Skip to main content

Some new common fixed point results for three pairs of mappings in generalized metric spaces

Abstract

In this paper, we use weakly commuting and weakly compatible conditions of self-mapping pairs, prove some new common fixed point theorems for three pairs of self-mappings in G-metric spaces. An example is provided to support our result. The results presented in this paper extend and improve several well-known comparable results.

MSC:47H10, 54H25, 54E50.

1 Introduction and preliminaries

The metric fixed point theory is very important and useful in mathematics. It can be applied in various areas, for instance, approximation theory, optimization and variational inequalities. Many authors have introduced the generalizations of metric spaces, for example, Gähler [1, 2] (called 2-metric spaces) and Dhage [3, 4] (called D-metric spaces). In 2003, Mustafa and Sims [5] found that most of the claims concerning the fundamental topological properties of D-metric spaces are incorrect. Therefore, they [6] introduced a new structure of generalized metric spaces, which are called G-metric spaces, as a generalization of metric spaces, to develop and introduce a new fixed point theory for various mappings in this new structure. Later, several fixed point and common fixed point theorems in G-metric spaces were obtained by [6–51].

The purpose of this paper is to use the concept of weakly commuting mappings and weakly compatible mappings to discuss some new common fixed point problem for six self-mappings in G-metric spaces. The results presented in this paper extend and improve the corresponding results of Abbas et al. [7], Mustafa and Sims [8], Abbas and Rhoades [9], Mustafa et al. [10], Mustafa et al. [11], Abbas et al. [12], Chugh and Kadian [13], Manro et al. [14], Vats et al. [15].

We now recall some definitions and properties in G-metric spaces.

Definition 1.1 [6]

Let X be a nonempty set and let G:X×X×X→ R + be a function satisfying the following properties:

  • ( G 1 ) G(x,y,z)=0 if x=y=z;

  • ( G 2 ) 0<G(x,x,y) for all x,y∈Xwith x≠y;

  • ( G 3 ) G(x,x,y)≤G(x,y,z) for all x,y,z∈X with z≠y;

  • ( G 4 ) G(x,y,z)=G(x,z,y)=G(y,z,x)=⋯ , symmetry in all three variables;

  • ( G 5 ) G(x,y,z)≤G(x,a,a)+G(a,y,z) for all x,y,z,a∈X.

Then the function G is called a generalized metric, or, more specifically, a G-metric on X, and the pair (X,G) is called a G-metric space.

Definition 1.2 [6]

Let (X,G) be a G-metric space and let ( x n ) be a sequence of points of X. A point x∈X is said to be the limit of the sequence ( x n ) if lim n , m → + ∞ G(x, x n , x m )=0, and we say that the sequence ( x n ) is G-convergent to x or ( x n ) G-convergent to x.

Thus, x n →x in a G-metric space (X,G) if, for any ϵ>0, there exists k∈N such that G(x, x n , x m )<ϵ for all m,n≥k.

Proposition 1.1 [6]

Let (X,G) be a G-metric space, then the following are equivalent:

  1. 1.

    ( x n ) is G-convergent to x.

  2. 2.

    G( x n , x n ,x)→0 as n→+∞.

  3. 3.

    G( x n ,x,x)→0 as n→+∞.

  4. 4.

    G( x n , x m ,x)→0 as n,m→+∞.

Definition 1.3 [6]

Let (X,G) be a G-metric space. A sequence ( x n ) is called G-Cauchy if, for every ϵ>0, there is k∈N such that G( x n , x m , x l )<ϵ for all m,n,l≥k; that is, G( x n , x m , x l )→0 as n,m,l→+∞.

Proposition 1.2 [6]

Let (X,G) be a G-metric space. Then the following are equivalent:

  1. 1.

    The sequence ( x n ) is G-Cauchy.

  2. 2.

    For every ϵ>0, there is k∈N such that G( x n , x m , x m )<ϵ for all m,n≥k.

Definition 1.4 [6]

Let (X,G) and ( X ′ , G ′ ) be G-metric spaces and let f:(X,G)→( X ′ , G ′ ) be a function. Then f is said to be G-continuous at a point a∈X if and only if, for every ϵ>0, there is δ>0 such that x,y∈X and G(a,x,y)<δ imply G ′ (f(a),f(x),f(y))<ϵ. A function f is G-continuous at X if only if it is G-continuous at a∈X.

Proposition 1.3 [6]

Let (X,G) be a G-metric space. Then the function G(x,y,z) is jointly continuous in all three of its variables.

Definition 1.5 [6]

A G-metric space (X,G) is G-complete if every G-Cauchy sequence in (X,G) is G-convergent in X.

Definition 1.6 [16]

Two self-mappings f and g of a G-metric space (X,G) are said to be weakly commuting if G(fgx,gfx,gfx)≤G(fx,gx,gx) for all x in X.

Definition 1.7 [16]

Let f and g be two self-mappings from a G-metric space (X,G) into itself. Then the mappings f and g are said to be weakly compatible if G(fgx,gfx,gfx)=0 whenever G(fx,gx,gx)=0.

Proposition 1.4 [6]

Let (X,G) be a G-metric space. Then, for all x, y, z, a in X, it follows that:

  1. (i)

    If G(x,x,y)=0, then x=y=z;

  2. (ii)

    G(x,y,z)≤G(x,x,y)+G(x,x,z);

  3. (iii)

    G(x,y,y)≤2G(y,x,x);

  4. (iv)

    G(x,y,z)≤G(x,a,z)+G(a,y,z);

  5. (v)

    G(x,y,z)≤ 2 3 (G(x,y,a)+G(x,a,z)+G(a,y,z));

  6. (vi)

    G(x,y,z)≤(G(x,a,a)+G(y,a,a)+G(z,a,a)).

2 Common fixed point theorems

Theorem 2.1 Let (X,G) be a complete G-metric space, and let f, g, h, A, B and C be six mappings of X into itself satisfying the following conditions:

  1. (i)

    f(X)⊂B(X), g(X)⊂C(X), h(X)⊂A(X);

  2. (ii)

    ∀x,y,z∈X,

    G(fx,gy,hz)≤kmax { G ( A x , B y , C z ) , G ( A x , f x , f x ) , G ( B y , g y , g y ) , G ( C z , h z , h z ) , G ( A x , g y , g y ) , G ( A x , h z , h z ) , G ( B y , f x , f x ) , G ( B y , h z , h z ) , G ( C z , f x , f x ) , G ( C z , g y , g y ) }
    (2.1)

    or

    G(fx,gy,hz)≤kmax { G ( A x , B y , C z ) , G ( A x , A x , f x ) , G ( B y , B y , g y ) , G ( C z , C z , h z ) , G ( A x , A x , g y ) , G ( A x , A x , h z ) , G ( B y , B y , f x ) , G ( B y , B y , h z ) , G ( C z , C z , f x ) , G ( C z , C z , g y ) } ,
    (2.2)

    where k∈[0, 1 2 ). If one of the following conditions is satisfied:

    1. (a)

      Either f or A is G-continuous, the pair (f,A) is weakly commuting, the pairs (g,B) and (h,C) are weakly compatible;

    2. (b)

      Either g or B is G-continuous, the pair (g,B) is weakly commuting, the pairs (f,A) and (h,C) are weakly compatible;

    3. (c)

      Either h or C is G-continuous, the pair (h,C) is weakly commuting, the pairs (f,A) and (g,B) are weakly compatible.

Then

  1. (I)

    one of the pairs (f,A), (g,B) and (h,C) has a coincidence point in X;

  2. (II)

    the mappings f, g, h, A, B and C have a unique common fixed point in X.

Proof Suppose that mappings f, g, h, A, B and C satisfy condition (2.1).

Let x 0 in X be an arbitrary point since f(X)⊂B(X), g(X)⊂C(X), h(X)⊂A(X). There exist the sequences { x n } and { y n } in X such that

y 3 n =f x 3 n =B x 3 n + 1 , y 3 n + 1 =g x 3 n + 1 =C x 3 n + 2 , y 3 n + 2 =h x 3 n + 2 =A x 3 n + 3

for all n=0,1,2,… .

If there exists n 0 ∈N such that y n 0 = y n 0 + 1 , then the conclusion (I) of Theorem 2.1 holds. In fact, if there exists p∈N such that y 3 p + 2 = y 3 p + 3 , then fu=Au, where u= x 3 p + 3 . Hence the pair (f,A) has a coincidence point u∈X. If y 3 p = y 3 p + 1 , then gu=Bu, where u= x 3 p + 1 . Therefore, the pair (g,B) has a coincidence point u∈X. If y 3 p + 1 = y 3 p + 2 , then hu=Cu, where u= x 3 p + 2 . And so the pair (h,C) has a coincidence point u∈X.

On the other hand, if there exists n 0 ∈N such that y n 0 = y n 0 + 1 = y n 0 + 2 , then y n = y n 0 for any n≥ n 0 . This implies that { y n } is a G-Cauchy sequence.

Actually, if there exists p∈N such that y 3 p = y 3 p + 1 = y 3 p + 2 , then applying the contractive condition (2.1) with x= y 3 p + 3 , y= y 3 p + 1 and z= y 3 p + 2 , we get

G ( y 3 p + 1 , y 3 p + 2 , y 3 p + 3 ) = G ( f x 3 p + 3 , g x 3 p + 1 , h x 3 p + 2 ) ≤ k max { G ( A x 3 p + 3 , B x 3 p + 1 , C x 3 p + 2 ) , G ( A x 3 p + 3 , f x 3 p + 3 , f x 3 p + 3 ) , G ( B x 3 p + 1 , g x 3 p + 1 , g x 3 p + 1 ) , G ( C x 3 p + 2 , h x 3 p + 2 , h x 3 p + 2 ) , G ( A x 3 p + 3 , g x 3 p + 1 , g x 3 p + 1 ) , G ( A x 3 p + 3 , h x 3 p + 2 , h x 3 p + 2 ) , G ( B x 3 p + 1 , f x 3 p + 3 , f x 3 p + 3 ) , G ( B x 3 p + 1 , h x 3 p + 2 , h x 3 p + 2 ) , G ( C x 3 p + 2 , f x 3 p + 3 , f x 3 p + 3 ) , G ( C x 3 p + 2 , g x 3 p + 1 , g x 3 p + 1 ) } = k max { G ( y 3 p + 2 , y 3 p , y 3 p + 1 ) , G ( y 3 p + 2 , y 3 p + 3 , y 3 p + 3 ) , G ( y 3 p , y 3 p + 1 , y 3 p + 1 ) , G ( y 3 p + 1 , y 3 p + 2 , y 3 p + 2 ) , G ( y 3 p + 2 , y 3 p + 1 , y 3 p + 1 ) , G ( y 3 p + 2 , y 3 p + 2 , y 3 p + 2 ) , G ( y 3 p , y 3 p + 3 , y 3 p + 3 ) , G ( y 3 p , y 3 p + 2 , y 3 p + 2 ) , G ( y 3 p + 1 , y 3 p + 3 , y 3 p + 3 ) , G ( y 3 p + 1 , y 3 p + 1 , y 3 p + 1 ) } ≤ k max { G ( y 3 p + 2 , y 3 p + 3 , y 3 p + 3 ) , G ( y 3 p , y 3 p + 3 , y 3 p + 3 ) , G ( y 3 p + 1 , y 3 p + 3 , y 3 p + 3 ) } = k G ( y 3 p + 2 , y 3 p + 3 , y 3 p + 3 ) .

If y 3 p + 3 ≠ y 3 p + 1 , then from condition ( G 3 ) and Proposition 1.4(iii), we get

0<G( y 3 n + 1 , y 3 n + 2 , y 3 n + 3 )≤2kG( y 3 n + 2 , y 3 n + 2 , y 3 n + 3 )≤2kG( y 3 n + 1 , y 3 n + 2 , y 3 n + 3 ),

which implies that k≥ 1 2 , that is a contradiction, since 0≤k< 1 2 . So, we find y n = y 3 p for any n≥3p. This implies that { y n } is a G-Cauchy sequence. The same conclusion holds if y 3 p + 1 = y 3 p + 2 = y 3 p + 3 , or y 3 p + 2 = y 3 p + 3 = y 3 p + 4 for some p∈N.

Assume for the rest of the paper that y n ≠ y m for any n≠m. Applying again (2.1) with x= y 3 n , y= y 3 n + 1 and z= y 3 n + 2 and using conditions ( G 3 ) and ( G 5 ), we get that

G ( y 3 n , y 3 n + 1 , y 3 n + 2 ) = G ( f x 3 n , g x 3 n + 1 , h x 3 n + 2 ) ≤ k max { G ( A x 3 n , B x 3 n + 1 , C x 3 n + 2 ) , G ( A x 3 n , f x 3 n , f x 3 n ) , G ( B x 3 n + 1 , g x 3 n + 1 , g x 3 n + 1 ) , G ( C x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( A x 3 n , g x 3 n + 1 , g x 3 n + 1 ) , G ( A x 3 n , h x 3 n + 2 , h x 3 n + 2 ) , G ( B x 3 n + 1 , f x 3 n , f x 3 n ) , G ( B x 3 n + 1 , h x 3 n + 2 , h x 3 n + 2 ) , G ( C x 3 n + 2 , f x 3 n , f x 3 n ) , G ( C x 3 n + 2 , g x 3 n + 1 , g x 3 n + 1 ) } = k max { G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , G ( y 3 n − 1 , y 3 n , y 3 n ) , G ( y 3 n , y 3 n + 1 , y 3 n + 1 ) , G ( y 3 n + 1 , y 3 n + 2 , y 3 n + 2 ) , G ( y 3 n − 1 , y 3 n + 1 , y 3 n + 1 ) , G ( y 3 n − 1 , y 3 n + 2 , y 3 n + 2 ) , G ( y 3 n , y 3 n , y 3 n ) , G ( y 3 n , y 3 n + 2 , y 3 n + 2 ) , G ( y 3 n + 1 , y 3 n , y 3 n ) , G ( y 3 n + 1 , y 3 n + 1 , y 3 n + 1 ) } ≤ k max { G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , G ( y 3 n , y 3 n + 1 , y 3 n + 2 ) , G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , G ( y 3 n − 1 , y 3 n + 1 , y 3 n + 1 ) + G ( y 3 n + 1 , y 3 n + 2 , y 3 n + 2 ) , 0 , G ( y 3 n , y 3 n + 1 , y 3 n + 2 ) , G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , 0 } ≤ k max { G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , G ( y 3 n , y 3 n + 1 , y 3 n + 2 ) , G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) + G ( y 3 n , y 3 n + 1 , y 3 n + 2 ) , 0 , G ( y 3 n , y 3 n + 1 , y 3 n + 2 ) , G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , 0 } = k max { G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) , G ( y 3 n , y 3 n + 1 , y 3 n + 2 ) , G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) + G ( y 3 n , y 3 n + 1 , y 3 n + 2 ) } = k [ G ( y 3 n − 1 , y 3 n , y 3 n + 1 ) + G ( y 3 n , y 3 n + 1 , y 3 n + 2 ) ] .

From k∈[0, 1 2 ) we obtain

G( y 3 n , y 3 n + 1 , y 3 n + 2 )≤λG( y 3 n − 1 , y 3 n , y 3 n + 1 ),
(2.3)

where λ= k 1 − k ∈[0,1). Similarly it can be shown that

G( y 3 n + 1 , y 3 n + 2 , y 3 n + 3 )≤λG( y 3 n , y 3 n + 1 , y 3 n + 2 )
(2.4)

and

G( y 3 n + 1 , y 3 n + 2 , y 3 n + 3 )≤λG( y 3 n , y 3 n + 1 , y 3 n + 2 ).
(2.5)

It follows from (2.3), (2.4) and (2.5) that, for all n∈N,

G( y n , y n + 1 , y n + 2 )≤λG( y n − 1 , y n , y n + 1 )≤ λ 2 G( y n − 2 , y n − 1 , y n )≤⋯≤ λ n G( y 0 , y 1 , y 2 ).

Therefore, for all n,m∈N, n<m, by ( G 3 ) and ( G 5 ), we have

G ( y n , y m , y m ) ≤ G ( y n , y n + 1 , y n + 1 ) + G ( y n + 1 , y n + 2 , y n + 2 ) + G ( y n + 2 , y n + 3 , y n + 3 ) + ⋯ + G ( y m − 1 , y m , y m ) ≤ G ( y n , y n + 1 , y n + 2 ) + G ( y n + 1 , y n + 2 , y n + 3 ) + ⋯ + G ( y m − 1 , y m , y m + 1 ) ≤ ( λ n + λ n + 1 + λ n + 2 + ⋯ + λ m − 1 ) G ( y 0 , y 1 , y 2 ) ≤ λ n 1 − λ G ( y 0 , y 1 , y 2 ) → 0 , as  n → ∞ .

Hence { y n } is a G-Cauchy sequence in X. Since X is a complete G-metric space, there exists a point u∈X such that y n →u (n→∞).

Since the sequences {f x 3 n }={B x 3 n + 1 }, {g x 3 n + 1 }={C x 3 n + 2 } and {h x 3 n − 1 }={A x 3 n } are all subsequences of { y n }, then they all converge to u

y 3 n = f x 3 n = B x 3 n + 1 → u , y 3 n + 1 = g x 3 n + 1 = C x 3 n + 2 → u , y 3 n − 1 = h x 3 n − 1 = A x 3 n → u ( n → ∞ ) .
(2.6)

Now we prove that u is a common fixed point of f, g, h, A, B and C under condition (a).

First, we suppose that A is continuous, the pair (f,A) is weakly commuting, the pairs (g,B) and (h,C) are weakly compatible.

Step 1. We prove that u=fu=Au.

By (2.6) and a weakly commuting of mapping pair (f,A), we have

G(fA x 3 n ,Af x 3 n ,Af x 3 n )≤G(f x 3 n ,A x 3 n ,A x 3 n )→0(n→∞).
(2.7)

Since A is continuous, then A 2 x 3 n →Au (n→∞), Af x 3 n →Au (n→∞). By (2.7) we know that fA x 3 n →Au (n→∞).

From condition (2.1) we know

G ( f A x 3 n , g x 3 n + 1 , h x 3 n + 2 ) ≤ k max { G ( A 2 x 3 n , B x 3 n + 1 , C x 3 n + 2 ) , G ( A 2 x 3 n , f A x 3 n , f A x 3 n ) , G ( B x 3 n + 1 , g x 3 n + 1 , g x 3 n + 1 ) , G ( C x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( A 2 x 3 n , g x 3 n + 1 , g x 3 n + 1 ) , G ( A 2 x 3 n , h x 3 n + 2 , h x 3 n + 2 ) , G ( B x 3 n + 1 , f A x 3 n , f A x 3 n ) , G ( B x 3 n + 1 , h x 3 n + 2 , h x 3 n + 2 ) , G ( C x 3 n + 2 , f x 3 n , f x 3 n ) , G ( C x 3 n + 2 , g x 3 n + 1 , g x 3 n + 1 ) } .

Letting n→∞ and using Proposition 1.4(iii), we have

G ( A u , u , u ) ≤ k max { G ( A u , u , u ) , G ( A u , A u , A u ) , G ( u , u , u ) , G ( u , u , u ) , G ( A u , u , u ) , G ( A u , u , u ) , G ( u , A u , A u ) , G ( u , u , u ) , G ( u , A u , A u ) , G ( u , u , u ) } = k max { G ( A u , u , u ) , G ( u , A u , A u ) } ≤ 2 k G ( A u , u , u ) ,

which implies that G(Au,u,u)=0, and so Au=u since 0≤k< 1 2 .

Again, by use of condition (2.1), we have

G(fu,g x 3 n + 1 ,h x 3 n + 2 )≤kmax { G ( A u , B x 3 n + 1 , C x 3 n + 2 ) , G ( A u , f u , f u ) , G ( B x 3 n + 1 , g x 3 n + 1 , g x 3 n + 1 ) , G ( C x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( A u , g x 3 n + 1 , g x 3 n + 1 ) , G ( A u , h x 3 n + 2 , h x 3 n + 2 ) , G ( B x 3 n + 1 , f u , f u ) , G ( B x 3 n + 1 , h x 3 n + 2 , h x 3 n + 2 ) , G ( C x 3 n + 2 , f u , f u ) , G ( C x 3 n + 2 , g x 3 n + 1 , g x 3 n + 1 ) } .

Letting n→∞, using (2.6), u=Au and Proposition 1.4(iii), we obtain

G ( f u , u , u ) ≤ k max { G ( u , u , u ) , G ( u , f u , f u ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , f u , f u ) , G ( u , u , u ) , G ( u , f u , f u ) , G ( u , u , u ) } = k G ( u , f u , f u ) ≤ 2 k G ( f u , u , u ) .

This implies that G(fu,u,u)=0 and so fu=u. Thus we have u=Au=fu.

Step 2. We prove that u=gu=Bu.

Since f(X)⊂B(X) and u=fu∈f(X), there is a point v∈X such that u=fu=Bv. Again, by use of condition (2.1), we have

G(fu,gv,h x 3 n + 2 )≤kmax { G ( A u , B v , C x 3 n + 2 ) , G ( A u , f u , f u ) , G ( B v , g v , g v ) , G ( C x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( A u , g v , g v ) , G ( A u , h x 3 n + 2 , h x 3 n + 2 ) , G ( B v , f u , f u ) , G ( B v , h x 3 n + 2 , h x 3 n + 2 ) , G ( C x 3 n + 2 , f u , f u ) , G ( C x 3 n + 2 , g v , g v ) } .

Letting n→∞, using u=Au=fu=Bv and Proposition 1.4(iii), we have

G ( u , g v , u ) ≤ k max { G ( u , u , u ) , G ( u , u , u ) , G ( u , g v , g v ) , G ( u , u , u ) , G ( u , g v , g v ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , g v , g v ) } = k G ( u , g v , g v ) ≤ 2 k G ( u , g v , u ) ,

which implies that G(u,gv,u)=0, and so gv=u=Bv.

Since the pair (g,B) is weakly compatible, we have

gu=gBv=Bgv=Bu.

Again, by use of condition (2.1), we have

G(fu,gu,h x 3 n + 2 )≤kmax { G ( A u , B u , C x 3 n + 2 ) , G ( A u , f u , f u ) , G ( B u , g u , g u ) , G ( C x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( A u , g u , g u ) , G ( A u , h x 3 n + 2 , h x 3 n + 2 ) , G ( B u , f u , f u ) , G ( B u , h x 3 n + 2 , h x 3 n + 2 ) , G ( C x 3 n + 2 , f u , f u ) , G ( C x 3 n + 2 , g u , g u ) } .

Letting n→∞, using u=Au=fu and gu=Bu and Proposition 1.4(iii), we have

G ( u , g u , u ) ≤ k max { G ( u , g u , u ) , G ( u , u , u ) , G ( g u , g u , g u ) , G ( u , u , u ) , G ( u , g u , g u ) , G ( u , u , u ) , G ( g u , u , u ) , G ( g u , u , u ) , G ( u , u , u ) , G ( u , g u , g u ) } = k max { G ( u , g u , u ) , G ( u , g u , g u ) } ≤ 2 k G ( u , g u , u ) .

This implies that G(u,gu,u)=0, and so u=gu=Bu.

Step 3. We prove that u=hu=Cu.

Since g(X)⊂C(X) and u=gu∈g(X), there is a point w∈X such that u=gu=Cw. Again, by use of condition (2.1), we have

G(fu,gu,hw)≤kmax { G ( A u , B u , C w ) , G ( A u , f u , f u ) , G ( B u , g u , g u ) , G ( C w , h w , h w ) , G ( A u , g u , g u ) , G ( A u , h w , h w ) , G ( B u , f u , f u ) , G ( B u , h w , h w ) , G ( C w , f u , f u ) , G ( C w , g u , g u ) } .

Using u=Au=fu, u=gu=Bu=Cw and Proposition 1.4(iii), we obtain

G ( u , u , h w ) ≤ k max { G ( u , u , u ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , h w , h w ) , G ( u , u , u ) , G ( u , h w , h w ) , G ( u , u , u ) , G ( u , h w , h w ) , G ( u , u , u ) , G ( u , u , u ) } = k G ( u , h w , h w ) ≤ 2 k G ( u , u , h w ) .

Hence G(u,u,hw)=0, and so hw=u=Cw.

Since the pair (h,C) is weakly compatible, we have

hu=hCw=Chw=Cu.

Again, by use of condition (2.1), we have

G(fu,gu,hu)≤kmax { G ( A u , B u , C u ) , G ( A u , f u , f u ) , G ( B u , g u , g u ) , G ( C u , h u , h u ) , G ( A u , g u , g u ) , G ( A u , h u , h u ) , G ( B u , f u , f u ) , G ( B u , h u , h u ) , G ( C u , f u , f u ) , G ( C u , g u , g u ) } .

Using u=Au=fu, u=gu=Bu, Cu=hu and Proposition 1.4(iii), we have

G(u,u,hu)≤kmax { G ( u , u , h u ) , G ( u , h u , h u ) } ≤2kG(u,u,hu).

Thus G(u,u,hu)=0, and so u=hu=Cu.

Therefore u is the common fixed point of f, g, h, A, B and C when A is continuous and the pair (f,A) is weakly commuting, the pairs (g,B) and (h,C) are weakly compatible.

Next, we suppose that f is continuous, the pair (f,A) is weakly commuting, the pairs (g,B) and (h,C) are weakly compatible.

Step 1. We prove that u=fu.

By (2.6) and a weakly commuting mapping pair (f,A), we have

G(fA x 3 n ,Af x 3 n ,Af x 3 n )≤G(f x 3 n ,A x 3 n ,A x 3 n )→0(n→∞).
(2.8)

Since f is continuous, then f 2 x 3 n →fu (n→∞), fA x 3 n →fu (n→∞). By (2.6) we know Af x 3 n →fu (n→∞).

From condition (2.1) we know

G ( f 2 x 3 n , g x 3 n + 1 , h x 3 n + 2 ) ≤ k max { G ( A f x 3 n , B x 3 n + 1 , C x 3 n + 2 ) , G ( A f x 3 n , f 2 x 3 n , f 2 x 3 n ) , G ( B x 3 n + 1 , g x 3 n + 1 , g x 3 n + 1 ) , G ( C x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( A f x 3 n , g x 3 n + 1 , g x 3 n + 1 ) , G ( A f x 3 n , h x 3 n + 2 , h x 3 n + 2 ) , G ( B x 3 n + 1 , f 2 x 3 n , f 2 x 3 n ) , G ( B x 3 n + 1 , h x 3 n + 2 , h x 3 n + 2 ) , G ( C x 3 n + 2 , f 2 x 3 n , f 2 x 3 n ) , G ( C x 3 n + 2 , g x 3 n + 1 , g x 3 n + 1 ) } .

Letting n→∞ and noting Proposition 1.4(iii), we have

G ( f u , u , u ) ≤ k max { G ( f u , u , u ) , G ( f u , f u , f u ) , G ( u , u , u ) , G ( u , u , u ) , G ( f u , u , u ) , G ( f u , u , u ) , G ( u , f u , f u ) , G ( u , u , u ) , G ( u , f u , f u ) , G ( u , u , u ) } = k max { G ( f u , u , u ) , G ( u , f u , f u ) } ≤ 2 k G ( f u , u , u ) ,

which implies that G(fu,u,u)=0, and so fu=u.

Step 2. We prove that u=gu=Bu.

Since f(X)⊂B(X) and u=fu∈f(X), there is a point z∈X such that u=fu=Bz. Again, by use of condition (2.1), we have

G ( f 2 x 3 n , g z , h x 3 n + 2 ) ≤kmax { G ( A f x 3 n , B z , C x 3 n + 2 ) , G ( A f x 3 n , f 2 x 3 n , f 2 x 3 n ) , G ( B z , g z , g z ) , G ( C x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( A f x 3 n , g z , g z ) , G ( A f x 3 n , h x 3 n + 2 , h x 3 n + 2 ) , G ( B z , f 2 x 3 n , f 2 x 3 n ) , G ( B z , h x 3 n + 2 , h x 3 n + 2 ) , G ( C x 3 n + 2 , f 2 x 3 n , f 2 x 3 n ) , G ( C x 3 n + 2 , g z , g z ) } .

Letting n→∞, using u=fu=Bz and Proposition 1.4(iii), we have

G ( u , g z , u ) ≤ k max { G ( u , u , u ) , G ( u , u , u ) , G ( u , g z , g z ) , G ( u , u , u ) , G ( u , g z , g z ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , g z , g z ) } = k G ( u , g z , g z ) ≤ 2 k G ( u , g u , u ) .

This implies that G(u,gz,u)=0, and so gz=u=Bz.

Since the pair (g,B) is weakly compatible, we have

gu=gBz=Bgz=Bu.

Again, by use of condition (2.1), we have

G(f x 3 n ,gu,h x 3 n + 2 )≤kmax { G ( A x 3 n , B u , C x 3 n + 2 ) , G ( A x 3 n , f x 3 n , f x 3 n ) , G ( B u , g u , g u ) , G ( C x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( A x 3 n , g u , g u ) , G ( A x 3 n , h x 3 n + 2 , h x 3 n + 2 ) , G ( B u , f x 3 n , f x 3 n ) , G ( B u , h x 3 n + 2 , h x 3 n + 2 ) , G ( C x 3 n + 2 , f x 3 n , f x 3 n ) , G ( C x 3 n + 2 , g u , g u ) } .

Letting n→∞, using u=fu, gu=Bu and Proposition 1.4(iii), we have

G ( u , g u , u ) ≤ k max { G ( u , g u , u ) , G ( u , u , u ) , G ( g u , g u , g u ) , G ( u , u , u ) , G ( u , g u , g u ) , G ( u , u , u ) , G ( g u , u , u ) , G ( g u , u , u ) , G ( u , u , u ) , G ( u , g u , g u ) } = k max { G ( u , g u , u ) , G ( u , g u , g u ) } ≤ 2 k G ( u , g u , u ) .

Therefore, G(u,gu,u)=0, and so gu=u=Bu.

Step 3. We prove that u=hu=Cu.

Since g(X)⊂C(X) and u=gu∈g(X), there is a point t∈X such that u=gu=Ct. Again, by use of condition (2.1), we have

G(f x 3 n ,gu,ht)≤kmax { G ( A x 3 n , B u , C t ) , G ( A x 3 n , f x 3 n , f x 3 n ) , G ( B u , g u , g u ) , G ( C t , h t , h t ) , G ( A x 3 n , g u , g u ) , G ( A x 3 n , h t , h t ) , G ( B u , f x 3 n , f x 3 n ) , G ( B u , h t , h t ) , G ( C t , f x 3 n , f x 3 n ) , G ( C t , g u , g u ) } .

Letting n→∞, using u=gu=Bu=Ct and Proposition 1.4(iii), we obtain

G ( u , u , h t ) ≤ k max { G ( u , u , u ) , G ( u , u , u ) , G ( u , u , u ) , G ( u , h t , h t ) , G ( u , u , u ) , G ( u , h t , h t ) , G ( u , u , u ) , G ( u , h t , h t ) , G ( u , u , u ) , G ( u , u , u ) } = k G ( u , h t , h t ) ≤ 2 k G ( u , u , h t ) .

Thus G(u,u,ht)=0, and so ht=u=Ct.

Since the pair (h,C) is weakly compatible, we have

hu=hCt=Cht=Cu.

Again, by use of condition (2.1), we have

G(f x 3 n ,gu,hu)≤kmax { G ( A x 3 n , B u , C u ) , G ( A x 3 n , f x 3 n , f x 3 n ) , G ( B u , g u , g u ) , G ( C u , h u , h u ) , G ( A x 3 n , g u , g u ) , G ( A x 3 n , h u , h u ) , G ( B u , f x 3 n , f x 3 n ) , G ( B u , h u , h u ) , G ( C u , f x 3 n , f x 3 n ) , G ( C u , g u , g u ) } .

Letting n→∞, using u=fu=gu=Bu, Cu=hu and Proposition 1.4(iii), we have

G ( u , u , h u ) ≤ k max { G ( u , u , h u ) , G ( u , u , u ) , G ( u , u , u ) , G ( h u , h u , h u ) , G ( u , u , u ) , G ( u , h u , h u ) , G ( u , u , u ) , G ( u , h u , h u ) , G ( h u , u , u ) , G ( h u , u , u ) } = k max { G ( u , u , h u ) , G ( u , h u , h u ) } ≤ 2 k G ( u , u , h u ) ,

which implies that G(u,u,hu)=0, and so hu=u=Cu.

Step 4. We prove that u=Au.

Since h(X)⊂A(X) and u=hu∈h(X), there is a point p∈X such that u=hu=Ap. Again, by use of condition (2.1), we have

G(fp,gu,hu)≤kmax { G ( A p , B u , C u ) , G ( A p , f p , f p ) , G ( B u , g u , g u ) , G ( C u , h u , h u ) , G ( A p , g u , g u ) , G ( A p , h u , h u ) , G ( B u , f p , f p ) , G ( B u , h u , h u ) , G ( C u , f p , f p ) , G ( C u , g u , g u ) } .

Using u=gu=Bu, u=hu=Cu and Proposition 1.4(iii), we obtain

G(fp,u,u)≤kG(u,fp,fp)≤2αG(fp,u,u).

Hence G(fp,u,u)=0, and so fp=u=Ap.

Since the pair (f,A) is weakly compatible, we have

fu=fAp=Afp=Au=u.

Therefore u is the common fixed point of f, g, h, A, B and C when S is continuous and the pair (f,A) is weakly commuting, the pairs (g,B) and (h,C) are weakly compatible.

Similarly we can prove the result that u is a common fixed point of f, g, h, A, B and C under the condition of (b) or (c).

Finally, we prove the uniqueness of a common fixed point u.

Let u and q be two common fixed points of f, g, h, A, B and C. By use of condition (2.1), we have

G ( q , u , u ) = G ( f q , g u , h u ) ≤ k max { G ( A q , B u , C u ) , G ( A q , f q , f q ) , G ( B u , g u , g u ) , G ( C u , h u , h u ) , G ( A q , g u , g u ) , G ( A q , h u , h u ) , G ( B u , f q , f q ) , G ( B u , h u , h u ) , G ( C u , f q , f q ) , G ( C u , g u , g u ) } = k max { G ( q , u , u ) , G ( u , q , q ) } ≤ 2 k G ( q , u , u ) .

This implies that G(q,u,u)=0, and so q=u. Thus the common fixed point is unique.

The proof using (2.2) is similar. This completes the proof. □

Now we introduce an example to support Theorem 2.1.

Example 2.2 Let X=[0,1] and let (X,G) be a G-metric space defined by G(x,y,z)=|x−y|+|y−z|+|z−x| for all x,y,z in X. Let f, g, h, A, B and C be self-mappings defined by

f x = { 1 , x ∈ [ 0 , 1 2 ] , 5 6 , x ∈ ( 1 2 , 1 ] , g x = { 7 8 , x ∈ [ 0 , 1 2 ] , 5 6 , x ∈ ( 1 2 , 1 ] , h x = { 6 7 , x ∈ [ 0 , 1 2 ] , 5 6 , x ∈ ( 1 2 , 1 ] , A x = x , B x = { 1 , x ∈ [ 0 , 1 2 ] , 5 6 , x ∈ ( 1 2 , 1 ) , 0 , x = 1 , C x = { 1 , x ∈ [ 0 , 1 2 ] , 5 6 , x ∈ ( 1 2 , 1 ) , 7 8 , x = 1 .

Note that A is G-continuous in X, and f, g, h, B and C are not G-continuous in X.

  1. (i)

    Clearly we can get f(X)⊂B(X), g(X)⊂C(X), h(X)⊂A(X).

Actually, because fX={ 5 6 ,1}, BX={0, 5 6 ,1}, gX={ 5 6 , 7 8 }, CX={0, 5 6 , 7 8 }, hX={ 5 6 , 6 7 }, AX=X=[0,1], so we know f(X)⊂B(X), g(X)⊂C(X) and h(X)⊂A(X).

  1. (ii)

    By the definition of the mappings of f and A, for all x∈[0,1], G(fAx,Afx,Afx)=G(fx,fx,fx)=0≤G(fx,Ax,Ax), so we can get the pair (f,A) is weakly commuting.

By the definition of the mappings of g and B, only for x∈( 1 2 ,1), gx=Bx= 5 6 , at this time gBx=T( 5 6 )= 5 6 =B( 5 6 )=Bgx, so gBx=Bgx, so we can obtain the pair (g,B) is weakly compatible. Similarly we can prove the pair (h,C) is also weakly compatible.

  1. (iii)

    Now we prove the mappings f, g, h, A, B and C satisfy condition (2.1) of Theorem 2.1 with k= 2 5

    M(x,y,z)=max { G ( A x , B y , C z ) , G ( A x , f x , f x ) , G ( B y , g y , g y ) , G ( C z , h z , h z ) , G ( A x , g y , g y ) , G ( A x , h z , h z ) , G ( B y , f x , f x ) , G ( B y , h z , h z ) , G ( C z , f x , f x ) , G ( C z , g y , g y ) } .

Case 1. If x,y,z∈[0, 1 2 ], then

G ( f x , g y , h z ) = G ( 1 , 7 8 , 6 7 ) = 2 7 , G ( A x , f x , f x ) = G ( x , 1 , 1 ) = 2 | x − 1 | ≥ 1 .

Thus we have

G(fx,gy,hz)= 2 7 < 2 5 ×1≤ 2 5 G(Ax,fx,fx)≤ 2 5 M(x,y,z).

Case 2. If x,y∈[0, 1 2 ], z∈( 1 2 ,1], then

G ( f x , g y , h z ) = G ( 1 , 7 8 , 5 6 ) = 1 3 , G ( A x , f x , f x ) = G ( x , 1 , 1 ) = 2 | x − 1 | ≥ 1 .

Hence we get

G(fx,gy,hz)= 1 3 < 2 5 ×1≤ 2 5 G(Ax,fx,fx)≤ 2 5 M(x,y,z).

Case 3. If x,z∈[0, 1 2 ], y∈( 1 2 ,1], then

G ( f x , g y , h z ) = G ( 1 , 5 6 , 6 7 ) = 1 3 , G ( A x , f x , f x ) = G ( x , 1 , 1 ) = 2 | x − 1 | ≥ 1 .

Therefore we obtain

G(fx,gy,hz)= 1 3 < 2 5 ×1≤ 2 5 G(Ax,fx,fx)≤ 2 5 M(x,y,z).

Case 4. If y,z∈[0, 1 2 ], x∈( 1 2 ,1], then

G ( f x , g y , h z ) = G ( 5 6 , 7 8 , 6 7 ) = 1 12 , G ( B y , g y , g y ) = G ( 1 , 7 8 , 7 8 ) = 1 4 .

Thus we have

G(fx,gy,hz)= 1 12 < 2 5 × 1 4 = 2 5 G(By,gy,gy)≤ 2 5 M(x,y,z).

Case 5. If x∈[0, 1 2 ], y,z∈( 1 2 ,1], then

G ( f x , g y , h z ) = G ( 1 , 5 6 , 5 6 ) = 1 3 , G ( A x , f x , f x ) = G ( x , 1 , 1 ) = 2 | x − 1 | ≥ 1 .

Hence we obtain

G(fx,gy,hz)= 1 3 < 2 5 ×1≤ 2 5 G(Ax,fx,fx)≤ 2 5 M(x,y,z).

Case 6. If y∈[0, 1 2 ], x,z∈( 1 2 ,1], then

G ( f x , g y , h z ) = G ( 5 6 , 7 8 , 5 6 ) = 1 12 , G ( B y , g y , g y ) = G ( 1 , 7 8 , 7 8 ) = 1 4 .

So we have

G(fx,gy,hz)= 1 12 < 2 5 × 1 4 = 2 5 G(By,gy,gy)≤ 2 5 M(x,y,z).

Case 7. If z∈[0, 1 2 ], x,y∈( 1 2 ,1], then

G ( f x , g y , h z ) = G ( 5 6 , 5 6 , 6 7 ) = 1 21 , G ( C z , h z , h z ) = G ( 1 , 6 7 , 6 7 ) = 2 7 .

Thus we get

G(fx,gy,hz)= 1 21 < 2 5 × 2 7 = 2 5 G(Cz,hz,hz)≤ 2 5 M(x,y,z).

Case 8. If x,y,z∈( 1 2 ,1], then

G(fx,gy,hz)=G ( 5 6 , 5 6 , 5 6 ) =0≤ 2 5 M(x,y,z).

Then in all the above cases, the mappings f, g, h, A, B and C satisfy condition (2.1) of Theorem 2.1 with k= 2 5 . So that all the conditions of Theorem 2.1 are satisfied. Moreover, 5 6 is the unique common fixed point for all of the mappings f, g, h, A, B and C.

In Theorem 2.1, if we take A=B=C=I (I is identity mapping, the same below), then we have the following corollary.

Corollary 2.3 Let (X,G) be a complete G-metric space and let f, g and h be three mappings of X into itself satisfying the following conditions:

G ( f x , g y , h z ) ≤ k max { G ( x , y , z ) , G ( x , f x , f x ) , G ( y , g y , g y ) , G ( z , h z , h z ) , G ( x , g y , g y ) , G ( x , h z , h z ) , G ( y , f x , f x ) , G ( y , h z , h z ) , G ( z , f x , f x ) , G ( z , g y , g y ) }
(2.9)

or

G(fx,gy,hz)≤kmax { G ( x , y , z ) , G ( x , x , f x ) , G ( y , y , g y ) , G ( z , z , h z ) , G ( x , x , g y ) , G ( x , x , h z ) , G ( y , y , f x ) , G ( y , y , h z ) , G ( z , z , f x ) , G ( z , z , g y ) }
(2.10)

∀x,y,z∈X, where k∈[0, 1 2 ). Then f, g and h have a unique common fixed point in X.

Remark 2.4 Corollary 2.3 generalizes and extends the corresponding results in Abbas et al. [[7], Theorem 2.1].

Also, if we take f=g=h and A=B=C=I in Theorem 2.1, then we get the following.

Corollary 2.5 Let (X,G) be a complete G-metric space and let f be a mapping of X into itself satisfying the following conditions:

G(fx,fy,fz)≤kmax { G ( x , y , z ) , G ( x , f x , f x ) , G ( y , f y , f y ) , G ( z , f z , f z ) , G ( x , f y , f y ) , G ( x , f z , f z ) , G ( y , f x , f x ) , G ( y , f z , f z ) , G ( z , f x , f x ) , G ( z , f y , f y ) }
(2.11)

or

G(fx,fy,fz)≤kmax { G ( x , y , z ) , G ( x , x , f x ) , G ( y , y , f y ) , G ( z , z , f z ) , G ( x , x , f y ) , G ( x , x , f z ) , G ( y , y , f x ) , G ( y , y , f z ) , G ( z , z , f x ) , G ( z , z , f y ) }
(2.12)

∀x,y,z∈X, where k∈[0, 1 2 ). Then f has a unique fixed point in X.

Remark 2.6 Corollary 2.5 generalizes and extends the corresponding results in Mustafa and Sims [[8], Theorem 2.1].

Remark 2.7 Theorem 2.1, Corollaries 2.3 and 2.5 in this paper also improve and generalize the corresponding results of Abbas and Rhoades [[9], Theorems 2.4 and 2.5], Mustafa et al. [[10], Theorems 2.3, 2.5, 2.8 and Corollary 2.6], Mustafa et al. [[11], Theorem 2.5], Abbas et al. [[12], Theorem 2.1, Corollaries 2.3-2.6] and Chugh and Kadian [[13], Theorem 2.2].

Remark 2.8 In Theorem 2.1, we have taken: (1) f=g=h; (2) A=B=C; (3) g=h and B=C; (4) g=h, B=C=I, several new results can be obtained.

Theorem 2.9 Let (X,G) be a complete G-metric space and let f, g, h, A, B and C be six mappings of X into itself satisfying the following conditions:

  1. (i)

    f(X)⊂B(X), g(X)⊂C(X), h(X)⊂A(X);

  2. (ii)

    The pairs (f,A), (g,B) and (h,C) are commuting mappings;

  3. (iii)

    ∀x,y,z∈X,

    G ( f m x , g m y , h m z ) ≤kmax { G ( A x , B y , C z ) , G ( A x , f m x , f m x ) , G ( B y , g m y , g m y ) , G ( C z , h m z , h m z ) , G ( A x , g m y , g m y ) , G ( A x , h m z , h m z ) , G ( B y , f m x , f m x ) , G ( B y , h m z , h m z ) , G ( C z , f m x , f m x ) , G ( C z , g m y , g m y ) }
    (2.13)

or

G ( f m x , g m y , h m z ) ≤kmax { G ( A x , B y , C z ) , G ( A x , A x , f m x ) , G ( B y , B y , g m y ) , G ( C z , C z , h m z ) , G ( A x , A x , g m y ) , G ( A x , A x , h m z ) , G ( B y , B y , f m x ) , G ( B y , B y , h m z ) , G ( C z , C z , f m x ) , G ( C z , C z , g m y ) } ,
(2.14)

where α∈[0, 1 2 ), m∈N, then f, g, h, A, B and C have a unique common fixed point in X.

Proof Suppose that mappings f, g, h, A, B and C satisfy condition (2.13). Since f m X⊂ f m − 1 X⊂⋯⊂fX, fX⊂BX, so that f m X⊂BX. Similar, we can show that g m X⊂CX and h m X⊂AX. From Theorem 2.1, we see that f m , g m , h m , A, B and C have a unique common fixed point u.

It follows from (2.13) that

G ( f m f u , g m u , h m u ) ≤αmax { G ( A f u , B u , C u ) , G ( A f u , f m f u , f m f u ) , G ( B u , g m u , g m u ) , G ( C u , h m u , h m u ) , G ( A f u , g m u , g m u ) , G ( A f u , h m u , h m u ) , G ( B u , f m f u , f m f u ) , G ( B u , h m u , h m u ) , G ( C u , f m f u , f m f u ) , G ( C u , g m u , g m u ) } .

By condition (ii) we have Afu=fAu=fu, note that fu=f( f m u)= f m + 1 u= f m (fu), and Proposition 1.4(iii), we obtain

G ( f u , u , u ) ≤ k max { G ( f u , u , u ) , G ( f u , f u , f u ) , G ( u , u , u ) , G ( u , u , u ) , G ( f u , u , u ) , G ( f u , u , u ) , G ( u , f u , f u ) , G ( u , u , u ) , G ( u , f u , f u ) , G ( u , u , u ) } = k max { G ( f u , u , u ) , G ( u , f u , f u ) } ≤ 2 k G ( f u , u , u ) ,

which implies that G(fu,u,u)=0, and so fu=u.

By the same argument, we can prove gu=u and hu=u. Thus we have u=fu=gu=hu=Au=Bu=Cu, so that f, g, h, A, B and C have a common fixed point u in X. Let v be any other common fixed point of f, g, h, A, B and C, then by use of condition (2.13) and Proposition 1.4(iii), we have

G ( u , u , v ) = G ( f m u , g m u , h m v ) ≤ k max { G ( A u , B u , C v ) , G ( A u , f m u , f m u ) , G ( B u , g m u , g m u ) , G ( C v , h m v , h m v ) , G ( A u , g m u , g m u ) , G ( A u , h m v , h m v ) , G ( B u , f m u , f m u ) , G ( B u , h m v , h m v ) , G ( C v , f m u , f m u ) , G ( C v , g m u , g m u ) } = k max { G ( u , u , v ) , G ( u , u , u ) , G ( u , u , u ) , G ( v , v , v ) , G ( u , u , u ) , G ( u , v , v ) , G ( u , u , u ) , G ( u , v , v ) , G ( v , u , u ) , G ( v , u , u ) } = k max { G ( u , u , v ) , G ( u , v , v ) } ≤ 2 k G ( u , u , v ) .

This implies that G(u,u,v)=0, and so u=v. Thus common fixed point is unique.

The proof using (2.14) is similar. This completes the proof. □

In Theorem 2.9, if we take A=B=C=I, then we have the following corollary.

Corollary 2.10 Let (X,G) be a complete G-metric space and let f, g and h be three mappings of X into itself satisfying the following conditions:

G ( f m x , g m y , h m z ) ≤kmax { G ( x , y , z ) , G ( x , f m x , f m x ) , G ( y , g m y , g m y ) , G ( z , h m z , h m z ) , G ( x , g m y , g m y ) , G ( x , h m z , h m z ) , G ( y , f m x , f m x ) , G ( y , h m z , h m z ) , G ( z , f m x , f m x ) , G ( z , g m y , g m y ) }
(2.15)

or

G ( f m x , g m y , h m z ) ≤kmax { G ( x , y , z ) , G ( x , x , f m x ) , G ( y , y , g m y ) , G ( z , z , h m z ) , G ( x , x , g m y ) , G ( x , x , h m z ) , G ( y , y , f m x ) , G ( y , y , h m z ) , G ( z , z , f m x ) , G ( z , z , g m y ) }
(2.16)

∀x,y,z∈X, where k∈[0, 1 2 ), m∈N, then f, g and h have a unique common fixed point in X.

Remark 2.11 Corollary 2.10 generalizes and extends the corresponding results in Abbas et al. [[7], Corollary 2.3].

Also, if we take f=g=h and A=B=C=I in Theorem 2.9, then we get the following.

Corollary 2.12 Let (X,G) be a complete G-metric space and let f be a mapping of X into itself satisfying the following conditions:

G ( f m x , f m y , f m z ) ≤kmax { G ( x , y , z ) , G ( x , f m x , f m x ) , G ( y , f m y , f m y ) , G ( z , f m z , f m z ) , G ( x , f m y , f m y ) , G ( x , f m z , f m z ) , G ( y , f m x , f m x ) , G ( y , f m z , f m z ) , G ( z , f m x , f m x ) , G ( z , f m y , f m y ) }
(2.17)

or

G ( f m x , f m y , f m z ) ≤kmax { G ( x , y , z ) , G ( x , x , f m x ) , G ( y , y , f m y ) , G ( z , z , f m z ) , G ( x , x , f m y ) , G ( x , x , f m z ) , G ( y , y , f m x ) , G ( y , y , f m z ) , G ( z , z , f m x ) , G ( z , z , f m y ) }
(2.18)

∀x,y,z∈X, where k∈[0, 1 2 ), m∈N, then f has a unique fixed point in X.

Remark 2.13 Corollary 2.12 generalizes and extends the corresponding results in Mustafa and Sims [[8], Corollary 2.3].

Remark 2.14 Theorem 2.9, Corollaries 2.10 and 2.12 generalize and extend the corresponding results in Mustafa et al. [[10], Corollaries 2.4 and 2.7].

Remark 2.15 In Theorem 2.9, we have taken: (1) f=g=h; (2) A=B=C; (3) g=h and B=C; (4) g=h, B=C=I, several new results can be obtained.

Theorem 2.16 Let (X,G) be a complete G-metric space and let f, g, h, A, B and C be six mappings of X into itself satisfying the following conditions:

  1. (i)

    f(X)⊂B(X), g(X)⊂C(X), h(X)⊂A(X);

  2. (ii)

    ∀x,y,z∈X,

    G ( f x , g y , h z ) ≤ a 1 G ( A x , B y , C z ) + a 2 G ( A x , f x , f x ) + a 3 G ( B y , g y , g y ) + a 4 G ( C z , h z , h z ) + a 5 G ( A x , g y , g y ) + a 6 G ( A x , h z , h z ) + a 7 G ( B y , f x , f x ) + a 8 G ( B y , h z , h z ) + a 9 G ( C z , f x , f x ) + a 10 G ( C z , g y , g y )
    (2.19)

    or

    G ( f x , g y , h z ) ≤ a 1 G ( A x , B y , C z ) + a 2 G ( A x , A x , f x ) + a 3 G ( B y , B y , g y ) + a 4 G ( C z , C z , h z ) + a 5 G ( A x , A x , g y ) + a 6 G ( A x , A x , h z ) + a 7 G ( B y , B y , f x ) + a 8 G ( B y , B y , h z ) + a 9 G ( C z , C z , f x ) + a 10 G ( C z , C z , g y ) ,
    (2.20)

    where a i ≥0 (i=1,2,3,…,10) and 0≤ ∑ i = 1 10 a i < 1 2 . If one of the following conditions are satisfied:

    1. (a)

      Either f or A is G-continuous, the pair (f,A) is weakly commuting, the pairs (g,B) and (h,C) are weakly compatible;

    2. (b)

      Either g or B is G-continuous, the pair (g,B) is weakly commuting, the pairs (f,A) and (h,C) are weakly compatible;

    3. (c)

      Either h or C is G-continuous, the pair (h,C) is weakly commuting, the pairs (f,A) and (g,B) are weakly compatible.

Then

  1. (I)

    one of the pairs (f,A), (g,B) and (h,C) has a coincidence point in X;

  2. (II)

    the mappings f, g, h, A, B and C have a unique common fixed point in X.

Proof Suppose that mappings f, g, h, A, B and C satisfy condition (2.19). For x,y,z∈X, let

M(x,y,z)=max { G ( A x , B y , C z ) , G ( A x , f x , f x ) , G ( B y , g y , g y ) , G ( C z , h z , h z ) , G ( A x , g y , g y ) , G ( A x , h z , h z ) , G ( B y , f x , f x ) , G ( B y , h z , h z ) , G ( C z , f x , f x ) , G ( C z , g y , g y ) } .

Then

a 1 G ( A x , B y , C z ) + a 2 G ( A x , f x , f x ) + a 3 G ( B y , g y , g y ) + a 4 G ( C z , h z , h z ) + a 5 G ( A x , g y , g y ) + a 6 G ( A x , h z , h z ) + a 7 G ( B y , f x , f x ) + a 8 G ( B y , h z , h z ) + a 9 G ( C z , f x , f x ) + a 10 G ( C z , g y , g y ) ≤ ( ∑ i = 1 10 a i ) M ( x , y , z ) .

Therefore, it follows from (2.19) that

G(fx,gy,hz)≤ ( ∑ i = 1 10 a i ) M(x,y,z).

Taking k= ∑ i = 1 10 a i in Theorem 2.1, the conclusion of Theorem 2.16 can be obtained from Theorem 2.1 immediately.

The proof using (2.20) is similar. This completes the proof. □

Remark 2.17 Theorem 2.16 generalizes and extends the corresponding results in Mustafa et al. [[10], Theorem 2.1], Mustafa et al. [[12], Theorem 2.5].

Remark 2.18 In Theorem 2.16, we have taken: (1) A=B=C=I; (2) f=g=h; (3) A=B=C; (4) g=h and B=C; (5) g=h, B=C=I, several new results can be obtained.

Corollary 2.19 Let (X,G) be a complete G-metric space and let f, g, h, A, B and C be six mappings of X into itself satisfying the following conditions:

  1. (i)

    f(X)⊂B(X), g(X)⊂C(X), h(X)⊂A(X);

  2. (ii)

    The pairs (f,A), (g,B) and (h,C) are commuting mappings;

  3. (iii)

    ∀x,y,z∈X,

    G ( f m x , g m y , h m z ) ≤ a 1 G ( A x , B y , C z ) + a 2 G ( A x , f m x , f m x ) + a 3 G ( B y , g m y , g m y ) + a 4 G ( C z , h m z , h m z ) + a 5 G ( A x , g m y , g m y ) + a 6 G ( A x , h m z , h m z ) + a 7 G ( B y , f m x , f m x ) + a 8 G ( B y , h m z , h m z ) + a 9 G ( C z , f m x , f m x ) + a 10 G ( C z , g m y , g m y )
    (2.21)

    or

    G ( f m x , g m y , h m z ) ≤ a 1 G ( A x , B y , C z ) + a 2 G ( A x , A x , f m x ) + a 3 G ( B y , B y , g m y ) + a 4 d G ( C z , B z , h m z ) + a 5 G ( A x , A x , g m y ) + a 6 G ( A x , A x , h m z ) + a 7 G ( B y , B y , f m x ) + a 8 G ( B y , B y , h m z ) + a 9 G ( C z , C z , f m x ) + a 10 G ( C z , C z , g m y ) ,
    (2.22)

    where m∈N, a i ≥0 (i=1,2,3,…,10) and 0≤ ∑ i = 1 10 a i < 1 2 . Then f, g, h, A, B and C have a unique common fixed point in X.

Proof The proof follows from Theorem 2.9, and from an argument similar to that used in Theorem 2.16 □

Remark 2.20 In Theorem 2.1, we have taken: (1) A=B=C=I; (2) f=g=h; (3) A=B=C; (4) g=h and B=C; (5) g=h, B=C=I, several new results can be obtained.

Remark 2.21 Theorems 2.1, 2.9 and 2.16 in this paper also improve and generalize the corresponding results of Manro et al. [14], Vats et al. [15].

References

  1. Gähler S: 2-Metrische räume und ihre topologische struktur. Math. Nachr. 1963, 26: 115–148. 10.1002/mana.19630260109

    Article  MathSciNet  Google Scholar 

  2. Gähler S: Zur geometric 2-metrische räume. Rev. Roum. Math. Pures Appl. 1966, 11: 665–667.

    Google Scholar 

  3. Dhage BC: Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc. 1992, 84: 329–336.

    MathSciNet  Google Scholar 

  4. Dhage BC: Generalized metric space and topological structure I . An. Stiint. Univ. Al. I. Cuza Iasi. Mat. 2000, 46(1):3–24.

    MathSciNet  Google Scholar 

  5. Mustafa Z, Sims B: Some remarks concerning D -metric spaces. Proceedings of the International Conference on Fixed Point Theory and Applications 2003, 189–198., Valencia (Spain), July

    Google Scholar 

  6. Mustafa Z, Sims B: A new approach to a generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7(2):289–297.

    MathSciNet  Google Scholar 

  7. Abbas M, Nazir T, Saadati R: Common fixed point results for three maps in generalized metric space. Adv. Differ. Equ. 2011., 2011: Article ID 49

    Google Scholar 

  8. Mustafa Z, Sims B: Fixed point theorems for contractive mappings in complete G -metric spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 917175

    Google Scholar 

  9. Abbas M, Rhoades BE: Common fixed point results for noncommuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 2009, 215: 262–269. 10.1016/j.amc.2009.04.085

    Article  MathSciNet  Google Scholar 

  10. Mustafa Z, Obiedat H, Awawdeh F: Some fixed point theorems for mappings on complete G -metric space. Fixed Point Theory Appl. 2008., 2008: Article ID 189870

    Google Scholar 

  11. Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed point results in G -metric spaces. Int. J. Math. Math. Sci. 2009., 2009: Article ID 283028

    Google Scholar 

  12. Abbas M, Khan SH, Nazir T: Common fixed points of R -weakly commuting maps in generalized metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 784595

    Google Scholar 

  13. Chugh R, Kadian T, Rani A, Rhoades BE: Property P in G -metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 401684

    Google Scholar 

  14. Manro S, Kumar S, Bhatia SS: R -Weakly commuting maps in G -metric spaces. Fasc. Math. 2011, 47: 11–18.

    MathSciNet  Google Scholar 

  15. Vats RK, Kumar S, Sihag V: Fixed point theorems in complete G -metric spaces. Fasc. Math. 2011, 47: 127–139.

    MathSciNet  Google Scholar 

  16. Abbas M, Nazir T, Vetro P: Common fixed point results for three maps in G -metric spaces. Filomat 2011, 25(4):1–17. 10.2298/FIL1104001A

    Article  MathSciNet  Google Scholar 

  17. Mustafa Z, Awawdeh F, Shatanawi W: Fixed point theorem for expansive mappings in G -metric spaces. Int. J. Contemp. Math. Sci. 2010, 5(50):2463–2472.

    MathSciNet  Google Scholar 

  18. Rao KPR, Sombabu A, Prasad JR: A common fixed point theorem for six expansive mappings in G -metric spaces. J. Sci. Eng. Technol. 2011, 7(1):113–120.

    Google Scholar 

  19. Shatanawi W: Fixed point theory for contractive mappings satisfying Φ-maps in G -metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 181650

    Google Scholar 

  20. Gajić L, Lozanov-Crvenković Z: A fixed point results for mappings with contractive iterate at a point in G -metric spaces. Filomat 2011, 25(2):53–58. 10.2298/FIL1102053G

    Article  MathSciNet  Google Scholar 

  21. Vats RK, Kumar S, Sihag V: Some common fixed point theorem for compatible mappings of type (A) in complete G -metric space. Adv. Fuzzy Math. 2011, 6(1):27–38.

    Google Scholar 

  22. Aydi H: A fixed point result involving a generalized weakly contractive condition in G -metric spaces. Bull. Math. Anal. Appl. 2011, 3(4):180–188.

    MathSciNet  Google Scholar 

  23. Gajić L, Stojaković M: On Ćirić generalization of mappings with a contractive iterate at a point in G -metric spaces. Appl. Math. Comput. 2012, 219(1):435–441. 10.1016/j.amc.2012.06.041

    Article  MathSciNet  Google Scholar 

  24. Kaewcharoen A: Some common fixed point theorems for contractive mappings satisfying Φ-maps in G -metric spaces. Banach J. Math. Anal. 2012, 6(1):101–111.

    Article  MathSciNet  Google Scholar 

  25. Mustafa Z, Khandagji M, Shatanawi W: Fixed point results on complete G -metric spaces. Studia Sci. Math. Hung. 2011, 48(3):304–319.

    MathSciNet  Google Scholar 

  26. Aydi H, Shatanawi W, Vetro C: On generalized weakly G -contraction mapping in G -metric spaces. Comput. Math. Appl. 2011, 62: 4222–4229. 10.1016/j.camwa.2011.10.007

    Article  MathSciNet  Google Scholar 

  27. Abbas M, Nazir T, Radenović S: Some periodic point results in generalized metric spaces. Appl. Math. Comput. 2010, 217: 4094–4099. 10.1016/j.amc.2010.10.026

    Article  MathSciNet  Google Scholar 

  28. Obiedat H, Mustafa Z: Fixed point results on a nonsymmetric G -metric spaces. Jordan J. Math. Stat. 2010, 3(2):65–79.

    Google Scholar 

  29. Shatanawi W: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 2011, 40(3):441–447.

    MathSciNet  Google Scholar 

  30. Mustafa Z, Obiedat H: A fixed point theorem of Reich in complete G -metric spaces. CUBO 2010, 12(1):83–93. 10.4067/S0719-06462010000100008

    Article  MathSciNet  Google Scholar 

  31. Gu F: Common fixed point theorems for six mappings in generalized metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 379212

    Google Scholar 

  32. Gu F, Ye H: Common fixed point theorems of Altman integral type mappings in G -metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 630457

    Google Scholar 

  33. Ye H, Gu F: Common fixed point theorems for a class of twice power type contraction maps in G -metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 736214

    Google Scholar 

  34. Yin Y, Gu F: Common fixed point theorem about four mappings in G -metric spaces. J. Hangzhou Norm. Univ., Nat. Sci. 2012, 11(6):511–515.

    Google Scholar 

  35. Gu F, Yin Y:Common fixed point for three pairs of self-maps satisfying common (E.A) property in generalized metric spaces. Abstr. Appl. Anal. 2013., 2013: Article ID 808092

    Google Scholar 

  36. Gu F, Zhou S: Coupled common fixed point theorems for a pair of commuting mappings in partially ordered G -metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 64 10.1186/1687-1812-2013-64

    Google Scholar 

  37. Ye H, Lu J, Gu F: A new common fixed point theorem for noncompatible mappings of type ( A f ) in G -metric spaces. J. Hangzhou Norm. Univ., Nat. Sci. 2013, 12(1):50–56.

    Google Scholar 

  38. Zhou S, Gu F: Some new fixed point theorems in G -metric spaces. J. Hangzhou Norm. Univ., Nat. Sci. 2012, 11(1):47–50.

    Google Scholar 

  39. Mustafa Z: Common fixed points of weakly compatible mappings in G -metric spaces. Appl. Math. Sci. 2012, 6(92):4589–4600.

    MathSciNet  Google Scholar 

  40. Mustafa Z: Some new common fixed point theorems under strict contractive conditions in G -metric spaces. J. Appl. Math. 2012., 2012: Article ID 248937

    Google Scholar 

  41. Tahat N, Aydi H, Karapinar E, Shatanawi W: Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G -metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 48

    Google Scholar 

  42. Aydi H: A common fixed point of integral type contraction in generalized metric spaces. J. Adv. Math. Stud. 2012, 5(1):111–117.

    MathSciNet  Google Scholar 

  43. Abbas M, Nazir T, Doric D:Common fixed point of mappings satisfying (E.A) property in generalized metric spaces. Appl. Math. Comput. 2012, 218(14):7665–7670. 10.1016/j.amc.2011.11.113

    Article  MathSciNet  Google Scholar 

  44. Mustafa Z, Aydi H, Karapinar E: On common fixed points in G -metric spaces using (E.A) property. Comput. Math. Appl. 2012, 64(6):1944–1956. 10.1016/j.camwa.2012.03.051

    Article  MathSciNet  Google Scholar 

  45. Long W, Abbas M, Nazir T, Radenovic S:Common fixed point for two pairs of mappings satisfying (E.A) property in generalized metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 394830

    Google Scholar 

  46. Gugnani M, Aggarwal M, Chugh R: Common fixed point results in G -metric spaces and applications. Int. J. Comput. Appl. 2012, 43(11):38–42.

    Google Scholar 

  47. Popa V, Patriciu A-M: A general fixed point theorem for pairs of weakly compatible mappings in G -metric spaces. J. Nonlinear Sci. Appl. 2012, 5: 151–160.

    MathSciNet  Google Scholar 

  48. Shatanawi W, Postolache M: Some fixed point results for a G -weak contraction in G -metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 815870 10.1155/2012/815870

    Google Scholar 

  49. Aydi H, Karapinar E, Shatanawi W: Tripled common fixed point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 101

    Google Scholar 

  50. Aydi H, Karapinar E, Shatanawi W: Tripled fixed point results in generalized metric spaces. J. Appl. Math. 2012., 2012: Article ID 314279

    Google Scholar 

  51. Gholizadeh L, Saadati R, Shatanawi W, Vaezpour SM: Contractive mapping in generalized, ordered metric spaces with application in integral equations. Math. Probl. Eng. 2011., 2011: Article ID 380784 10.1155/2011/380784

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the reviewer for suggestions which improved the contents of the article. This work is supported by the National Natural Science Foundation of China (11271105) and the Natural Science Foundation of Zhejiang Province (Y6110287, LY12A01030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally to this work. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Gu, F., Yang, Z. Some new common fixed point results for three pairs of mappings in generalized metric spaces. Fixed Point Theory Appl 2013, 174 (2013). https://doi.org/10.1186/1687-1812-2013-174

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-174

Keywords