

    Article  MathSciNet  Google Scholar 

  15. Chandok S, Postolache M: Fixed point theorem for weakly Chatterjea-type cyclic contractions. Fixed Point Theory Appl. 2013., 2013: Article ID 28

    Google Scholar 

  16. Shatanawi W, Postolache M: Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 60

    Google Scholar 

  17. Shatanawi W, Al-Rawashdeh A:Common fixed points of almost generalized (ψ,ϕ)-contractive mappings in ordered metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 80

    Google Scholar 

  18. Shatanawi W, Mustafa Z, Tahat N: Some coincidence point theorems for nonlinear contraction in ordered metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 68

    Google Scholar 

  19. Shatanawi W, Samet B:On (ψ,ϕ)-weakly contractive condition in partially ordered metric spaces. Comput. Math. Appl. 2011, 62: 3204–3214. 10.1016/j.camwa.2011.08.033

    Article  MathSciNet  Google Scholar 

  20. Berinde V: Iterative Approximation of Fixed Points. Springer, Berlin; 2007.

    MATH  Google Scholar 

  21. Berinde V: General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces. Carpath. J. Math. 2008, 24(2):10–19.

    MathSciNet  Google Scholar 

  22. Berinde V: Approximating common fixed points of noncommuting almost contractions in metric spaces. Fixed Point Theory 2010, 11(2):179–188.

    MathSciNet  Google Scholar 

  23. Berinde V: Common fixed point of noncommuting almost contractions in cone metric spaces. Math. Commun. 2010, 15: 229–241.

    MathSciNet  Google Scholar 

  24. Berinde V: Common fixed points of noncommuting discontinuous weakly contractive mappings in cone metric spaces. Taiwan. J. Math. 2010, 14: 1763–1776.

    MathSciNet  Google Scholar 

  25. Babu GVR, Sandhya ML, Kameswari MVR: A note on a fixed point theorem of Berinde on weak contractions. Carpath. J. Math. 2008, 24: 8–12.

    MathSciNet  Google Scholar 

  26. Berinde V, Păcurar M: Fixed points and continuity of almost contractions. Fixed Point Theory 2008, 9(1):23–34.

    MathSciNet  Google Scholar 

  27. Ćirić L, et al.: Common fixed points of almost generalized contractive mappings in ordered metric spaces. Appl. Math. Comput. 2011, 217: 5784–5789. 10.1016/j.amc.2010.12.060

    Article  MathSciNet  Google Scholar 

  28. Haghi RH, Postolache M, Rezapour S: On T -stability of the Picard iteration for generalized φ -contraction mappings. Abstr. Appl. Anal. 2012., 2012: Article ID 658971

    Google Scholar 

  29. Olatinwo MO, Postolache M: Stability results for Jungck-type iterative processes in convex metric spaces. Appl. Math. Comput. 2012, 218(12):6727–6732. 10.1016/j.amc.2011.12.038

    Article  MathSciNet  Google Scholar 

  30. Samet B, Vetro C: Berinde mappings in orbitally complete metric spaces. Chaos Solitons Fractals 2011. 10.1016/j.chaos.2011.08.009

    Google Scholar 

  31. Shatanawi W: Some fixed point results for a generalized ψ -weak contraction mappings in orbitally metric spaces. Chaos Solitons Fractals 2012, 45: 520–526. 10.1016/j.chaos.2012.01.015

    Article  MathSciNet  Google Scholar 

  32. Matthews SG: Partial metric topology. Ann. N.Y. Acad. Sci. 1994, 728: 183–197. 10.1111/j.1749-6632.1994.tb44144.x

    Article  MathSciNet  Google Scholar 

  33. Haghi RH, Rezapour S, Shahzad N: Be careful on partial metric fixed point results. Topol. Appl. 2013, 160: 450–454. 10.1016/j.topol.2012.11.004

    Article  MathSciNet  Google Scholar 

  34. Jungck G: Common fixed points for noncontinuous nonself maps on nonmetric spaces. Far East J. Math. Sci. 1996, 4: 199–215.

    MathSciNet  Google Scholar 

  35. Abbas M, Talat N, Radenović S: Common fixed points of four maps in partially ordered metric spaces. Appl. Math. Lett. 2011, 24: 1520–1526. 10.1016/j.aml.2011.03.038

    Article  MathSciNet  Google Scholar 

  36. Shatanawi W, Postolache M: Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 54

    Google Scholar 

  37. Shatanawi W, Pitea A: Some coupled fixed point theorems in quasi-partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 153

    Google Scholar 

  38. Shobkolaei N, Sedghi S, Roshan JR, Altun I:Common fixed point of mappings satisfying almost generalized (S,T)-contractive condition in partially ordered partial metric spaces. Appl. Math. Comput. 2012, 219: 443–452. 10.1016/j.amc.2012.06.063

    Article  MathSciNet  Google Scholar 

  39. Khan MS, Swaleh M, Sessa S: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30: 1–9. 10.1017/S0004972700001659

    Article  MathSciNet  Google Scholar 

  40. Jachymski J: Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal. 2011, 74: 768–774. 10.1016/j.na.2010.09.025

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Postolache.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally and significantly in writing this article. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Shatanawi, W., Postolache, M. Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces. Fixed Point Theory Appl 2013, 271 (2013). https://doi.org/10.1186/1687-1812-2013-271

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-271

Keywords