Skip to main content

Further fixed point results on G-metric spaces

Abstract

Very recently, Samet et al. (Int. J. Anal. 2013:917158, 2013) and Jleli-Samet (Fixed Point Theory Appl. 2012:210, 2012) noticed that some fixed point theorems in the context of a G-metric space can be deduced by some well-known results in the literature in the setting of a usual (quasi) metric space. In this paper, we note that the approach of Samet et al. (Int. J. Anal. 2013:917158, 2013) and Jleli-Samet (Fixed Point Theory Appl. 2012:210, 2012) is inapplicable unless the contraction condition in the statement of the theorem can be reduced into two variables. For this purpose, we modify some existing results to suggest new fixed point theorems that fit with the nature of a G-metric space. The expressions in our result, the contraction condition, cannot be expressed in two variables, therefore the techniques used in (Int. J. Anal. 2013:917158, 2013; Fixed Point Theory Appl. 2012:210, 2012) are not applicable.

MSC:47H10, 54H25.

1 Introduction

The concept of G-metric space was introduced by Mustafa and Sims [1] in order to extend and generalize the notion of metric space. In this paper, the authors characterized the Banach contraction mapping principle [2] in the context of a G-metric space. Following this initial report, a number of authors have characterized many well-known fixed point theorems in the setting of G-metric space (see, e.g., [1, 336]). Since one is adapted from the other, there is a close relation between a usual metric space and a G-metric space (see, e.g., [1, 2327]). In fact, the nature of a G-metric space is to understand the geometry of three points instead of two points via perimeter of a triangle. However, most of the published papers dealing with a G-metric space did not give much importance to these details. Consequently, a great majority of results were obtained by transforming the contraction conditions from the usual metric space context to a G-metric space without carrying enough of the characteristics of the G-metric.

Very recently, Samet et al. [37] and Jleli-Samet [38] observed that some fixed point theorems in the context of a G-metric space in the literature can be concluded by some existing results in the setting of a (quasi-)metric space. In fact, if the contraction condition of the fixed point theorem on a G-metric space can be reduced to two variables instead of three variables, then one can construct an equivalent fixed point theorem in the setup of a usual metric space. More precisely, in [37, 38], the authors noticed that d(x,y)=G(x,y,y) forms a quasi-metric. Hence, if one can transform the contraction condition of existence results in a G-metric space in such terms, G(x,y,y), then the related fixed point results become the known fixed point results in the context of a quasi-metric space.

In this paper, we notice that the techniques used in [37, 38] are valid if the contraction condition in the statement of the theorem can be expressed in two variables. Furthermore, we prove some fixed point theorems in the context of a G-metric space for which the techniques in [37, 38] are inapplicable.

2 Preliminaries

In this section we recollect basic definitions and a detailed overview of the fundamental results. Throughout this paper, is the set of nonnegative integers, and N is the set of positive integers.

Definition 2.1 (See [1])

Let X be a non-empty set and let G:X×X×X R + be a function satisfying the following properties:

  1. (G1)

    G(x,y,z)=0 if x=y=z,

  2. (G2)

    0<G(x,x,y) for all x,yX with xy,

  3. (G3)

    G(x,x,y)G(x,y,z) for all x,y,zX with yz,

  4. (G4)

    G(x,y,z)=G(x,z,y)=G(y,z,x)= (symmetry in all three variables),

  5. (G5)

    G(x,y,z)G(x,a,a)+G(a,y,z) for all x,y,z,aX (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on X, and the pair (X,G) is called a G-metric space.

Every G-metric on X defines a metric d G on X by

d G (x,y)=G(x,y,y)+G(y,x,x)for all x,yX.
(1)

Example 2.1 Let (X,d) be a metric space. The function G:X×X×X[0,+), defined as

G(x,y,z)=max { d ( x , y ) , d ( y , z ) , d ( z , x ) }

or

G(x,y,z)=d(x,y)+d(y,z)+d(z,x)

for all x,y,zX, is a G-metric on X.

Definition 2.2 (See [1])

Let (X,G) be a G-metric space, and let { x n } be a sequence of points of X. We say that { x n } is G-convergent to xX if

lim n , m + G(x, x n , x m )=0,

that is, for any ε>0, there exists NN such that G(x, x n , x m )<ε for all n,mN. We call x the limit of the sequence and write x n x or lim n + x n =x.

Proposition 2.1 (See [1])

Let (X,G) be a G-metric space. The following are equivalent:

  1. (1)

    { x n } is G-convergent to x,

  2. (2)

    G( x n , x n ,x)0 as n+,

  3. (3)

    G( x n ,x,x)0 as n+,

  4. (4)

    G( x n , x m ,x)0 as n,m+.

Definition 2.3 (See [1])

Let (X,G) be a G-metric space. A sequence { x n } is called a G-Cauchy sequence if, for any ε>0, there is NN such that G( x n , x m , x l )<ε for all m,n,lN, that is, G( x n , x m , x l )0 as n,m,l+.

Proposition 2.2 (See [1])

Let (X,G) be a G-metric space. Then the following are equivalent:

  1. (1)

    the sequence { x n } is G-Cauchy,

  2. (2)

    for any ε>0, there exists NN such that G( x n , x m , x m )<ε for all m,nN.

Definition 2.4 (See [1])

A G-metric space (X,G) is called G-complete if every G-Cauchy sequence is G-convergent in (X,G).

We will use the following result which can be easily derived from the definition of a G-metric space (see, e.g., [1]).

Lemma 2.1 Let (X,G) be a G-metric space. Then

G(x,x,y)2G(x,y,y) for all x,yX.

Definition 2.5 (See [1])

Let (X,G) be a G-metric space. A mapping T:XX is said to be G-continuous if {T( x n )} is G-convergent to T(x) where { x n } is any G-convergent sequence converging to x.

In [22], Mustafa characterized the well-known Banach contraction mapping principle in the context of G-metric spaces in the following ways.

Theorem 2.1 (See [22])

Let (X,G) be a complete G-metric space and let T:XX be a mapping satisfying the following condition for all x,y,zX:

G(Tx,Ty,Tz)kG(x,y,z),
(2)

where k[0,1). Then T has a unique fixed point.

Theorem 2.2 (See [22])

Let (X,G) be a complete G-metric space and let T:XX be a mapping satisfying the following condition for all x,yX:

G(Tx,Ty,Ty)kG(x,y,y),
(3)

where k[0,1). Then T has a unique fixed point.

Remark 2.1 The condition (2) implies the condition (3). The converse is true only if k[0, 1 2 ). For details, see [22].

Theorem 2.3 (See [26])

Let (X,G) be a G-metric space. Let T:XX be a mapping such that

G(Tx,Ty,Tz)aG(x,y,z)+bG(x,Tx,Tx)+cG(y,Ty,Ty)+dG(z,Tz,Tz)
(4)

for all x, y, z, where a, b, c, d are positive constants such that k=a+b+c+d<1. Then there is a unique xX such that Tx=x.

Theorem 2.4 (See [27])

Let (X,G) be a G-metric space. Let T:XX be a mapping such that

G(Tx,Ty,Tz)k [ G ( x , T x , T x ) + G ( y , T y , T y ) + G ( z , T z , T z ) ]
(5)

for all x, y, z, where k[0, 1 3 ). Then there is a unique xX such that Tx=x.

Theorem 2.5 (See [26])

Let (X,G) be a G-metric space. Let T:XX be a mapping such that

G(Tx,Ty,Tz)aG(x,y,z)+b [ G ( x , T x , T x ) + G ( y , T y , T y ) + G ( z , T z , T z ) ]
(6)

for all x, y, z, where a, b are positive constants such that k=a+b<1. Then there is a unique xX such that Tx=x.

Theorem 2.6 (See [26])

Let (X,G) be a G-metric space. Let T:XX be a mapping such that

G(Tx,Ty,Tz)aG(x,y,z)+bmax { G ( x , T x , T x ) , G ( y , T y , T y ) , G ( z , T z , T z ) }
(7)

for all x, y, z, where a, b are positive constants such that k=a+b<1. Then there is a unique xX such that Tx=x.

Theorem 2.7 (See [25])

Let (X,G) be a G-metric space. Let T:XX be a mapping such that

G ( T x , T y , T z ) k max { G ( x , y , z ) , G ( x , T x , T x ) , G ( y , T y , T y ) , G ( z , T z , T z ) , G ( z , T x , T x ) , G ( x , T y , T y ) , G ( y , T z , T z ) }
(8)

for all x, y, z, where k[0, 1 2 ). Then there is a unique xX such that Tx=x.

Theorem 2.8 (See, e.g., [38])

Let (X,G) be a complete G-metric space and let T:XX be a given mapping satisfying

G(Tx,Ty,Tz)G(x,y,z)φ ( G ( x , y , z ) )
(9)

for all x,yX, where φ:[0,)[0,) is continuous with φ 1 ({0})=0. Then there is a unique xX such that Tx=x.

Definition 2.6 (See, e.g., [38])

A quasi-metric on a nonempty set X is a mapping p:X×X[0,) such that

(p1) x=y if and only if p(x,y)=0,

(p2) p(x,y)p(x,z)+p(z,y),

for all x,y,zX. A pair (X,p) is said to be a quasi-metric space.

Samet et al. [37] and Jleli-Samet [38] noticed that p(x,y)= p G (x,y)=G(x,y,y) is a quasi-metric whenever G:X×X×X[0,) is a G-metric. It is well known that each quasi-metric induces a metric. Indeed, if (X,p) is a quasi-metric space, then the function defined by

d(x,y)= d G (x,y)=max { p ( x , y ) , p ( y , x ) } for all x,yX

is a metric on X.

Theorem 2.9 Let (Xd) be a complete metric space and let T:XX be a mapping with the property

d(Tx,Ty)qmax { d ( x , y ) , d ( x , T x ) , d ( y , T y ) , d ( x , T y ) , d ( y , T x ) }
(10)

for all xX, where q is a constant such that q[0,1). Then T has a unique fixed point.

Samet et al. [37] proved that Theorem 2.4-Theorem 2.7 are the consequences of Theorem 2.9 by using the following proposition.

Proposition 2.3

  1. (A)

    If (X,G) is a complete G-metric space, then (X,d) is a complete metric space.

  2. (B)

    If (X,G) is a sequentially G-compact G-metric space, then (X,d) is a compact metric space.

3 Main results

We first state the following theorem about the existence and uniqueness of a common fixed point, which is a generalization of Theorem 2.7. Furthermore, the techniques of the papers [37, 38] are not applicable to this theorem.

Theorem 3.1 Let (X,G) be a G-metric space. Let T:XX be a mapping such that

G(Tx,Ty,Tz)kM(x,y,z)
(11)

for all x, y, z, where k[0, 1 2 ) and

M ( x , y , z ) = max { G ( x , T x , y ) , G ( y , T 2 x , T y ) , G ( T x , T 2 x , T y ) , G ( y , T x , T y ) , G ( x , T x , z ) , G ( z , T 2 x , T z ) , G ( T x , T 2 x , T z ) , G ( z , T x , T y ) , G ( x , y , z ) , G ( x , T x , T x ) , G ( y , T y , T y ) , G ( z , T z , T z ) , G ( z , T x , T x ) , G ( x , T y , T y ) , G ( y , T z , T z ) } .

Then there is a unique xX such that Tx=x.

Proof Let x 0 X. We define a sequence { x n } in the following way:

x n + 1 =T x n ,nN.
(12)

Taking x= x n , z=y= x n + 1 in (11), we find

G(T x n ,T x n + 1 ,T x n + 1 )kM( x n , x n + 1 , x n + 1 ),
(13)

where

M ( x n , x n + 1 , x n + 1 ) = max { G ( x n , T x n , x n + 1 ) , G ( x n + 1 , T 2 x n , T x n + 1 ) , G ( T x n , T 2 x n , T x n + 1 ) , G ( x n + 1 , T x n , T x n + 1 ) , G ( x n , T x n , x n + 1 ) , G ( x n + 1 , T 2 x n , T x n + 1 ) , G ( T x n , T 2 x n , T x n + 1 ) , G ( x n + 1 , T x n , T x n + 1 ) , G ( x n , x n + 1 , x n + 1 ) , G ( x n , T x n , T x n ) , G ( x n + 1 , T x n + 1 , T x n + 1 ) , G ( x n + 1 , T x n + 1 , T x n + 1 ) , G ( x n + 1 , T x n , T x n ) , G ( x n , T x n + 1 , T x n + 1 ) , G ( x n + 1 , T x n + 1 , T x n + 1 ) } = max { G ( x n , x n + 1 , x n + 1 ) , G ( x n + 1 , x n + 2 , x n + 2 ) , G ( x n + 1 , x n + 2 , x n + 2 ) , G ( x n + 1 , x n + 1 , x n + 2 ) , G ( x n , x n + 1 , x n + 1 ) , G ( x n + 1 , x n + 2 , x n + 2 ) , G ( x n + 1 , x n + 2 , x n + 2 ) , G ( x n + 1 , x n + 1 , x n + 2 ) , G ( x n , x n + 1 , x n + 1 ) , G ( x n , x n + 1 , x n + 1 ) , G ( x n + 1 , x n + 2 , x n + 2 ) , G ( x n + 1 , x n + 2 , x n + 2 ) , G ( x n + 1 , x n + 1 , x n + 1 ) , G ( x n , x n + 2 , x n + 2 ) , G ( x n + 1 , x n + 2 , x n + 2 ) } = max { G ( x n , x n + 1 , x n + 1 ) , G ( x n + 1 , x n + 2 , x n + 2 ) , G ( x n + 1 , x n + 1 , x n + 2 ) , G ( x n , x n + 2 , x n + 2 ) } .
(14)

Now, we have to examine four cases in (14). For the first case, assume that M( x n , x n + 1 , x n + 1 )=G( x n + 1 , x n + 2 , x n + 2 ). Then the expression (13) turns into

G ( x n + 1 , x n + 2 , x n + 2 ) = G ( T x n , T x n + 1 , T x n + 1 ) k M ( x n , x n + 1 , x n + 1 ) = k G ( x n + 1 , x n + 2 , x n + 2 ) .
(15)

It is a contradiction since 0k< 1 2 . For the second case, assume that M( x n , x n + 1 , x n + 1 )=G( x n + 1 , x n + 1 , x n + 2 ). Regarding (G5) together with the inequality (13), we derive that

G ( x n + 1 , x n + 2 , x n + 2 ) = G ( T x n , T x n + 1 , T x n + 1 ) k G ( x n + 1 , x n + 1 , x n + 2 ) k [ G ( x n + 1 , x n + 2 , x n + 2 ) + G ( x n + 2 , x n + 1 , x n + 2 ) ] ,
(16)

a contradiction since 0k< 1 2 .

For the third case, assume that M( x n , x n + 1 , x n + 1 )=G( x n , x n + 2 , x n + 2 ). By (G5) and the inequality (13), we have

G ( x n + 1 , x n + 2 , x n + 2 ) = G ( T x n , T x n + 1 , T x n + 1 ) k G ( x n , x n + 2 , x n + 2 ) k [ G ( x n , x n + 1 , x n + 1 ) + G ( x n + 1 , x n + 2 , x n + 2 ) ] ,
(17)

which is equivalent to

G( x n + 1 , x n + 2 , x n + 2 )hG( x n , x n + 1 , x n + 1 ),
(18)

where h= k 1 k <1 since 0k< 1 2 .

For the last case, assume that M( x n , x n + 1 , x n + 1 )=G( x n , x n + 1 , x n + 1 ). Then the inequality (13) turns into

G( x n + 1 , x n + 2 , x n + 2 )kG( x n , x n + 1 , x n + 1 ),
(19)

where 0k< 1 2 .

As a result, from (15)-(19) we conclude that

G( x n + 2 , x n + 2 , x n + 1 ) r n + 1 G( x 1 , x 1 , x 0 ),
(20)

where r{h,k} and hence r<1. We show that the sequence { x n } is G-Cauchy. By the rectangle inequality (G5), we have for m>n

G ( x m , x m , x n ) G ( x n + 1 , x n + 1 , x n ) + G ( x n + 2 , x n + 2 , x n + 1 ) + + G ( x m 1 , x m 1 , x m 2 ) + G ( x m , x m , x m 1 ) r n G ( x 1 , x 1 , x 0 ) + r n + 1 G ( x 1 , x 1 , x 0 ) + + r m 2 G ( x 1 , x 1 , x 0 ) + r m 1 G ( x 1 , x 1 , x 0 ) ( i = n m 1 r i ) G ( x 1 , x 1 , x 0 ) .
(21)

Letting n,m in (21), we get that G( x m , x m , x n )0. Hence, { x n } is a G-Cauchy sequence in X. Since (X,G) is G-complete, then there exists x X such that { x n } is G-convergent to x . We shall show that x =T x . Suppose, on the contrary, that x T x . On the other hand, we have x n + 1 =T x n and hence

G ( x n + 1 , T x , T x ) = G ( T x n , T x , T x ) k M ( x n , x , x ) ,
(22)

where

M ( x n , x , x ) = max { G ( x n , T x n , x ) , G ( x , T 2 x n , T x ) , G ( T x n , T 2 x n , T x ) , G ( x , T x n , T x ) , G ( x n , T x n , x ) , G ( x , T 2 x n , T x ) , G ( T x n , T 2 x n , T x ) , G ( x , T x n , T x ) , G ( x n , x , x ) , G ( x n , T x n , T x n ) , G ( x , T x , T x ) , G ( x , T x , T x ) , G ( x , T x n , T x n ) , G ( x n , T x , T x ) , G ( x , T x , T x ) } = max { G ( x n , x n + 1 , x ) , G ( x , x n + 2 , T x ) , G ( x n + 1 , x n + 2 , T x ) , G ( x , x n + 1 , T x ) , G ( x n , x n + 1 , x ) , G ( x , x n + 2 , T x ) , G ( x n + 1 , x n + 2 , T x ) , G ( x , x n + 1 , T x ) , G ( x n , x , x ) , G ( x n , x n + 1 , x n + 1 ) , G ( x , T x , T x ) , G ( x , T x , T x ) , G ( x , x n + 1 , x n + 1 ) , G ( x n , T x , T x ) , G ( x , T x , T x ) } .

Letting n in (22) and using the fact that the metric G is continuous, we get that either

G ( x , T x , T x ) kG ( x , T x , T x )
(23)

or

G ( x , T x , T x ) kG ( x , x , T x ) k [ 2 G ( x , T x , T x ) ]
(24)

by the rectangular property (G5). Since 0k< 1 2 , the inequalities above yield contradictions. Hence we have G( x ,T x ,T x )=0, that is, x =T x .

Finally, we shall show that x is the unique fixed point of T. Suppose that contrary to our claim, there exists another common fixed point t X with t x . From (4) we have

G ( t , t , x ) =G ( T t , T t , T x ) kM ( t , t , x ) ,
(25)

where

M ( t , t , x ) =max { G ( t , t , x ) , G ( t , x , x ) } .

Hence, the inequality (25) is equal to either

G ( t , t , x ) kG ( t , t , x )
(26)

or

G ( t , t , x ) kG ( t , x , x ) 2kG ( t , t , x ) .
(27)

Since 0k< 1 2 , the expressions (26) and (27) yield contradictions. Thus, x is the unique fixed point of T. □

In Theorem 3.1, the interval of constant of the contractive condition can be extended to the interval [0,1) by eliminating the same terms. Since the proof is the mimic of Theorem 3.1, we omit it.

Theorem 3.2 Let (X,G) be a G-metric space. Let T:XX be a mapping such that

G(Tx,Ty,Tz)kM(x,y,z)
(28)

for all x, y, z, where k[0,1) and

M ( x , y , z ) = max { G ( x , T x , y ) , G ( y , T 2 x , T y ) , G ( T x , T 2 x , T y ) , G ( x , T x , z ) , G ( z , T 2 x , T z ) , G ( T x , T 2 x , T z ) , G ( x , y , z ) , G ( x , T x , T x ) , G ( y , T y , T y ) , G ( z , T z , T z ) , G ( z , T x , T x ) , G ( y , T z , T z ) } .

Then there is a unique xX such that Tx=x.

Remark 3.1 Theorem 2.1-Theorem 2.6 are the consequences of Theorem 3.1 and Theorem 3.2.

Inspired by Theorem 2.8, we state the following theorem for which the methods in [37, 38] are not applicable.

Theorem 3.3 Let (X,G) be a complete G-metric space and let T:XX be a given mapping satisfying

G ( T x , T 2 x , T y ) G(x,Tx,y)φ ( G ( x , T x , y ) )
(29)

for all x,yX, where φ:[0,)[0,) is continuous with φ 1 ({0})=0. Then there is a unique xX such that Tx=x.

Proof We first show that if the fixed point of the operator T exists, then it is unique. Suppose, on the contrary, that z, w are two fixed points of T such that zw. Hence, G(z,z,w)0. By (29), we have

G ( T z , T 2 z , T w ) G(z,Tz,w)φ ( G ( z , T z , w ) ) ,
(30)

which is equivalent to

G(z,z,w)G(z,z,w)φ ( G ( z , z , w ) ) ,
(31)

a contradiction. Hence, T has a unique fixed point.

Let x 0 X. We define a sequence { x n } in the following way:

x n + 1 =T x n ,nN.
(32)

If x n 0 = x n 0 + 1 for some n 0 N, then we get the desired result. From now on, we assume that x n = x n + 1 for some nN. Taking x= x n , z=y= x n + 1 in (29), we find

G ( x n + 1 , x n + 2 , x n + 2 ) = G ( T x n , T x n + 1 , T x n + 1 ) G ( x n , T x n , x n + 1 ) φ ( G ( x n , T x n , x n + 1 ) ) = G ( x n , x n + 1 , x n + 1 ) φ ( G ( x n , x n + 1 , x n + 1 ) ) < G ( x n , x n + 1 , x n + 1 ) .
(33)

Hence, {G( x n , x n + 1 , x n + 1 )} is a positive decreasing sequence. Thus, the sequence {G( x n , x n + 1 , x n + 1 )} converges to L0. We shall show that L=0. Suppose, on the contrary, that L>0. Letting n in (33), we find that

LLφ(L).
(34)

It is a contradiction. Hence, we conclude that

lim n { G ( x n , x n + 1 , x n + 1 ) } =0.
(35)

Moreover, by Lemma 2.1, we derive that

lim n { G ( x n , x n , x n + 1 ) } =0.
(36)

Now, we demonstrate that the sequence { x n } is G-Cauchy. Suppose that { x n } is not G-Cauchy. So, there exists ε>0 and subsequences { x n ( k ) } and { x m ( k ) } of { x n } with n(k)>m(k)>k such that

G( x n ( k ) , x m ( k ) , x m ( k ) )εfor all kN.
(37)

Furthermore, corresponding to m(k), one can choose n(k) such that it is the smallest integer with n(k)>m(k) satisfying (37). Thus, we have

G( x n ( k ) 1 , x m ( k ) , x m ( k ) )<εfor all kN.
(38)

By the triangle inequality, we get

εG( x n ( k ) , x m ( k ) , x m ( k ) )G( x n ( k ) , x n ( k ) 1 , x n ( k ) 1 )+G( x n ( k ) 1 , x m ( k ) , x m ( k ) ).
(39)

Letting k in the expression (39) and keeping (36) in mind, we find

lim n G( x n ( k ) , x m ( k ) , x m ( k ) )=ε.
(40)

On the other hand, we have

G ( x n ( k ) + 1 , x m ( k ) + 1 , x m ( k ) + 1 ) G ( x n ( k ) + 1 , x n ( k ) , x n ( k ) ) + G ( x n ( k ) , x m ( k ) , x m ( k ) ) + G ( x m ( k ) , x m ( k ) + 1 , x m ( k ) + 1 )
(41)

and

G ( x n ( k ) , x m ( k ) , x m ( k ) ) G ( x n ( k ) , x n ( k ) + 1 , x n ( k ) + 1 ) + G ( x n ( k ) + 1 , x m ( k ) + 1 , x m ( k ) + 1 ) + G ( x m ( k ) + 1 , x m ( k ) , x m ( k ) ) .
(42)

Letting k in the expression (41)-(42) and regarding (35), (36) and (40), we derive

lim n G( x n ( k ) + 1 , x m ( k ) + 1 , x m ( k ) + 1 )=ε.
(43)

Further, we have

G ( x n ( k ) , x m ( k ) , x m ( k ) ) G ( x n ( k ) , x m ( k ) , x m ( k ) + 1 ) G ( x n ( k ) , x m ( k ) , x m ( k ) ) + G ( x m ( k ) , x m ( k ) , x m ( k ) + 1 )
(44)

by (G3) and the triangle inequality. Letting k in (44) and using (35), (36) and (40), we conclude that

lim n G( x n ( k ) , x m ( k ) , x m ( k ) + 1 )=ε.
(45)

Analogously, we have

G ( x n ( k ) + 1 , x m ( k ) + 1 , x m ( k ) + 1 ) G ( x n ( k ) + 1 , x m ( k ) + 2 , x m ( k ) + 1 ) G ( x n ( k ) + 1 , x m ( k ) + 1 , x m ( k ) + 1 ) + G ( x m ( k ) + 1 , x m ( k ) + 2 , x m ( k ) + 1 )
(46)

by (G3) and the triangle inequality. Letting k in (44) and using (35), (36) and (43), we conclude that

lim n G( x n ( k ) + 1 , x m ( k ) + 2 , x m ( k ) + 1 )=ε.
(47)

Due to (33) and regarding (G4), we obtain

G ( T x m ( k ) , T 2 x m ( k ) , T x n ( k ) ) = G ( x m ( k ) + 1 , x m ( k ) + 2 , x n ( k ) + 1 ) = G ( x n ( k ) + 1 , x m ( k ) + 2 , x m ( k ) + 1 ) G ( x n ( k ) , x m ( k ) , x m ( k ) + 1 ) φ ( G ( x n ( k ) , x m ( k ) , x m ( k ) + 1 ) )
(48)

for all kN. Letting k in the inequality (48) and keeping (45) and (47) in mind, we get

εεϕ(ε),
(49)

a contradiction. Hence, { x n } is a G-Cauchy sequence. Since (X,G) is G-complete, there is zX such that x n z.

We claim that Tz=z. From (33), we have

G ( x n + 1 , x n + 2 , T z ) = G ( T x n , T 2 x n , T z ) G ( x n , T x n , z ) φ ( G ( x n , T x n , z ) ) = G ( x n , x n + 1 , z ) φ ( G ( x n , x n + 1 , z ) ) .
(50)

Letting k in (50), regarding the continuity of G, we get that

G(z,z,Tz)G(z,z,z)φ ( G ( z , z , z ) ) =0.

Hence G(z,z,Tz)=0, that is, Tz=z. □

Remark 3.2 Let X be a nonempty set. We define functions p,d:X×X[0,) in the following way:

d(x,y)= ( y , T 2 x , T y ) andp(x,y)=G ( T x , T 2 x , T y )

for all x,yX. It is easy to see that both mappings p and q do not satisfy the conditions of Definition 2.6. Hence, Theorem 3.1 and Theorem 3.3 cannot be characterized in the context of quasi-metric as it is suggested in [37, 38].

Example 3.1 Let X=[0,), G:X×X×XR be defined by

G(x,y,z)={ 0 if  x = y = z , max { x , y , z } otherwise .

Then (X,G) is a G-complete G-metric space. Let T:XX be defined by

Tx={ 1 4 x if  0 x < 1 / 3 , 1 8 x 4 if  1 / 3 x 1

and φ(t)= 3 4 t for all t[0,+).

Proof For the proof the Example 3.1, we examine the following cases:

  • Let 0x,y<1/3. Then

    G ( T x , T 2 x , T y ) = max { 1 4 x , 1 16 x , 1 4 y } 1 4 max { x , 1 4 x , y } = G ( x , T x , y ) φ ( G ( x , T x , y ) ) .
  • Let 1/3x,y<1. Then

    G ( T x , T 2 x , T y ) = max { 1 8 x 4 , 1 64 x 16 , 1 8 y 4 } 1 4 max { x , 1 8 x 4 , y } = G ( x , T x , y ) φ ( G ( x , T x , y ) ) .
  • Let 0x<1/3y<1. Then

    G ( T x , T 2 x , T y ) = max { 1 4 x , 1 16 x , 1 8 y 4 } 1 4 max { x , 1 4 x , y } = G ( x , T x , y ) φ ( G ( x , T x , y ) ) .
  • Let 0y<1/3x<1. Then

    G ( T x , T 2 x , T y ) = max { 1 8 x 4 , 1 64 x 16 , 1 4 y } 1 4 max { x , 1 8 x 4 , y } = G ( x , T x , y ) φ ( G ( x , T x , y ) ) .

Then

G ( T x , T 2 x , T y ) G(x,Tx,y)φ ( G ( x , T x , y ) ) .

Then the conditions of Theorem 3.3 hold and T has a unique fixed point. Notice that (0,0,0) is the desired fixed point of T. □

References

  1. Mustafa Z, Sims B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7(2):289–297.

    MathSciNet  MATH  Google Scholar 

  2. Banach S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3: 133–181.

    MATH  Google Scholar 

  3. Abbas M, Sintunavarat W, Kumam P: Coupled fixed point of generalized contractive mappings on partially ordered G -metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 31

    Google Scholar 

  4. Abbas M, Nazir T, Vetro P: Common fixed point results for three maps in G -metric spaces. Filomat 2011, 25(4):1–17. 10.2298/FIL1104001A

    Article  MathSciNet  MATH  Google Scholar 

  5. Agarwal R, Karapınar E: Remarks on some coupled fixed point theorems in G -metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 2

    Google Scholar 

  6. Aydi H, Shatanawi W, Vetro C: On generalized weak G -contraction mapping in G -metric spaces. Comput. Math. Appl. 2011, 62: 4223–4229.

    MathSciNet  MATH  Google Scholar 

  7. Aydi H, Karapinar E, Shatnawi W: Tripled fixed point results in generalized metric spaces. J. Appl. Math. 2012., 2012: Article ID 314279

    Google Scholar 

  8. Aydi H, Karapinar E, Mustafa Z: On common fixed points in G -metric spaces using (E.A) property. Comput. Math. Appl. 2012, 64(6):1944–1956. 10.1016/j.camwa.2012.03.051

    Article  MathSciNet  MATH  Google Scholar 

  9. Aydi H, Postolache M, Shatanawi W: Coupled fixed point results for (ψ,ϕ) -weakly contractive mappings in ordered G -metric spaces. Comput. Math. Appl. 2012, 63(1):298–309. 10.1016/j.camwa.2011.11.022

    Article  MathSciNet  MATH  Google Scholar 

  10. Aydi H, Karapınar E, Shatanawi W: Tripled fixed point results in generalized metric spaces. J. Appl. Math. 2012., 2012: Article ID 314279

    Google Scholar 

  11. Aydi H, Damjanović B, Samet B, Shatanawi W: Coupled fixed point theorems for nonlinear contractions in partially ordered G -metric spaces. Math. Comput. Model. 2011, 54: 2443–2450. 10.1016/j.mcm.2011.05.059

    Article  MathSciNet  MATH  Google Scholar 

  12. Berinde V: Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 7347–7355. 10.1016/j.na.2011.07.053

    Article  MathSciNet  MATH  Google Scholar 

  13. Berinde V: Coupled fixed point theorems for Φ-contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2012, 75: 3218–3228. 10.1016/j.na.2011.12.021

    Article  MathSciNet  MATH  Google Scholar 

  14. Berinde V: Coupled coincidence point theorems for mixed monotone nonlinear operators. Comput. Math. Appl. 2012. doi:10.1016/j.camwa.2012.02.012

    Google Scholar 

  15. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012., 2012: Article ID 8

    Google Scholar 

  16. Choudhury BS, Kundu A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 2010, 73: 2524–2531. 10.1016/j.na.2010.06.025

    Article  MathSciNet  MATH  Google Scholar 

  17. Choudhury BS, Maity P: Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 2011, 54: 73–79. 10.1016/j.mcm.2011.01.036

    Article  MathSciNet  MATH  Google Scholar 

  18. Ćirić L: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45(2):267–273.

    MATH  Google Scholar 

  19. Ćirić L, Agarwal RP, Samet B: Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 56

    Google Scholar 

  20. Ding H-S, Karapınar E: A note on some coupled fixed point theorems on G -metric space. J. Inequal. Appl. 2012., 2012: Article ID 170

    Google Scholar 

  21. Mustafa Z, Aydi H, Karapınar E: On common fixed points in image-metric spaces using (E.A) property. Comput. Math. Appl. 2012, 64(6):1944–1956. 10.1016/j.camwa.2012.03.051

    Article  MathSciNet  MATH  Google Scholar 

  22. Mustafa, Z: A new structure for generalized metric spaces with applications to fixed point theory. Ph.D. thesis, The University of Newcastle, Australia (2005)

  23. Mustafa Z, Obiedat H, Awawdeh F: Some fixed point theorem for mapping on complete G -metric spaces. Fixed Point Theory Appl. 2008., 2008: Article ID 189870

    Google Scholar 

  24. Mustafa Z, Khandaqji M, Shatanawi W: Fixed point results on complete G -metric spaces. Studia Sci. Math. Hung. 2011, 48: 304–319.

    MathSciNet  MATH  Google Scholar 

  25. Mustafa Z, Sims B: Fixed point theorems for contractive mappings in complete G -metric spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 917175

    Google Scholar 

  26. Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed point results in G -metric spaces. Int. J. Math. Math. Sci. 2009., 2009: Article ID 283028

    Google Scholar 

  27. Mustafa Z, Obiedat H: A fixed point theorem of Reich in G -metric spaces. CUBO 2010, 12(1):83–93. 10.4067/S0719-06462010000100008

    Article  MathSciNet  MATH  Google Scholar 

  28. Nashine HK: Coupled common fixed point results in ordered G -metric spaces. J. Nonlinear Sci. Appl. 2012, 1: 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  29. Rasouli SH, Bahrampour M: A remark on the coupled fixed point theorems for mixed monotone operators in partially ordered metric spaces. J. Math. Comput Sci. 2011, 3(2):246–261.

    Google Scholar 

  30. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 2010, 74: 4508–4517.

    Article  MathSciNet  MATH  Google Scholar 

  31. Shatanawi W: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 2011, 40(3):441–447.

    MathSciNet  MATH  Google Scholar 

  32. Shatanawi W: Fixed point theory for contractive mappings satisfying Φ-maps in G -metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 181650

    Google Scholar 

  33. Shatanawi W: Some fixed point theorems in ordered G -metric spaces and applications. Abstr. Appl. Anal. 2011., 2011: Article ID 126205

    Google Scholar 

  34. Shatanawi W: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 2011, 40(3):441–447.

    MathSciNet  MATH  Google Scholar 

  35. Shatanawi W, Abbas M, Nazir T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 80

    Google Scholar 

  36. Tahat N, Aydi H, Karapınar E, Shatanawi W: Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G -metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 48

    Google Scholar 

  37. Samet B, Vetro C, Vetro F: Remarks on G -metric spaces. Int. J. Anal. 2013., 2013: Article ID 917158

    Google Scholar 

  38. Jleli M, Samet B: Remarks on G -metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012., 2012: Article ID 210

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the anonymous referees for constructive and useful remarks, comments and suggestions. The first author thank to student Peyman Salimi for his help for Example 3.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Karapınar.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Karapınar, E., Agarwal, R.P. Further fixed point results on G-metric spaces. Fixed Point Theory Appl 2013, 154 (2013). https://doi.org/10.1186/1687-1812-2013-154

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-154

Keywords