Skip to main content

Some new common coupled fixed point results in two generalized metric spaces

Abstract

The purpose of this paper is to extend some recent common coupled fixed point theorems in two G-metric spaces in an essentially different and more natural way. We also provide illustrative examples in support of our new results.

MSC:47H10, 54H25.

1 Introduction and preliminaries

In 2006, Mustafa and Sims [1] introduced a new structure of generalized metric spaces, which are called G-metric spaces, as follows.

Definition 1.1 [1]

Let X be a nonempty set, and let G:X×X×X R + be a function satisfying the following axioms:

  1. (G1)

    G(x,y,z)=0 if x=y=z;

  2. (G2)

    0<G(x,x,y) for all x,yX with xy;

  3. (G3)

    G(x,x,y)G(x,y,z) for all x,y,zX with z≠ y;

  4. (G4)

    G(x,y,z)=G(x,z,y)=G(y,z,x)= (symmetry in all three variables);

  5. (G5)

    G(x,y,z)G(x,a,a)+G(a,y,z) for all x,y,z,aX (rectangle inequality).

Then the function G is called a generalized metric or a G-metric on X and the pair (X,G) is called a G-metric space.

It is known that the function G(x,y,z) on a G-metric space X is jointly continuous in all three of its variables, and G(x,y,z)=0 if and only if x=y=z (see [1]).

Based on the notion of generalized metric spaces, Mustafa et al. [16] obtained some fixed point results for mappings satisfying different contractive conditions. Chugh et al. [7] obtained some fixed point results for maps satisfying property P in G-metric spaces. Shatanawi [8] obtained some fixed point results for contractive mappings satisfying Φ- maps in G-metric spaces.

In 2009, Abbas and Rhoades [9] initiated the study of common fixed point theory in G-metric spaces. Since then, many common fixed point theorems for certain contractive conditions have been established in G-metric spaces (see [1019]).

Bhaskar and Lakshmikantham [20] introduced the notion of coupled fixed point and proved some interesting coupled fixed point theorems for mappings satisfying the mixed monotone property. Later, Lakshmikantham and Ćirić [21] introduced the concept of mixed g-monotone mapping and proved coupled coincidence and coupled common fixed point theorems that extend theorems due to Bhaskar and Lakshmikantham [20].

In [22, 23], authors established coupled fixed point theorems in cone metric spaces. In 2011, Shatanawi [24] obtained some coupled fixed point results in G-metric spaces. Recently, in [25, 26] authors established some coupled fixed point and common coupled fixed point results in two G-metric spaces. Recently, coupled fixed point and common coupled fixed point problems have also been considered in partially ordered G-metric spaces (see [2738]).

The aim of this article is to prove some new common coupled fixed point theorems for mappings defined on a set equipped with two generalized metrics.

First, we present some known definitions and propositions.

Definition 1.2 [1]

Let (X,G) be a G-metric space, { x n }X be a sequence. Then the sequence { x n } is called:

  1. (i)

    a G-Cauchy sequence if, for any ε>0, there is an n 0 N (the set of natural numbers) such that for all n,m,l n 0 , G( x n , x m , x l )<ε;

  2. (ii)

    a G-convergent sequence if, for any ε>0, there are an xX and an n 0 N such that for all n,m n 0 , G(x, x n , x m )<ε.

A G-metric space (X,G) is said to be G-complete if every G-Cauchy sequence in (X,G) is G-convergent in X. It is known that { x n } is G-convergent to xX if and only if G( x m , x n ,x)0 as n,m.

Proposition 1.3 [1]

Let (X,G) be a G-metric space. Then the following are equivalent:

  1. (1)

    { x n } is G-convergent to x.

  2. (2)

    G( x n , x n ,x)0 as n.

  3. (3)

    G( x n ,x,x)0 as n.

  4. (4)

    G( x n , x m ,x)0 as n,m.

Proposition 1.4 [1]

Let (X,G) be a G-metric space. Then, for any x,yX, we have G(x,y,y)2G(y,x,x).

Definition 1.5 [20]

An element (x,y)X×X is called:

  • (C1) a coupled fixed point of the mapping F:X×XX if F(x,y)=x and F(y,x)=y;

  • (C2) a coupled coincidence point of mappings F:X×XX and g:XX if F(x,y)=gx and F(y,x)=gy, and in this case, (gx,gy) is called a coupled point of coincidence;

  • (C3) a common coupled fixed point of mappings F:X×XX and g:XX if F(x,y)=gx=x and F(y,x)=gy=y.

Definition 1.6 [25]

Mappings F:X×XX and g:XX are called:

  • (W1) w-compatible if gF(x,y)=F(gx,gy) whenever F(x,y)=gx and F(y,x)=gy;

  • (W2) w -compatible if gF(x,x)=F(gx,gx) whenever F(x,x)=gx.

Recently, Abbas, Khan and Nazir [25] extended some recent results of Abbas et al. [22] and Sabetghadam et al. [23] to the setting of two generalized metric spaces.

Theorem 1.7 (see [[25], Theorem 2.1])

Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) a 1 G 2 ( g x , g u , g s ) + a 2 G 2 ( F ( x , y ) , g x , g x ) + a 3 G 2 ( g y , g v , g t ) + a 4 G 2 ( F ( u , v ) , g u , g s ) + a 5 G 2 ( F ( x , y ) , g u , g s ) + a 6 G 2 ( F ( u , v ) , F ( s , t ) , g x )
(1.1)

for all (x,y),(u,v),(s,t)X×X, where a i 0, for i=1,2,,6 and a 1 + a 3 + a 5 +2( a 2 + a 4 + a 6 )<1. If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

Theorem 1.8 (see [[25], Theorem 2.6])

Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) k max { G 2 ( g x , g u , g s ) , G 2 ( g y , g v , g t ) , G 2 ( F ( x , y ) , g u , g s ) }
(1.2)

for all (x,y),(u,v),(s,t)X×X, where 0k< 1 2 . If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

In this manuscript, we generalize, improve, enrich and extend the above coupled fixed point results. It is worth mentioning that our results do not rely on the continuity of mappings involved therein. We also state some examples to illustrate our results. This paper can be considered as a continuation of the remarkable works of Abbas et al. [22, 23] and Sabetghadam et al. [25].

2 Common coupled fixed points

We begin with an example to illustrate the weakness of Theorem 1.8 above.

Example 2.1 Let X=[0,1]. Define G 1 , G 2 :X×X×X[0,) by

G 1 (x,y,z)=|xy|+|yz|+|zx|and G 2 (x,y,z)= 4 5 ( | x y | + | y z | + | z x | )

for all x,y,zX. Then (X, G 1 ) and (X, G 2 ) are two G-metric spaces. Define a map F:X×XX by F(x,y)= 1 16 x+ 5 16 y and gx= x 2 for all x,yX. For (x,y)=(u,v)=(2,0) and (s,t)=(0,2), we have

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) = G 1 ( F ( 2 , 0 ) , F ( 2 , 0 ) , F ( 0 , 2 ) ) = G 1 ( 1 8 , 1 8 , 5 8 ) = 1

and

max { G 2 ( g x , g u , g s ) , G 2 ( g y , g v , g t ) , G 2 ( F ( x , y ) , g u , g s ) } = max { G 2 ( g 2 , g 2 , g 0 ) , G 2 ( g 0 , g 0 , g 2 ) , G 2 ( F ( 2 , 0 ) , g 2 , g 0 ) } = max { G 2 ( 1 , 1 , 0 ) , G 2 ( 0 , 0 , 1 ) , G 2 ( 1 8 , 1 , 0 ) } = 8 5 .

Then it is easy to see that there is no k[0, 1 2 ) such that

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) kmax { G 2 ( g x , g u , g s ) , G 2 ( g y , g v , g t ) , G 2 ( F ( x , y ) , g u , g s ) }

for all (x,y),(u,v),(s,t)X×X. Thus, Theorem 1.8 cannot be applied to this example. However, it is easy to see that (0,0) is the unique common coincidence point of F and g. In fact, F(0,0)=g(0)=0.

Now we shall prove our main results.

Theorem 2.2 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) a 1 G 2 ( g x , g u , g s ) + a 2 G 2 ( g y , g v , g t ) + a 3 G 2 ( F ( x , y ) , g x , g x ) + a 4 G 2 ( F ( u , v ) , g u , g u ) + a 5 G 2 ( F ( s , t ) , g s , g s ) + a 6 G 2 ( F ( x , y ) , g u , g s ) + a 7 G 2 ( F ( u , v ) , g s , g x ) + a 8 G 2 ( F ( s , t ) , g x , g u ) + a 9 G 2 ( F ( x , y ) , g x , g u ) + a 10 G 2 ( F ( u , v ) , g u , g s ) + a 11 G 2 ( F ( s , t ) , g s , g x ) + a 12 G 2 ( F ( x , y ) , F ( u , v ) , g s ) + a 13 G 2 ( F ( u , v ) , F ( s , t ) , g x ) + a 14 G 2 ( F ( s , t ) , F ( x , y ) , g u )
(2.1)

for all (x,y),(u,v),(s,t)X×X, where a i 0, for i=1,2,,14 and

a 1 + a 2 + a 6 + a 9 +2( a 3 + a 4 + a 5 + a 10 + a 12 + a 13 + a 14 )+3( a 7 + a 8 + a 11 )<1.
(2.2)

If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

Proof Let x 0 , y 0 X. Since F(X×X)g(X), we can choose x 1 , y 1 X such that g x 1 =F( x 0 , y 0 ) and g y 1 =F( y 0 , x 0 ). Similarly, we can choose x 2 , y 2 X such that g x 2 =F( x 1 , y 1 ) and g y 2 =F( y 1 , x 1 ). Continuing in this way, we construct two sequences { x n } and { y n } in X such that

g x n + 1 =F( x n , y n )andg y n + 1 =F( y n , x n ),n0.
(2.3)

It follows from (2.1), (2.3), (G5) and Proposition 1.4 that

G 1 ( g x n , g x n + 1 , g x n + 1 ) = G 1 ( F ( x n 1 , y n 1 ) , F ( x n , y n ) , F ( x n , y n ) ) a 1 G 2 ( g x n 1 , g x n , g x n ) + a 2 G 2 ( g y n 1 , g y n , g y n ) + a 3 G 2 ( F ( x n 1 , y n 1 ) , g x n 1 , g x n 1 ) + a 4 G 2 ( F ( x n , y n ) , g x n , g x n ) + a 5 G 2 ( F ( x n , y n ) , g x n , g x n ) + a 6 G 2 ( F ( x n 1 , y n 1 ) , g x n , g x n ) + a 7 G 2 ( F ( x n , y n ) , g x n , g x n 1 ) + a 8 G 2 ( F ( x n , y n ) , g x n 1 , g x n ) + a 9 G 2 ( F ( x n 1 , y n 1 ) , g x n 1 , g x n ) + a 10 G 2 ( F ( x n , y n ) , g x n , g x n ) + a 11 G 2 ( F ( x n , y n ) , g x n , g x n 1 ) + a 12 G 2 ( F ( x n 1 , y n 1 ) , F ( x n , y n ) , g x n ) + a 13 G 2 ( F ( x n , y n ) , F ( x n , y n ) , g x n 1 ) + a 14 G 2 ( F ( x n , y n ) , F ( x n 1 , y n 1 ) , g x n ) = a 1 G 2 ( g x n 1 , g x n , g x n ) + a 2 G 2 ( g y n 1 , g y n , g y n ) + a 3 G 2 ( g x n , g x n 1 , g x n 1 ) + a 4 G 2 ( g x n + 1 , g x n , g x n ) + a 5 G 2 ( g x n + 1 , g x n , g x n ) + a 6 G 2 ( g x n , g x n , g x n ) + a 7 G 2 ( g x n + 1 , g x n , g x n 1 ) + a 8 G 2 ( g x n + 1 , g x n 1 , g x n ) + a 9 G 2 ( g x n , g x n 1 , g x n ) + a 10 G 2 ( g x n + 1 , g x n , g x n ) + a 11 G 2 ( g x n + 1 , g x n , g x n 1 ) + a 12 G 2 ( g x n , g x n + 1 , g x n ) + a 13 G 2 ( g x n + 1 , g x n + 1 , g x n 1 ) + a 14 G 2 ( g x n + 1 , g x n , g x n ) = ( a 1 + a 9 ) G 2 ( g x n 1 , g x n , g x n ) + a 2 G 2 ( g y n 1 , g y n , g y n ) + a 3 G 2 ( g x n , g x n 1 , g x n 1 ) + ( a 4 + a 5 + a 10 + a 12 + a 14 ) G 2 ( g x n + 1 , g x n , g x n ) + ( a 7 + a 8 + a 11 ) G 2 ( g x n 1 , g x n , g x n + 1 ) + a 13 G 2 ( g x n + 1 , g x n + 1 , g x n 1 ) ( a 1 + a 9 ) G 2 ( g x n 1 , g x n , g x n ) + a 2 G 2 ( g y n 1 , g y n , g y n ) + 2 a 3 G 2 ( g x n 1 , g x n , g x n ) + 2 ( a 4 + a 5 + a 10 + a 12 + a 14 ) G 2 ( g x n , g x n + 1 , g x n + 1 ) + ( a 7 + a 8 + a 11 ) [ G 2 ( g x n 1 , g x n , g x n ) + G 2 ( g x n , g x n , g x n + 1 ) ] + a 13 [ G 2 ( g x n 1 , g x n , g x n ) + G 2 ( g x n , g x n + 1 , g x n + 1 ) ] ( a 1 + 2 a 3 + a 7 + a 8 + a 9 + a 11 + a 13 ) G 2 ( g x n 1 , g x n , g x n ) + a 2 G 2 ( g y n 1 , g y n , g y n ) + [ 2 ( a 4 + a 5 + a 7 + a 8 + a 10 + a 11 + a 12 + a 14 ) + a 13 ] G 1 ( g x n , g x n + 1 , g x n + 1 ) ,

which implies that

G 1 ( g x n , g x n + 1 , g x n + 1 ) ( a 1 + 2 a 3 + a 7 + a 8 + a 9 + a 11 + a 13 ) G 2 ( g x n 1 , g x n , g x n ) + a 2 G 2 ( g y n 1 , g y n , g y n ) 1 2 ( a 4 + a 5 + a 7 + a 8 + a 10 + a 11 + a 12 + a 14 ) a 13 .
(2.4)

Similarly, we can prove that

G 1 ( g y n , g y n + 1 , g y n + 1 ) ( a 1 + 2 a 3 + a 7 + a 8 + a 9 + a 11 + a 13 ) G 2 ( g y n 1 , g y n , g y n ) + a 2 G 2 ( g x n 1 , g x n , g x n ) 1 2 ( a 4 + a 5 + a 7 + a 8 + a 10 + a 11 + a 12 + a 14 ) a 13 .
(2.5)

By combining (2.4) and (2.5), we obtain

G 1 ( g x n , g x n + 1 , g x n + 1 ) + G 1 ( g y n , g y n + 1 , g y n + 1 ) λ [ G 2 ( g x n 1 , g x n , g x n ) + G 2 ( g y n 1 , g y n , g y n ) ] ,
(2.6)

where λ= a 1 + a 2 + 2 a 3 + a 7 + a 8 + a 9 + a 11 + a 13 1 2 ( a 4 + a 5 + a 7 + a 8 + a 10 + a 11 + a 12 + a 14 ) a 13 . Obviously, 0λ<1.

Repeating the above inequality (2.6) n times, we get

G 1 ( g x n , g x n + 1 , g x n + 1 ) + G 1 ( g y n , g y n + 1 , g y n + 1 ) λ [ G 2 ( g x n 1 , g x n , g x n ) + G 2 ( g y n 1 , g y n , g y n ) ] λ [ G 1 ( g x n 1 , g x n , g x n ) + G 1 ( g y n 1 , g y n , g y n ) ] λ 2 [ G 2 ( g x n 2 , g x n 1 , g x n 1 ) + G 2 ( g y n 2 , g y n 1 , g y n 1 ) ] λ 2 [ G 1 ( g x n 2 , g x n 1 , g x n 1 ) + G 1 ( g y n 2 , g y n 1 , g y n 1 ) ] λ n [ G 2 ( g x 0 , g x 1 , g x 1 ) + G 2 ( g y 0 , g y 1 , g y 1 ) ] .
(2.7)

Next, we shall prove that {g x n } and {g y n } are G-Cauchy sequences in g(X).

In fact, for each n,mN, m>n, from (G5) and (2.7), we have

G 1 ( g x n , g x m , g x m ) + G 1 ( g y n , g y m , g y m ) G 1 ( g x n , g x n + 1 , g x n + 1 ) + G 1 ( g x n + 1 , g x n + 2 , g x n + 2 ) + G 1 ( g y n , g y n + 1 , g y n + 1 ) + G 1 ( g y n + 1 , g y n + 2 , g y n + 2 ) + + G 1 ( g x m 2 , g x m 1 , g x m 1 ) + G 1 ( g x m 1 , g x m , g x m ) + G 1 ( g y m 2 , g y m 1 , g y m 1 ) + G 1 ( g y m 1 , g y m , g y m ) [ λ n + λ n + 1 + + λ m 1 ] [ G 2 ( g x 0 , g x 1 , g x 1 ) + G 2 ( g y 0 , g y 1 , g y 1 ) ] λ n 1 λ [ G 2 ( g x 0 , g x 1 , g x 1 ) + G 2 ( g y 0 , g y 1 , g y 1 ) ] ,

which implies that

lim n , m [ G 1 ( g x n , g x m , g x m ) + G 1 ( g y n , g y m , g y m ) ] =0,

and so

lim n , m G 1 (g x n ,g x m ,g x m )=0and lim n , m G 1 (g y n ,g y m ,g y m )=0.

Hence {g x n } and {g y n } are G 1 -Cauchy sequences in g(X). By G 1 -completeness of g(X), there exist gx,gyg(X) such that {g x n } and {g y n } converge to gx and gy, respectively.

Now we prove that F(x,y)=gx and F(y,x)=gy. In fact, it follows from (G5) and (2.1) that

G 1 ( F ( x , y ) , g x , g x ) G 1 ( F ( x , y ) , g x n + 1 , g x n + 1 ) + G 1 ( g x n + 1 , g x , g x ) = G 1 ( F ( x , y ) , F ( x n , y n ) , F ( x n , y n ) ) + G 1 ( g x n + 1 , g x , g x ) a 1 G 2 ( g x , g x n , g x n ) + a 2 G 2 ( g y , g y n , g y n ) + a 3 G 2 ( F ( x , y ) , g x , g x ) + a 4 G 2 ( F ( x n , y n ) , g x n , g x n ) + a 5 G 2 ( F ( x n , y n ) , g x n , g x n ) + a 6 G 2 ( F ( x , y ) , g x n , g x n ) + a 7 G 2 ( F ( x n , y n ) , g x n , g x ) + a 8 G 2 ( F ( x n , y n ) , g x , g x n ) + a 9 G 2 ( F ( x , y ) , g x , g x n ) + a 10 G 2 ( F ( x n , y n ) , g x n , g x n ) + a 11 G 2 ( F ( x n , y n ) , g x n , g x ) + a 12 G 2 ( F ( x , y ) , F ( x n , y n ) , g x n ) + a 13 G 2 ( F ( x n , y n ) , F ( x n , y n ) , g x ) + a 14 G 2 ( F ( x n , y n ) , F ( x , y ) , g x n ) + G 1 ( g x n + 1 , g x , g x ) a 1 G 1 ( g x , g x n , g x n ) + a 2 G 1 ( g y , g y n , g y n ) + a 3 G 1 ( F ( x , y ) , g x , g x ) + a 4 G 1 ( g x n + 1 , g x n , g x n ) + a 5 G 1 ( g x n + 1 , g x n , g x n ) + a 6 G 1 ( F ( x , y ) , g x n , g x n ) + a 7 G 1 ( g x n + 1 , g x n , g x ) + a 8 G 1 ( g x n + 1 , g x , g x n ) + a 9 G 1 ( F ( x , y ) , g x , g x n ) + a 10 G 1 ( g x n + 1 , g x n , g x n ) + a 11 G 1 ( g x n + 1 , g x n , g x ) + a 12 G 1 ( F ( x , y ) , g x n + 1 , g x n ) + a 13 G 1 ( g x n + 1 , g x n + 1 , g x ) + a 14 G 1 ( g x n + 1 , F ( x , y ) , g x n ) + G 1 ( g x n + 1 , g x , g x ) .

Letting n in the above inequality, we obtain

G 1 ( F ( x , y ) , g x , g x ) ( a 3 + a 6 + a 9 + a 12 + a 14 ) G 1 ( F ( x , y ) , g x , g x ) .
(2.8)

By (2.2) we have that a 3 + a 6 + a 9 + a 12 + a 14 <1. Hence, it follows from (2.8) that G 1 (F(x,y),gx,gx)=0, and so F(x,y)=gx. In the same way, we can show that F(y,x)=gy. Hence, (gx,gy) is a coupled point of coincidence of mappings F and g.

Next we prove that gx=gy. In fact, from (2.1) we have

G 1 ( g x , g y , g y ) = G 1 ( F ( x , y ) , F ( y , x ) , F ( y , x ) ) a 1 G 2 ( g x , g y , g y ) + a 2 G 2 ( g y , g x , g x ) + a 3 G 2 ( F ( x , y ) , g x , g x ) + a 4 G 2 ( F ( y , x ) , g y , g y ) + a 5 G 2 ( F ( y , x ) , g y , g y ) + a 6 G 2 ( F ( x , y ) , g y , g y ) + a 7 G 2 ( F ( y , x ) , g y , g x ) + a 8 G 2 ( F ( y , x ) , g x , g y ) + a 9 G 2 ( F ( x , y ) , g x , g y ) + a 10 G 2 ( F ( y , x ) , g y , g y ) + a 11 G 2 ( F ( y , x ) , g y , g x ) + a 12 G 2 ( F ( x , y ) , F ( y , x ) , g y ) + a 13 G 2 ( F ( y , x ) , F ( y , x ) , g x ) + a 14 G 2 ( F ( y , x ) , F ( x , y ) , g y ) = a 1 G 2 ( g x , g y , g y ) + a 2 G 2 ( g y , g x , g x ) + a 3 G 2 ( g x , g x , g x ) + a 4 G 2 ( g y , g y , g y ) + a 5 G 2 ( g y , g y , g y ) + a 6 G 2 ( g x , g y , g y ) + a 7 G 2 ( g y , g y , g x ) + a 8 G 2 ( g y , g x , g y ) + a 9 G 2 ( g x , g x , g y ) + a 10 G 2 ( g y , g y , g y ) + a 11 G 2 ( g y , g y , g x ) + a 12 G 2 ( g x , g y , g y ) + a 13 G 2 ( g y , g y , g x ) + a 14 G 2 ( g y , g x , g y ) = ( a 1 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) G 2 ( g x , g y , g y ) + ( a 2 + a 9 ) G 2 ( g y , g x , g x ) ( a 1 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) G 1 ( g x , g y , g y ) + ( a 2 + a 9 ) G 1 ( g y , g x , g x ) ,

which implies that

G 1 (gx,gy,gy) a 2 + a 9 1 ( a 1 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) G 1 (gy,gx,gx).
(2.9)

In a similar way, we can show that

G 1 (gy,gx,gx) a 2 + a 9 1 ( a 1 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) G 1 (gx,gy,gy).
(2.10)

Since a 2 + a 9 1 ( a 1 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) <1, from (2.9) and (2.10), we must have G 1 (gx,gy,gy)=0 so that gx=gy. Thus, (gx,gx) is a coupled point of coincidence of mappings F and g.

Now, we claim that a coupled point of coincidence is unique. Suppose that there is another x X such (g x ,g x ) is a coupled point of coincidence of mappings F and g, then by (2.1) we have

G 1 ( g x , g x , g x ) = G 1 ( F ( x , x ) , F ( x , x ) , F ( x , x ) ) a 1 G 2 ( g x , g x , g x ) + a 2 G 2 ( g x , g x , g x ) + a 3 G 2 ( F ( x , x ) , g x , g x ) + a 4 G 2 ( F ( x , x ) , g x , g x ) + a 5 G 2 ( F ( x , x ) , g x , g x ) + a 6 G 2 ( F ( x , x ) , g x , g x ) + a 7 G 2 ( F ( x , x ) , g x , g x ) + a 8 G 2 ( F ( x , x ) , g x , g x ) + a 9 G 2 ( F ( x , x ) , g x , g x ) + a 10 G 2 ( F ( x , x ) , g x , g x ) + a 11 G 2 ( F ( x , x ) , g x , g x ) + a 12 G 2 ( F ( x , x ) , F ( x , x ) , g x ) + a 13 G 2 ( F ( x , x ) , F ( x , x ) , g x ) + a 14 G 2 ( F ( x , x ) , F ( x , x ) , g x ) = a 1 G 2 ( g x , g x , g x ) + a 2 G 2 ( g x , g x , g x ) + a 3 G 2 ( g x , g x , g x ) + a 4 G 2 ( g x , g x , g x ) + a 5 G 2 ( g x , g x , g x ) + a 6 G 2 ( g x , g x , g x ) + a 7 G 2 ( g x , g x , g x ) + a 8 G 2 ( g x , g x , g x ) + a 9 G 2 ( g x , g x , g x ) + a 10 G 2 ( g x , g x , g x ) + a 11 G 2 ( g x , g x , g x ) + a 12 G 2 ( g x , g x , g x ) + a 13 G 2 ( g x , g x , g x ) + a 14 G 2 ( g x , g x , g x ) = ( a 1 + a 2 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) G 2 ( g x , g x , g x ) + a 9 G 2 ( g x , g x , g x ) ( a 1 + a 2 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) G 1 ( g x , g x , g x ) + a 9 G 1 ( g x , g x , g x ) ,

which implies that

G 1 ( g x , g x , g x ) a 9 1 ( a 1 + a 2 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) G 1 ( g x , g x , g x ) .
(2.11)

In the same way, we can show that

G 1 ( g x , g x , g x ) a 9 1 ( a 1 + a 2 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) G 1 ( g x , g x , g x ) .
(2.12)

Since a 9 1 ( a 1 + a 2 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) <1, from (2.11) and (2.12), we must have G 1 (gx,g x ,g x )=0 so that gx=g x . Hence, (gx,gx) is a unique coupled point of coincidence of mappings F and g.

Now we show that F and g have a unique common coupled fixed point. For this, let gx=u. Then we have u=gx=F(x,x). By w -compatibility of F and g, we have

gu=g(gx)=gF(x,x)=F(gx,gx)=F(u,u).

Thus, (gu,gu) is a coupled point of coincidence of F and g. By the uniqueness of a coupled point of coincidence, we have gu=gx. Therefore, u=gu=F(u,u).

To prove the uniqueness, let u X with u u such that

u =g u =F ( u , u ) andu=gu=F(u,u).

By using (2.1), following the same arguments as in the proof of (2.11) and (2.12), we obtain

G 1 ( g u , g u , g u ) a 9 1 ( a 1 + a 2 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) G 1 ( g u , g u , g u )
(2.13)

and

G 1 ( g u , g u , g u ) a 9 1 ( a 1 + a 2 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) G 1 ( g u , g u , g u ) .
(2.14)

Since a 9 1 ( a 1 + a 2 + a 6 + a 7 + a 8 + a 11 + a 12 + a 13 + a 14 ) <1, from (2.13) and (2.14), we must have G 1 (gu,g u ,g u )=0 so that u=gu=g u = u . Thus, F and g have a unique common coupled fixed point. This completes the proof of Theorem 2.1. □

Remark 2.3 Theorem 2.2 improves and extends Theorem 2.1 of Abbas et al. [25], the contractive condition defined by (1.1) is replaced by the new contractive condition defined by (2.1). Theorem 2.1 also improves and extends Theorem 2.4, Corollaries 2.5-2.8 and Theorem 2.11 of Abbas et al. [22]

Now, we introduce an example to support Theorem 2.2.

Example 2.4 Let X=[0,1], and let two G-metrics G 1 , G 2 on X be given as

G 1 ( x , y , z ) = | x y | + | y z | + | z x | and G 2 ( x , y , z ) = 1 2 [ | x y | + | y z | + | z x | ]

for all x,y,zX. Define F:X×XX and g:XX as

F(x,y)= x + y 32 andgx= x 2

for all z,yX.

Now, for (x,y),(u,v),(s,t)X×X, we have

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) = G 1 ( x + y 32 , u + v 32 , s + t 32 ) = 1 32 [ | x + y ( u + v ) | + | u + v ( s + t ) | + | s + t ( x + y ) | ] 1 32 [ | x u | + | y v | + | u s | + | v t | + | s x | + | t y | ] = 1 8 { 1 4 [ | x u | + | y v | + | u s | ] + 1 4 [ | v t | + | s x | + | t y | ] } = 1 8 G 2 ( g x , g u , g s ) + 1 8 G 2 ( g y , g v , g t ) 1 8 G 2 ( g x , g u , g s ) + 1 8 G 2 ( g y , g v , g t ) + 1 112 G 2 ( F ( x , y ) , g x , g x ) + 1 112 G 2 ( F ( u , v ) , g u , g u ) + 1 112 G 2 ( F ( s , t ) , g s , g s ) + 1 16 G 2 ( F ( x , y ) , g u , g s ) + 1 72 G 2 ( F ( u , v ) , g s , g x ) + 1 72 G 2 ( F ( s , t ) , g x , g u ) + 1 16 G 2 ( F ( x , y ) , g x , g u ) + 1 112 G 2 ( F ( u , v ) , g u , g s ) + 1 72 G 2 ( F ( s , t ) , g s , g x ) + 1 112 G 2 ( F ( x , y ) , F ( u , v ) , g s ) + 1 112 G 2 ( F ( u , v ) , F ( s , t ) , g x ) + 1 112 G 2 ( F ( s , t ) , F ( x , y ) , g u )

for all (x,y),(u,v),(w,z)X×X. Thus, (2.1) is satisfied with a 1 = a 2 = 1 8 , a 3 = a 4 = a 5 = a 10 = a 12 = a 13 = a 14 = 1 112 , a 6 = a 9 = 1 16 and a 7 = a 8 = a 11 = 1 72 , where

a 1 + a 2 + a 6 + a 9 +2( a 3 + a 4 + a 5 + a 10 + a 12 + a 13 + a 14 )+3( a 7 + a 8 + a 11 )= 23 48 <1.

It is obvious that F is w -compatible with g. Hence, all the conditions of Theorem 2.2 are satisfied. Moreover, (0,0) is the unique common coupled fixed point of F and g.

In Theorem 2.2, take α 1 = a 1 , α 2 = a 2 , α 3 = a 6 , α 4 = a 3 , α 5 = a 10 , α 6 = a 13 and a 4 = a 5 = a 7 = a 8 = a 9 = a 11 = a 12 = a 14 =0, to obtain Theorem 2.1 of Abbas et al. [25] as the following corollary.

Corollary 2.5 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) α 1 G 2 ( g x , g u , g s ) + α 2 G 2 ( g y , g v , g t ) + α 3 G 2 ( F ( x , y ) , g u , g s ) + α 4 G 2 ( F ( x , y ) , g x , g x ) + α 5 G 2 ( F ( u , v ) , g u , g s ) + α 6 G 2 ( F ( u , v ) , F ( s , t ) , g x )
(2.15)

for all (x,y),(u,v),(s,t)X×X, where α i 0, for i=1,2,,6 and α 1 + α 2 + α 3 +2( α 4 + α 5 + α 6 )<1. If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

In Theorem 2.2, take s=u and t=v to obtain the following corollary, which extends and generalizes the corresponding results of [22, 23, 25].

Corollary 2.6 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( u , v ) ) a 1 G 2 ( g x , g u , g u ) + a 2 G 2 ( g y , g v , g v ) + a 3 G 2 ( F ( x , y ) , g x , g x ) + a 4 G 2 ( F ( u , v ) , g u , g u ) + a 5 G 2 ( F ( u , v ) , g u , g u ) + a 6 G 2 ( F ( x , y ) , g u , g u ) + a 7 G 2 ( F ( u , v ) , g u , g x ) + a 8 G 2 ( F ( u , v ) , g x , g u ) + a 9 G 2 ( F ( x , y ) , g x , g u ) + a 10 G 2 ( F ( u , v ) , g u , g u ) + a 11 G 2 ( F ( u , v ) , g u , g x ) + a 12 G 2 ( F ( x , y ) , F ( u , v ) , g u ) + a 13 G 2 ( F ( u , v ) , F ( u , v ) , g x ) + a 14 G 2 ( F ( u , v ) , F ( x , y ) , g u )
(2.16)

for all (x,y),(u,v)X×X, where a i 0, for i=1,2,,14 and

a 1 + a 2 + a 6 + a 9 +2( a 3 + a 4 + a 5 + a 10 + a 12 + a 13 + a 14 )+3( a 7 + a 8 + a 11 )<1.

If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

If we take α= a 1 , β= a 2 , γ= a 6 and a 3 = a 4 = a 5 = a 7 = a 8 = a 9 = a 10 = a 11 = a 12 = a 13 = a 14 =0 in Theorem 2.2, then the following corollary, which extends and generalizes the comparable results of [22, 23], is obtained.

Corollary 2.7 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) α G 2 ( g x , g u , g s ) + β G 2 ( g y , g v , g t ) + γ G 2 ( F ( x , y ) , g u , g s )
(2.17)

for all (x,y),(u,v),(s,t)X×X, where α,β,γ0 and α+β+γ<1. If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

If we take α= a 1 , β= a 2 , γ= a 6 , δ= a 9 and a 3 = a 4 = a 5 = a 7 = a 8 = a 10 = a 11 = a 12 = a 13 = a 14 =0 in Theorem 2.2, then the following corollary is obtained.

Corollary 2.8 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) α G 2 ( g x , g u , g s ) + β G 2 ( g y , g v , g t ) + γ G 2 ( F ( x , y ) , g u , g s ) + δ G 2 ( F ( x , y ) , g x , g u )
(2.18)

for all (x,y),(u,v),(s,t)X×X, where α,β,γ,δ0 and α+β+γ+δ<1. If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

If we take α 1 = a 3 , α 2 = a 4 , α 3 = a 5 , α 4 = a 10 , α 5 = a 12 , α 6 = a 13 , α 7 = a 14 and a 1 = a 2 = a 6 = a 7 = a 8 = a 9 = a 11 =0 in Theorem 2.2, then the following corollary is obtained.

Corollary 2.9 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) α 1 G 2 ( F ( x , y ) , g x , g x ) + α 2 G 2 ( F ( u , v ) , g u , g u ) + α 3 G 2 ( F ( s , t ) , g s , g s ) + α 4 G 2 ( F ( u , v ) , g u , g s ) + α 5 G 2 ( F ( x , y ) , F ( u , v ) , g s ) + α 6 G 2 ( F ( u , v ) , F ( s , t ) , g x ) + α 7 G 2 ( F ( s , t ) , F ( x , y ) , g u )
(2.19)

for all (x,y),(u,v),(s,t)X×X, where α i 0, for i=1,2,,7 and

α 1 + α 2 + α 3 + α 4 + α 5 + α 6 + a 7 < 1 2 .

If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

If we take α= a 7 , β= a 8 , γ= a 11 and a 1 = a 2 = a 3 = a 4 = a 5 = a 6 = a 9 = a 10 = a 12 = a 13 = a 14 =0 in Theorem 2.2, then the following corollary is obtained.

Corollary 2.10 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) α G 2 ( F ( u , v ) , g s , g x ) + β G 2 ( F ( s , t ) , g x , g u ) + γ G 2 ( F ( s , t ) , g s , g x )
(2.20)

for all (x,y),(u,v),(s,t)X×X, where α,β,γ0 and α+β+γ< 1 3 . If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

Theorem 2.11 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) k max { G 2 ( g x , g u , g s ) , G 2 ( g y , g v , g t ) , G 2 ( F ( x , y ) , g u , g s ) , G 2 ( F ( x , y ) , g x , g u ) , 1 2 G 2 ( ( F ( x , y ) , g x , g x ) , 1 2 G 2 ( F ( u , v ) , g u , g u ) , 1 2 G 2 ( F ( s , t ) , g s , g s ) , 1 2 G 2 ( F ( u , v ) , g u , g s ) , 1 2 G 2 ( F ( x , y ) , F ( u , v ) , g s ) , 1 2 G 2 ( F ( s , t ) , F ( x , y ) , g u ) }
(2.21)

for all (x,y),(u,v),(s,t)X×X, where 0k<1. If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

Proof Let x 0 , y 0 X. We choose x 1 , y 1 X such that g x 1 =F( x 0 , y 0 ) and g y 1 =F( y 0 , x 0 ), this can be done in view of F(X×X)g(X). Similarly, we can choose x 2 , y 2 X such that g x 2 =F( x 1 , y 1 ) and g y 2 =F( y 1 , x 1 ). Continuing this process, we construct two sequences { x n } and { y n } in X such that g x n + 1 =F( x n , y n ) and g y n + 1 =F( y n , x n ).

By using (2.21) and Proposition 1.4, we obtain

G 1 ( g x n , g x n + 1 , g x n + 1 ) = G 1 ( F ( x n 1 , y n 1 ) , F ( x n , y n ) , F ( x n , y n ) ) k max { G 2 ( g x n 1 , g x n , g x n ) , G 2 ( g y n 1 , g y n , g y n ) , G 2 ( F ( x n 1 , y n 1 ) , g x n , g x n ) , G 2 ( F ( x n 1 , y n 1 ) , g x n 1 , g x n ) , 1 2 G 2 ( F ( x n 1 , y n 1 ) , g x n 1 , g x n 1 ) , 1 2 G 2 ( F ( x n , y n ) , g x n , g x n ) , 1 2 G 2 ( F ( x n , y n ) , g x n , g x n ) , 1 2 G 2 ( F ( x n , y n ) , g x n , g x n ) , 1 2 G 2 ( F ( x n 1 , y n 1 ) , F ( x n , y n ) , g x n ) , 1 2 G 2 ( F ( x n , y n ) , F ( x n 1 , y n 1 ) , g x n ) } = k max { G 2 ( g x n 1 , g x n , g x n ) , G 2 ( g y n 1 , g y n , g y n ) , G 2 ( g x n , g x n , g x n ) , G 2 ( g x n , g x n 1 , g x n ) , 1 2 G 2 ( g x n , g x n 1 , g x n 1 ) , 1 2 G 2 ( g x n + 1 , g x n , g x n ) , 1 2 G 2 ( g x n + 1 , g x n , g x n ) , 1 2 G 2 ( g x n + 1 , g x n , g x n ) , 1 2 G 2 ( g x n , g x n + 1 , g x n ) , 1 2 G 2 ( g x n + 1 , g x n , g x n ) } = k max { G 2 ( g x n 1 , g x n , g x n ) , G 2 ( g y n 1 , g y n , g y n ) , 1 2 G 2 ( g x n , g x n 1 , g x n 1 ) , 1 2 G 2 ( g x n + 1 , g x n , g x n ) } k max { G 2 ( g x n 1 , g x n , g x n ) , G 2 ( g y n 1 , g y n , g y n ) , G 2 ( g x n 1 , g x n , g x n ) , G 2 ( g x n , g x n + 1 , g x n + 1 ) } = k max { G 2 ( g x n 1 , g x n , g x n ) , G 2 ( g y n 1 , g y n , g y n ) , G 2 ( g x n , g x n + 1 , g x n + 1 ) } k max { G 1 ( g x n 1 , g x n , g x n ) , G 1 ( g y n 1 , g y n , g y n ) , G 1 ( g x n , g x n + 1 , g x n + 1 ) } .
(2.22)

If

max { G 1 ( g x n 1 , g x n , g x n ) , G 1 ( g y n 1 , g y n , g y n ) , G 1 ( g x n , g x n + 1 , g x n + 1 ) } = G 1 ( g x n , g x n + 1 , g x n + 1 ) ,

then inequality (2.22) becomes

G 1 (g x n ,g x n + 1 ,g x n + 1 )k G 1 (g x n ,g x n + 1 ,g x n + 1 ),

which is a contradiction. So that

max { G 1 ( g x n 1 , g x n , g x n ) , G 1 ( g y n 1 , g y n , g y n ) , G 1 ( g x n , g x n + 1 , g x n + 1 ) } = max { G 1 ( g x n 1 , g x n , g x n ) , G 1 ( g y n 1 , g y n , g y n ) } .

This implies that

G 1 (g x n ,g x n + 1 ,g x n + 1 )kmax { G 1 ( g x n 1 , g x n , g x n ) , G 1 ( g y n 1 , g y n , g y n ) } .
(2.23)

In a similar way, we obtain

G 1 (g y n ,g y n + 1 ,g y n + 1 )kmax { G 1 ( g y n 1 , g y n , g y n ) , G 1 ( g x n 1 , g x n , g x n ) } .
(2.24)

Repeating inequalities (2.23) and (2.24), we obtain

G 1 ( g x n , g x n + 1 , g x n + 1 ) k max { G 1 ( g x n 1 , g x n , g x n ) , G 1 ( g y n 1 , g y n , g y n ) } k 2 max { G 1 ( g x n 2 , g x n 1 , g x n 1 ) , G 1 ( g y n 2 , g y n 1 , g y n 1 ) } k 3 max { G 1 ( g x n 3 , g x n 2 , g x n 2 ) , G 1 ( g y n 3 , g y n 2 , g y n 2 ) } k n max { G 1 ( g x 0 , g x 1 , g x 1 ) , G 1 ( g y 0 , g y 1 , g y 1 ) }
(2.25)

and

G 1 ( g y n , g y n + 1 , g y n + 1 ) k max { G 1 ( g y n 1 , g y n , g y n ) , G 1 ( g x n 1 , g x n , g x n ) } k 2 max { G 1 ( g y n 2 , g y n 1 , g y n 1 ) , G 1 ( g x n 2 , g x n 1 , g x n 1 ) } k 3 max { G 1 ( g y n 3 , g y n 2 , g y n 2 ) , G 1 ( g x n 3 , g x n 2 , g x n 2 ) } k n max { G 1 ( g y 0 , g y 1 , g y 1 ) , G 1 ( g x 0 , g x 1 , g x 1 ) } .
(2.26)

By virtue of inequalities (2.25) and (2.26), for each m,nN, m>n, repeated use (G5) of a G-metric gives

G 1 ( g x n , g x m , g x m ) G 1 ( g x n , g x n + 1 , g x n + 1 ) + G 1 ( g x n + 1 , g x n + 2 , g x n + 2 ) + + G 1 ( g x m 2 , g x m 1 , g x m 1 ) + G 1 ( g x m 1 , g x m , g x m ) ( k n + k n + 1 + + k m 1 ) max { G 1 ( g x 0 , g x 1 , g x 1 ) , G 1 ( g y 0 , g y 1 , g y 1 ) } k n 1 k max { G 1 ( g x 0 , g x 1 , g x 1 ) , G 1 ( g y 0 , g y 1 , g y 1 ) }

and

G 1 ( g y n , g y m , g y m ) G 1 ( g y n , g y n + 1 , g y n + 1 ) + G 1 ( g y n + 1 , g y n + 2 , g y n + 2 ) + + G 1 ( g y m 2 , g y m 1 , g y m 1 ) + G 1 ( g y m 1 , g y m , g y m ) ( k n + k n + 1 + + k m 1 ) max { G 1 ( g x 0 , g x 1 , g x 1 ) , G 1 ( g y 0 , g y 1 , g y 1 ) } k n 1 k max { G 1 ( g x 0 , g x 1 , g x 1 ) , G 1 ( g y 0 , g y 1 , g y 1 ) } ,

which implies that

lim n , m G 1 (g x n ,g x m ,g x m )=0and lim n , m G 1 (g y n ,g y m ,g y m )=0.

Hence {g x n } and {g y n } are G 1 -Cauchy sequences in g(X). By G 1 -completeness of g(X), there exist gx,gyg(X) such that {g x n } and {g y n } converge to gx and gy, respectively.

Now, we prove that F(x,y)=gx and F(y,x)=gy. For this, using (G5) and (2.21), we have

G 1 ( F ( x , y ) , g x , g x ) G 1 ( F ( x , y ) , g x n + 1 , g x n + 1 ) + G 1 ( g x n + 1 , g x , g x ) = G 1 ( F ( x , y ) , F ( x n , y n ) , F ( x n , y n ) ) + G 1 ( g x n + 1 , g x , g x ) k max { G 2 ( g x , g x n , g x n ) , G 2 ( g y , g y n , g y n ) , G 2 ( F ( x , y ) , g x n , g x n ) , G 2 ( F ( x , y ) , g x , g x n ) , 1 2 G 2 ( F ( x , y ) , g x , g x ) , 1 2 G 2 ( F ( x n , y n ) , g x n , g x n ) , 1 2 G 2 ( F ( x n , y n ) , g x n , g x n ) , 1 2 G 2 ( F ( x n , y n ) , g x n , g x n ) , 1 2 G 2 ( F ( x , y ) , F ( x n , y n ) , g x n ) , 1 2 G 2 ( F ( x n , y n ) , F ( x , y ) , g x n ) } + G 1 ( g x n + 1 , g x , g x ) = k max { G 2 ( g x , g x n , g x n ) , G 2 ( g y , g y n , g y n ) , G 2 ( F ( x , y ) , g x n , g x n ) , G 2 ( F ( x , y ) , g x , g x n ) , 1 2 G 2 ( F ( x , y ) , g x , g x ) , 1 2 G 2 ( g x n + 1 , g x n , g x n ) , 1 2 G 2 ( g x n + 1 , g x n , g x n ) , 1 2 G 2 ( g x n + 1 , g x n , g x n ) , 1 2 G 2 ( F ( x , y ) , g x n + 1 , g x n ) , 1 2 G 2 ( g x n + 1 , F ( x , y ) , g x n ) } + G 1 ( g x n + 1 , g x , g x ) = k max { G 2 ( g x , g x n , g x n ) , G 2 ( g y , g y n , g y n ) , G 2 ( F ( x , y ) , g x n , g x n ) , G 2 ( F ( x , y ) , g x , g x n ) , 1 2 G 2 ( F ( x , y ) , g x , g x ) , 1 2 G 2 ( g x n + 1 , g x n , g x n ) , 1 2 G 2 ( F ( x , y ) , g x n + 1 , g x n ) , 1 2 G 2 ( g x n + 1 , F ( x , y ) , g x n ) } + G 1 ( g x n + 1 , g x , g x ) .
(2.27)

On taking the limit as n, we obtain that

G 1 ( F ( x , y ) , g x , g x ) k G 2 ( F ( x , y ) , g x , g x ) k G 1 ( F ( x , y ) , g x , g x ) ,
(2.28)

which implies that G 1 (F(x,y),gx,gx)=0, and so F(x,y)=gx. In a similar way, we can show that F(y,x)=gy. Hence, (gx,gy) is a coupled point of coincidence of the mappings F and g.

Now, we shall show that gx=gy. In fact, from (2.21) we have

G 1 ( g x , g y , g y ) = G 1 ( F ( x , y ) , F ( y , x ) , F ( y , x ) ) k max { G 2 ( g x , g y , g y ) , G 2 ( g y , g x , g x ) , G 2 ( F ( x , y ) , g y , g y ) , G 2 ( F ( x , y ) , g x , g y ) , 1 2 G 2 ( ( F ( x , y ) , g x , g x ) , 1 2 G 2 ( F ( y , x ) , g y , g y ) , 1 2 G 2 ( F ( y , x ) , g y , g y ) , 1 2 G 2 ( F ( y , x ) , g y , g y ) , 1 2 G 2 ( F ( x , y ) , F ( y , x ) , g y ) , 1 2 G 2 ( F ( y , x ) , F ( x , y ) , g y ) } = k max { G 2 ( g x , g y , g y ) , G 2 ( g y , g x , g x ) } k max { G 1 ( g x , g y , g y ) , G 1 ( g y , g x , g x ) } .
(2.29)

In the same way, we can show that

G 1 (gy,gx,gx)k { G 1 ( g y , g x , g x ) , G 1 ( g x , g y , g y ) } .
(2.30)

If

max { G 1 ( g x , g y , g y ) , G 1 ( g y , g x , g x ) } = G 1 (gx,gy,gy),

then by (2.29) we have G 1 (gx,gy,gy)k G 1 (gx,gy,gy). This implies that G 1 (gx,gy,gy)=0, so that gx=gy. If

max { G 1 ( g x , g y , g y ) , G 1 ( g y , g x , g x ) } = G 1 (gy,gx,gx),

then from (2.30) we obtain G 1 (gy,gx,gx)k G 1 (gy,gx,gx), which implies that G 1 (gy,gx,gx)=0, so that gx=gy.

Therefore, (gx,gx) is a coupled point of coincidence of mappings F and g.

If there is another x X such that (g x ,g x ) is a coupled point of coincidence of mappings F and g, then by (2.21) we get

G 1 ( g x , g x , g x ) = G 1 ( F ( x , x ) , F ( x , x ) , F ( x , x ) ) k max { G 2 ( g x , g x , g x ) , G 2 ( g x , g x , g x ) , G 2 ( F ( x , x ) , g x , g x ) , G 2 ( F ( x , x ) , g x , g x ) , 1 2 G 2 ( ( F ( x , x ) , g x , g x ) , 1 2 G 2 ( F ( x , x ) , g x , g x ) , 1 2 G 2 ( F ( x , x ) , g x , g x ) , 1 2 G 2 ( F ( x , x ) , g x , g x ) , 1 2 G 2 ( F ( x , x ) , F ( x , x ) , g x ) , 1 2 G 2 ( F ( x , x ) , F ( x , x ) , g x ) } = k max { G 2 ( g x , g x , g x ) , G 2 ( g x , g x , g x ) } k max { G 1 ( g x , g x , g x ) , G 1 ( g x , g x , g x ) } .
(2.31)

In the same way, we can show that

G 1 ( g x , g x , g x ) k { G 1 ( g x , g x , g x ) , G 1 ( g x , g x , g x ) } .
(2.32)

If

max { G 1 ( g x , g x , g x ) , G 1 ( g x , g x , g x ) } = G 1 ( g x , g x , g x ) ,

then by (2.31) we have G 1 (gx,g x ,g x )k G 1 (gx,g x ,g x ). This implies that G 1 (gx,g x ,g x )=0, so that gx=g x . If

max { G 1 ( g x , g x , g x ) , G 1 ( g x , g x , g x ) } = G 1 ( g x , g x , g x ) ,

then from (2.32) we obtain G 1 (g x ,gx,gx)k G 1 (g x ,gx,gx), which implies that G 1 (g x ,gx,gx)=0, so that gx=g x .

Thus, (gx,gx) is a unique coupled point of coincidence of mappings F and g.

Now we show that F and g have a unique common coupled fixed point. For this, let gx=u. Then we have u=gx=F(x,x). By w -compatibility of F and g, we have

gu=g(gx)=gF(x,x)=F(gx,gx)=F(u,u).

Thus, (gu,gu) is a coupled point of coincidence of F and g. By the uniqueness of a coupled point of coincidence, we have gu=gx. Therefore, u=gu=F(u,u), that is, (u,u) is the common coupled fixed point of F and g.

To prove the uniqueness, let vX with vu such that

v=gv=F(v,v)andu=gu=F(u,u).

By using (2.21), following the same arguments as in the proof of (2.31) and (2.32), we obtain

G 1 ( u , v , v ) = G 1 ( g u , g v , g v ) k { G 1 ( g u , g v , g v ) , G 1 ( g v , g u , g u ) } = k { G 1 ( u , v , v ) , G 1 ( v , u , u ) }
(2.33)

and

G 1 ( v , u , u ) = G 1 ( g v , g u , g u ) k { G 1 ( g v , g u , g u ) , G 1 ( g u , g v , g x v ) } = k { G 1 ( v , u , u ) , G 1 ( u , v , v ) } .
(2.34)

If max{ G 1 (u,v,v), G 1 (v,u,u)}= G 1 (u,v,v), then by (2.33) we have G 1 (u,v,v)k G 1 (u,v,v), which implies that G 1 (u,v,v)=0, so that u=v. If max{ G 1 (u,v,v), G 1 (v,u,u)}= G 1 (v,u,u), then from (2.34) we obtain G 1 (v,u,u)k G 1 (v,u,u), which implies that G 1 (v,u,u)=0, so that u=v.

Thus, (u,u) is a unique common coupled fixed point of mappings F and g. This completes the proof of Theorem 2.11. □

Remark 2.12 Theorem 2.11 improves and extends Theorem 2.6 of Abbas et al. [25] in the following aspects:

  1. (1)

    The contractive condition defined by (1.2) is replaced by the new contractive condition defined by (2.21).

  2. (2)

    The condition 0k< 1 2 is replaced by the new condition 0k<1.

Corollary 2.13 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) k max { G 2 ( g x , g u , g s ) , G 2 ( g y , g v , g t ) , G 2 ( F ( x , y ) , g u , g s ) }
(2.35)

for all (x,y),(u,v),(s,t)X×X, where 0k<1. If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

Remark 2.14 Corollary 2.13 improves and extends Theorem 2.6 of Abbas et al. [25], the condition 0k< 1 2 is replaced by the new condition 0k<1.

Next, we introduce two examples to support Corollary 2.13.

Example 2.15 Let us reconsider Example 2.1. For all (x,y),(u,v),(s,t)X×X, we have

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) = G 1 ( 1 16 x + 5 16 y , 1 16 u + 5 16 v , 1 16 s + 5 16 t ) 1 16 ( | x u | + | u s | + | s x | ) + 5 16 ( | y v | + | v t | + | t y | ) = 5 32 4 5 ( | g x g u | + | g u g s | + | g s g x | ) + 25 32 4 5 ( | g y g v | + | g v g t | + | g t g y | ) = 5 32 G 2 ( g x , g u , g s ) + 25 32 ( g y , g v , g t ) ( 5 32 + 25 32 ) max { G 2 ( g x , g u , g s ) , ( g y , g v , g t ) } 15 16 max { G 2 ( g x , g u , g s ) , G 2 ( g y , g v , g t ) , G 2 ( F ( x , y ) , g u , g s ) } .

Then the statement (2.35) of Corollary 2.13 is satisfied for k= 15 16 . Other assumptions of Corollary 2.13 are easy to verify. So, by Corollary 2.13, there exists a unique xX such that gx=F(x,x)=x. In fact, it is easy to see that (0,0) is the unique common coupled fixed point of F and g.

Example 2.16 Let X=[0,1]. Define G 1 , G 2 :X×X×X[0,) by

G 1 (x,y,z)=|xy|+|yz|+|zx|and G 2 (x,y,z)= 4 5 ( | x y | + | y z | + | z x | )

for all x,y,zX. Then (X, G 1 ) and (X, G 2 ) are two G-metric spaces. Define a map F:X×XX by F(x,y)=1 1 8 x 5 8 y and gx=x for all x,yX. We have

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) = G 1 ( 1 1 8 x 5 8 y , 1 1 8 u 5 8 v , 1 1 8 s 5 8 t ) 1 8 ( | x u | + | u s | + | s x | ) + 5 8 ( | y v | + | v t | + | t y | ) = 5 32 G 2 ( g x , g u , g s ) + 25 32 ( g y , g v , g t ) ( 5 32 + 25 32 ) max { G 2 ( g x , g u , g s ) , ( g y , g v , g t ) } 15 16 max { G 2 ( g x , g u , g s ) , G 2 ( g y , g v , g t ) , G 2 ( F ( x , y ) , g u , g s ) } .

Then the statement (2.35) of Corollary 2.13 is satisfied for k= 15 16 . Other assumptions of Corollary 2.13 are easy to verify. So, by Corollary 2.13, there exists a unique xX such that gx=F(x,x)=x. In fact, g( 4 7 )=F( 4 7 , 4 7 )= 4 7 .

Remark 2.17 Theorem 1.8 cannot be applied to Example 2.16 since (1.2) does not hold. In fact, if (1.2) holds for some k[0, 1 2 ), then

1 = G 1 ( 3 8 , 7 8 , 7 8 ) = G 1 ( F ( 0 , 1 ) , F ( 1 , 0 ) , F ( 1 , 0 ) ) k max { G 2 ( g 0 , g 1 , g 1 ) , G 2 ( g 1 , g 0 , g 0 ) , G 2 ( F ( 0 , 1 ) , g 1 , g 1 ) } = k max { G 2 ( 0 , 1 , 1 ) , G 2 ( 1 , 0 , 0 ) , G 2 ( 3 8 , 1 , 1 ) } = k max { 8 5 , 8 5 , 4 5 5 4 } = 8 5 k < 4 5 ,

which is a contradiction.

Corollary 2.18 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) kmax { G 2 ( g x , g u , g s ) , G 2 ( g y , g v , g t ) , G 2 ( F ( x , y ) , g u , g s ) , G 2 ( F ( x , y ) , g x , g u ) }
(2.36)

for all (x,y),(u,v),(s,t)X×X, where 0k<1. If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

Corollary 2.19 Let G 1 and G 2 be two G-metrics on X such that G 2 (x,y,z) G 1 (x,y,z) for all x,y,zX, and let F:X×XX, g:XX be two mappings satisfying

G 1 ( F ( x , y ) , F ( u , v ) , F ( s , t ) ) k max { G 2 ( ( F ( x , y ) , g x , g x ) , G 2 ( F ( u , v ) , g u , g u ) , G 2 ( F ( s , t ) , g s , g s ) , G 2 ( F ( u , v ) , g u , g s ) , G 2 ( F ( x , y ) , F ( u , v ) , g s ) , G 2 ( F ( s , t ) , F ( x , y ) , g u ) }
(2.37)

for all (x,y),(u,v),(s,t)X×X, where 0k< 1 2 . If F(X×X)g(X) and g(X) is a G 1 -complete subspace of X, and F and g are w -compatible, then F and g have a unique common coupled fixed point.

Remark 2.20 Theorem 2.2 and Corollaries 2.5-2.10 improve and extend Theorems 2.2, 2.5, 2.6, Corollary 2.3, 2.7 and 2.8 of Sabetghadam et al. [23].

References

  1. Mustafa Z, Sims B: A new approach to a generalized metric space. J. Nonlinear Convex Anal. 2006, 7(2):289–297.

    MathSciNet  Google Scholar 

  2. Mustafa Z, Obiedat H, Awawdeh F: Some fixed point theorems for mappings on complete G -metric space. Fixed Point Theory Appl. 2008., 2008: Article ID 189870 10.1155/2008/189870

    Google Scholar 

  3. Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed points results in G -metric spaces. Int. J. Math. Math. Sci. 2009., 2009: Article ID 283028

    Google Scholar 

  4. Mustafa Z, Sims B: Fixed point theorems for contractive mappings in complete G -metric spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 917175

    Google Scholar 

  5. Mustafa Z, Awawdeh F, Shatanawi W: Fixed point theorem for expansive mappings in G -metric spaces. Int. J. Contemp. Math. Sci. 2010, 5(50):2463–2472.

    MathSciNet  Google Scholar 

  6. Mustafa Z, Khandagji M, Shatanawi W: Fixed point results on complete G -metric spaces. Studia Sci. Math. Hung. 2011, 48(3):304–319.

    MathSciNet  Google Scholar 

  7. Chugh R, Kadian T, Rani A, Rhoades BE: Property P in G -metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 401684

    Google Scholar 

  8. Shatanawi W: Fixed point theory for contractive mappings satisfying Φ-maps in G -metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 181650

    Google Scholar 

  9. Abbas M, Rhoades BE: Common fixed point results for noncommuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 2009, 215(1):262–269. 10.1016/j.amc.2009.04.085

    Article  MathSciNet  Google Scholar 

  10. Abbas M, Nazir T, Saadati R: Common fixed point results for three maps in generalized metric space. Adv. Differ. Equ. 2011, 49: 1–20.

    MathSciNet  Google Scholar 

  11. Abbas M, Khan SH, Nazir T: Common fixed points of R -weakly commuting maps in generalized metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 784595

    Google Scholar 

  12. Abbas M, Nazir T, Dorić D:Common fixed point of mappings satisfying (E.A) property in generalized metric spaces. Appl. Math. Comput. 2012, 218(14):7665–7670. 10.1016/j.amc.2011.11.113

    Article  MathSciNet  Google Scholar 

  13. Mustafa Z, Aydi H, Karapinar E: On common fixed points in G -metric spaces using (E.A)property. Comput. Math. Appl. 2012, 64(6):1944–1956. 10.1016/j.camwa.2012.03.051

    Article  MathSciNet  Google Scholar 

  14. Ye H, Gu F: Common fixed point theorems for a class of twice power type contraction maps in G -metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 736214

    Google Scholar 

  15. Gu F: Common fixed point theorems for six mappings in generalized metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 379212 10.1155/2012/379212

    Google Scholar 

  16. Gu F, Ye H: Common fixed point theorems of Altman integral type mappings in G -metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 630457 10.1155/2012/630457

    Google Scholar 

  17. Long W, Abbas M, Nazir T, Radenović S:Common fixed point for two pairs of mappings satisfying (E.A) property in generalized metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 394830 10.1155/2012/394830

    Google Scholar 

  18. Tahat N, Aydi H, Karapinar E, Shatanawi W: Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G -metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 48 10.1186/1687-1812-2012-48

    Google Scholar 

  19. Mustafa Z: Some new common fixed point theorems under strict contractive conditions in G -metric spaces. J. Appl. Math. 2012., 2012: Article ID 248937 10.1155/2012/248937

    Google Scholar 

  20. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  Google Scholar 

  21. Lakshmikantham V, Ćirić L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020

    Article  MathSciNet  Google Scholar 

  22. Abbas M, Khan MA, Radenović S: Common coupled fixed point theorem in cone metric space for w -compatible mappings. Appl. Math. Comput. 2010, 217: 195–202. 10.1016/j.amc.2010.05.042

    Article  MathSciNet  Google Scholar 

  23. Sabetghadam F, Masiha HP, Sanatpour AH: Some coupled fixed point theorems in cone metric spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 125426

    Google Scholar 

  24. Shatanawi S: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 2011, 40(3):441–447.

    MathSciNet  Google Scholar 

  25. Abbas M, Khan AR, Nazir T: Coupled common fixed point results in two generalized metric spaces. Appl. Math. Comput. 2011, 217: 6328–6336. 10.1016/j.amc.2011.01.006

    Article  MathSciNet  Google Scholar 

  26. Shatanawi W, Abbas M, Nazir T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 80 10.1186/1687-1812-2011-80

    Google Scholar 

  27. Gu F, Zhou S: Coupled common fixed point theorems for a pair of commuting mappings in partially ordered G -metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 64 10.1186/1687-1812-2013-64

    Google Scholar 

  28. Saadati R, Vaezpour SM, Vetro P, Rhoades BE: Fixed point theorems in generalized partially ordered G -metric spaces. Math. Comput. Model. 2010, 52(5–6):797–810. 10.1016/j.mcm.2010.05.009

    Article  MathSciNet  Google Scholar 

  29. Choudhury BS, Maity P: Coupled fixed point results in generalized partially ordered G -metric spaces. Math. Comput. Model. 2011, 54: 73–79. 10.1016/j.mcm.2011.01.036

    Article  MathSciNet  Google Scholar 

  30. Aydi H, Damjanović B, Samet B, Shatanawi W: Coupled fixed point theorems for nonlinear contractions in partially ordered G -metric spaces. Math. Comput. Model. 2011, 54(9–10):2443–2450. 10.1016/j.mcm.2011.05.059

    Article  Google Scholar 

  31. Shatanawi W: Some fixed point theorems in ordered G -metric spaces and applications. Abstr. Appl. Anal. 2011., 2011: Article ID 126205 10.1155/2011/126205

    Google Scholar 

  32. Luong NV, Thuan NX: Coupled fixed point theorems in partially ordered G -metric spaces. Math. Comput. Model. 2012, 55(3–4):1601–1609. 10.1016/j.mcm.2011.10.058

    Article  MathSciNet  Google Scholar 

  33. Aydi H, Postolache M, Shatanawi W: Coupled fixed point results for (ψ,φ) -weakly contractive mappings in ordered G -metric spaces. Comput. Math. Appl. 2012, 63(1):298–309. 10.1016/j.camwa.2011.11.022

    Article  MathSciNet  Google Scholar 

  34. Abbas M, Nazir T, Radenović S: Common fixed point of generalized weakly contractive maps in partially ordered G -metric spaces. Appl. Math. Comput. 2012, 218(18):9383–9395. 10.1016/j.amc.2012.03.022

    Article  MathSciNet  Google Scholar 

  35. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012., 2012: Article ID 8 10.1186/1687-1812-2012-8

    Google Scholar 

  36. Abbas M, Sintunavarat W, Kumam P: Coupled fixed point of generalized contractive mappings on partially ordered G -metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 31 10.1186/1687-1812-2012-31

    Google Scholar 

  37. Mustafa Z, Aydi H, Karapmar E: Mixed g -monotone property and quadruple fixed point theorems in partially ordered metric space. Fixed Point Theory Appl. 2012., 2012: Article ID 71 10.1186/1687-1812-2012-71

    Google Scholar 

  38. Razani A, Parvaneh V: On generalized weakly G -contractive mappings in partially ordered G -metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 701910 10.1155/2012/701910

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the editor and the reviewer for suggestions which improved the contents of the article. This work is supported by the National Natural Science Foundation of China (11271105) and the Natural Science Foundation of Zhejiang Province (Y6110287, LY12A01030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gu.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Gu, F. Some new common coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl 2013, 181 (2013). https://doi.org/10.1186/1687-1812-2013-181

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-181

Keywords