Open Access

Some coupled fixed point theorems in quasi-partial metric spaces

Fixed Point Theory and Applications20132013:153

https://doi.org/10.1186/1687-1812-2013-153

Received: 16 March 2013

Accepted: 24 May 2013

Published: 11 June 2013

Abstract

In this paper, we study some coupled fixed point results in a quasi-partial metric space. Also, we introduce some examples to support the useability of our results.

MSC:47H10, 54H25.

Keywords

partial metric spacequasi-partial metric spacecoupled fixed point

1 Introduction and preliminaries

In 1994, Matthews [1] introduced the notion of partial metric spaces and extended the Banach contraction principle from metric spaces to partial metric spaces. After that, many fixed point theorems in partial metric spaces have been given by several authors (for example, see [229]). Very recently, Haghi et al. [30, 31] showed in their interesting paper that some of fixed point theorems in partial metric spaces can be obtained from metric spaces.

Following Matthews [1], the notion of partial metric space is given as follows.

Definition 1.1 [1]

A partial metric on a nonempty set X is a function p : X × X R + such that for all x , y , z X :

( p 1 ) x = y p ( x , x ) = p ( x , y ) = p ( y , y ) ,

( p 2 ) p ( x , x ) p ( x , y ) ,

( p 3 ) p ( x , y ) = p ( y , x ) ,

( p 4 ) p ( x , y ) p ( x , z ) + p ( z , y ) p ( z , z ) .

A partial metric space is a pair ( X , p ) such that X is a nonempty set and p is a partial metric on X.

Karapinar et al. [32] introduced the concept of quasi-partial metric spaces and studied some fixed point theorems on quasi-partial metric spaces.

Definition 1.2 [32]

A quasi-partial metric on a nonempty set X is a function q : X × X R + which satisfies:

( QPM 1 ) If q ( x , x ) = q ( x , y ) = q ( y , y ) , then x = y ,

( QPM 2 ) q ( x , x ) q ( x , y ) ,

( QPM 3 ) q ( x , x ) q ( y , x ) , and

( QPM 4 ) q ( x , y ) + q ( z , z ) q ( x , z ) + q ( z , y )

for all x , y , z X .

A quasi-partial metric space is a pair ( X , q ) such that X is a nonempty set and q is a quasi-partial metric on X.

Let q be a quasi-partial metric space on the set X. Then
d q ( x , y ) = q ( x , y ) + q ( y , x ) p ( x , x ) p ( y , y )

is a metric on X.

Definition 1.3 [32]

Let ( X , q ) be a quasi-partial metric space. Then:
  1. (1)
    A sequence ( x n ) converges to a point x X if and only if
    q ( x , x ) = lim n q ( x , x n ) = lim n q ( x n , x ) .
     
  2. (2)

    A sequence ( x n ) is called a Cauchy sequence if lim n , m p ( x n , x m ) and lim n , m p ( x n , x m ) exist (and are finite).

     
  3. (3)
    The quasi-partial metric space ( X , q ) is said to be complete if every Cauchy sequence ( x n ) in X converges, with respect to τ q , to a point x X such that
    q ( x , x ) = lim n , m q ( x n , x m ) = lim n , m q ( x m , x n ) .
     

The following lemma is crucial in our work.

Lemma 1.1 [32]

Let ( X , q ) be a quasi-partial metric space. Then the following statements hold true:
  1. (A)

    If q ( x , y ) = 0 , then x = y .

     
  2. (B)

    If x y , then q ( x , y ) > 0 and q ( y , x ) > 0 .

     

Bhaskar and Lakshmikantham [33] introduced the concept of coupled fixed point and studied some nice coupled fixed point theorems. Later, Lakshmikantham and Ćirić [34] introduced the notion of a coupled coincidence point of mappings. For some works on a coupled fixed point, we refer the reader to [3546].

Definition 1.4 [33]

Let X be a nonempty set. We call an element ( x , y ) X × X a coupled fixed point of the mapping F : X × X X if
F ( x , y ) = x and F ( y , x ) = y .

Definition 1.5 [34]

An element ( x , y ) X × X is called a coupled coincidence point of the mappings F : X × X X and g : X X if
F ( x , y ) = g x and F ( y , x ) = g y .

Abbas et al. [47] introduced the concept of w-compatible mappings as follows.

Definition 1.6 [47]

Let X be a nonempty set. We say that the mappings F : X × X X and g : X X are w-compatible if g F ( x , y ) = F ( g x , g y ) whenever g x = F ( x , y ) and g y = F ( y , x ) .

In this paper, we study some coupled fixed point theorems in the setting of quasi-partial metric spaces. We introduce some examples to support our results.

2 The main results

We start this section with the following coupled fixed point theorem.

Theorem 2.1 Let ( X , q ) be a quasi-partial metric space, g : X X and F : X × X X be two mappings. Suppose that there exist k 1 , k 2 and k 3 in [ 0 , 1 ) with k 1 + k 2 + k 3 < 1 such that the condition
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) k 1 ( q ( g x , g x ) + q ( g y , g y ) ) + k 2 ( q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) ) + k 3 ( q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) )
(2.1)
holds for all x , y , x , y X . Also, suppose the following hypotheses:
  1. (1)

    F ( X × X ) g X .

     
  2. (2)

    g ( X ) is a complete subspace of X with respect to the quasi-partial metric q.

     

Then the mappings F and g have a coupled coincidence point ( u , v ) satisfying g u = F ( u , v ) = F ( v , u ) = g u .

Moreover, if F and g are w-compatible, then F and g have a unique common fixed point of the form ( u , u ) .

Proof Let x 0 , y 0 X . Since F ( X × X ) g X , we put g x 1 = F ( x 0 , y 0 ) and g y 1 = F ( y 0 , x 0 ) . Again, since F ( X × X ) g X , we put g x 2 = F ( x 1 , y 1 ) and g y 2 = F ( y 1 , x 1 ) . Continuing this process, we can construct two sequences ( g x n ) and ( g y n ) in X such that
g x n = F ( x n 1 , y n 1 ) , n N ,
and
g y n = F ( y n 1 , x n 1 ) , n N .
  • Let n N . Then by inequality (2.1), we obtain
    (2.2)
From (2.2), we have
q ( g x n , g x n + 1 ) + q ( g y n , g y n + 1 ) k 1 + k 2 1 k 3 ( q ( g x n 1 , g x n ) + q ( g y n 1 , g y n ) ) .
(2.3)
Put k = k 1 + k 2 1 k 3 . Then k < 1 . Repeating (2.3) n-times, we get
q ( g x n , g x n + 1 ) + q ( g y n , g y n + 1 ) k n ( q ( g x 0 , g x 1 ) + q ( g y 0 , g y 1 ) ) .
Let m and n be natural numbers with m > n . Then
q ( g x n , g x m ) + q ( g y n , g y m ) i = n m 1 q ( g x i , g x i + 1 ) + q ( g y i , g y i + 1 ) i = n m 1 k i ( q ( g x 0 , g x 1 ) + q ( g y 0 , g y 1 ) ) k n 1 k ( q ( g x 0 , g x 1 ) + q ( g y 0 , g y 1 ) ) .
(2.4)
Letting n , m + , we get
lim n , m + q ( g x n , g x m ) = lim n , m + q ( g y n , g y m ) = 0 .
(2.5)
  • By similar arguments as above, we can show that
    lim n , m + q ( g x m , g x n ) = lim n , m + q ( g y m , g y n ) = 0 .
    (2.6)
Thus the sequences ( g x n ) and ( g y n ) are Cauchy in ( g X , q ) . Since ( g X , q ) is complete, there are u and v in X such that g x n g u and g y n g y with respect to τ q , that is,
q ( g u , g u ) = lim n + q ( g u , g x n ) = lim n + q ( g x n , g u ) = lim n , m + q ( g x m , g x n ) = lim n , m + q ( g x n , g x m )
and
q ( g v , g v ) = lim n + q ( g v , g y n ) = lim n + q ( g y n , g v ) = lim n , m + q ( g y m , g y n ) = lim n , m + q ( g y n , g y m ) .
From (2.5) and (2.6), we have
q ( g u , g u ) = lim n + q ( g u , g x n ) = lim n + q ( g x n , g u ) = lim n , m + q ( g x m , g x n ) = lim n , m + q ( g x n , g x m ) = 0
(2.7)
and
q ( g v , g v ) = lim n + q ( g v , g y n ) = lim n + q ( g y n , g v ) = lim n , m + q ( g y m , g y n ) = lim n , m + q ( g y n , g y m ) = 0 .
(2.8)
For n in , we obtain
q ( g x n + 1 , F ( u , v ) ) q ( g x n + 1 , g u ) + q ( g u , F ( u , v ) ) q ( g u , g u ) q ( g x n + 1 , g u ) + q ( g u , F ( u , v ) ) q ( g x n + 1 , g u ) + q ( g u , g x n + 1 ) + q ( g x n + 1 , F ( u , v ) ) q ( g x n + 1 , g x n + 1 ) q ( g x n + 1 , g u ) + q ( g u , g x n + 1 ) + q ( g x n + 1 , F ( u , v ) ) .
On letting n + in the above inequalities and using (2.7) and (2.8), we have
lim n + q ( g x n + 1 , F ( u , v ) ) = q ( g u , F ( u , v ) ) .
(2.9)
Similarly, we have
lim n + q ( g y n + 1 , F ( v , u ) ) = q ( g v , F ( v , u ) ) .
(2.10)
  • We show that g u = F ( u , v ) and g v = F ( v , u ) .

For n N , we have
q ( g x n + 1 , F ( u , v ) ) + q ( g y n + 1 , F ( v , u ) ) = q ( F ( x n , y n ) , F ( u , v ) ) + q ( F ( y n , x n ) , F ( v , u ) ) k 1 ( q ( g x n , g u ) + q ( g y n , g v ) ) + k 2 ( q ( g x n , F ( x n , y n ) ) + q ( g y n , F ( y n , x n ) ) + k 3 ( q ( g u , F ( u , v ) ) + q ( g v , F ( v , u ) ) ) = k 1 ( q ( g x n , g u ) + q ( g y n , g v ) ) + k 1 ( q ( g x n , g x n + 1 ) ) + q ( g y n , g y n + 1 ) ) + k 3 ( q ( g u , F ( u , v ) ) + q ( g v , F ( v , u ) ) ) .
Letting n + in above inequalities and using (2.9)-(2.10), we get
q ( g u , F ( u , v ) ) + q ( g v , F ( v , u ) ) k 3 ( q ( g u , F ( u , v ) ) + q ( g v , F ( v , u ) ) ) .
Since k 3 < 1 , we get q ( g u , F ( u , v ) ) = q ( g v , F ( v , u ) ) = 0 . By Lemma 1.1, we get g u = F ( u , v ) and g v = F ( v , u ) . Next, we will show that g u = g v . Now, from (2.1) we have
q ( g u , g v ) + q ( g v , g u ) = q ( F ( u , v ) , F ( v , u ) ) + q ( F ( v , u ) , F ( u , v ) ) k 1 ( q ( g u , g v ) + q ( g v , g u ) ) + k 2 ( q ( g u , F ( u , v ) ) + q ( g v , F ( v , u ) ) ) + k 3 ( q ( g v , F ( v , u ) ) + q ( g u , F ( u , v ) ) ) = k 1 ( q ( g u , g v ) + q ( g v , g u ) ) + k 2 ( q ( g u , g u ) + q ( g v , g v ) ) + k 3 ( q ( g v , g v ) + q ( g u , g u ) ) .
Using (2.7) and (2.8), we obtain
q ( g u , g v ) + q ( g v , g u ) k 1 ( q ( g u , g v ) + q ( g v , g u ) ) .
Since k 1 < 1 , we have q ( g u , g v ) = q ( g v , g u ) = 0 By Lemma 1.1, we get that g u = g v . Finally, assume that g and F are w-compatible. Let u 1 = g u and v 1 = g v . Then
g u 1 = g g u = g ( F ( u , v ) ) = F ( g u , g v ) = F ( u 1 , v 1 )
(2.11)
and
g v 1 = g g v = g ( F ( v , u ) ) = F ( g v , g u ) = F ( v 1 , u 1 ) .
(2.12)
From (2.11) and (2.12), we can show that
q ( g u 1 , g u 1 ) = q ( g v 1 , g v 1 ) .
  • We claim that g u 1 = g u and g v 1 = g v .

From (2.1), we have
q ( g u 1 , g u ) + q ( g v 1 , g v ) = q ( F ( u 1 , v 1 ) , F ( u , v ) ) + q ( F ( v 1 , u 1 ) , F ( v , u ) ) k 1 ( q ( g u 1 , g u ) + q ( g v 1 , g v ) ) + k 2 ( q ( g u 1 , F ( u 1 , v 1 ) ) + q ( g v 1 , F ( v 1 , u 1 ) ) ) + k 3 ( q ( g u , F ( u , v ) ) + q ( g v , F ( v , u ) ) ) = k 1 ( q ( g u 1 , g u ) + q ( g v 1 , g v ) ) + k 2 ( q ( g u 1 , g u 1 ) + q ( g v 1 , g v 1 ) ) + k 3 ( q ( g u , g u ) + q ( g v , g v ) ) = k 1 ( q ( g u 1 , g u ) + q ( g v 1 , g v ) ) .

Since k 1 < 1 , we conclude that q ( g u 1 , g u ) = q ( g v 1 , g v ) = 0 . By Lemma 1.1, we get g u 1 = g u and g v 1 = g v . Therefore u 1 = g u 1 and v 1 = g v 1 . Again, since g u = g v , we get u 1 = v 1 . Hence F and g have a unique common coupled fixed point of the form ( u , u ) . □

Corollary 2.1 Let ( X , q ) be a quasi-partial metric space, g : X X and F : X × X X be two mappings. Suppose that there exist a, b, c, d, e, f in [ 0 , 1 ) with a + b + c + d + e + f < 1 such that
q ( F ( x , y ) , F ( x , y ) ) a q ( g x , g x ) + b q ( g y , g y ) + c q ( g x , F ( x , y ) ) + d q ( g y , F ( y , x ) ) + e q ( g x , F ( x , y ) ) + f q ( g y , F ( y , x ) )
(2.13)
holds for all x , y , x , y X . Also, suppose the following hypotheses:
  1. (1)

    F ( X × X ) g X .

     
  2. (2)

    g ( X ) is a complete subspace of X with respect to the quasi-partial metric q.

     

Then F and g have a coupled coincidence point ( u , v ) satisfying g u = F ( u , v ) = F ( v , u ) = g u .

Moreover, if F and g are w-compatible, then F and g have a unique common fixed point of the form ( u , u ) .

Proof Given x , y , x , y X . From (2.13), we have
q ( F ( x , y ) , F ( x , y ) ) a q ( g x , g x ) + b q ( g y , g y ) + c q ( g x , F ( x , y ) ) + d q ( g y , F ( y , x ) ) + e q ( g x , F ( x , y ) ) + f q ( g y , F ( y , x ) )
(2.14)
and
q ( F ( y , x ) , F ( y , x ) ) a q ( g y , g y ) + b q ( g x , g x ) + c q ( g y , F ( y , x ) ) + d q ( g x , F ( x , y ) ) + e q ( g y , F ( y , x ) ) + f q ( g x , F ( x , y ) ) .
(2.15)
Adding inequality (2.14) to inequality (2.15), we get
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) ( a + b ) ( q ( g x , g x ) + q ( g y , g y ) ) + ( c + d ) ( q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) ) + ( e + f ) ( q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) ) .

Thus, the result follows from Theorem 2.1. □

Corollary 2.2 Let ( X , q ) be a quasi-partial metric space, let g : X X and F : X × X X be two mappings. Suppose that there exists k [ 0 , 1 ) with k 1 + k 2 + k 3 < 1 such that
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) k ( q ( g x , g x ) + q ( g y , g y ) )
holds for all x , y , x , y X . Also, suppose the following hypotheses:
  1. (1)

    F ( X × X ) g X .

     
  2. (2)

    g ( X ) is a complete subspace of X with respect to the quasi-partial metric q.

     

Then F and g have a coupled coincidence point ( u , v ) satisfying g u = F ( u , v ) = F ( v , u ) = g u .

Moreover, if F and g are w-compatible, then F and g have a unique common fixed point of the form ( u , u ) .

Corollary 2.3 Let ( X , q ) be a quasi-partial metric space, g : X × X and F : X × X X be two mappings. Suppose that there exists k [ 0 , 1 ) with k < 1 such that
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) k ( q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) )
holds for all x , y , x , y X . Also, suppose the following hypotheses:
  1. (1)

    F ( X × X ) X .

     
  2. (2)

    g ( X ) is a complete subspace of X with respect to the quasi-partial metric q.

     

Then F and g have a coupled coincidence point ( u , v ) satisfying g u = F ( u , v ) = F ( v , u ) = g u .

Moreover, if F and g are w-compatible, then F and g have a unique common fixed point of the form ( u , u ) .

Corollary 2.4 Let ( X , q ) be a quasi-partial metric space, g : X X and F : X × X X be two mappings. Suppose that there exists k [ 0 , 1 ) with k < 1 such that
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) k ( q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) )
holds for all x , y , x , y X . Also, suppose the following hypotheses:
  1. (1)

    F ( X × X ) g X .

     
  2. (2)

    g ( X ) is a complete subspace of X with respect to the quasi-partial metric q.

     

Then F and g have a coupled coincidence point ( u , v ) satisfying g u = F ( u , v ) = F ( v , u ) = g u .

Moreover, if F and g are w-compatible, then F and g have a unique common fixed point of the form ( u , u ) .

Let g = I X (the identity mapping) in Theorem 2.2 and Corollaries 2.1-2.4. Then we have the following results.

Corollary 2.5 Let ( X , q ) be a quasi-partial metric space and let F : X × X X be a mapping. Suppose that there exist k 1 , k 2 , k 3 [ 0 , 1 ) with k 1 + k 2 + k 3 < 1 such that
q ( F ( x , y ) , F ( x , y ) ) + g ( F ( y , x ) , F ( y , x ) ) k 1 ( q ( x , x ) + q ( y , y ) ) + k 2 ( q ( x , F ( x , y ) ) + q ( y , F ( y , x ) ) ) + k 3 ( q ( x , F ( x , y ) ) + q ( y , F ( y , x ) ) )

holds for all x , y , x , y X .

Then F has a unique coupled fixed point of the form ( u , u ) .

Corollary 2.6 Let ( X , q ) be a quasi-partial metric space and let F : X × X X be a mapping. Suppose that there exist a , b , c , d , e , f [ 0 , 1 ) with a + b + c + d + e + f < 1 such that
q ( F ( x , y ) , F ( x , y ) ) a q ( x , x ) + b q ( y , y ) + c q ( x , F ( x , y ) ) + d q ( y , F ( y , x ) ) + e q ( x , F ( x , y ) ) + f q ( y , F ( y , x ) )

holds for all x , y , x , y X .

Then F has a unique coupled fixed point of the form ( u , u ) .

Corollary 2.7 Let ( X , q ) be a complete quasi-partial metric space and let F : X × X X be a mapping. Suppose that there exists k [ 0 , 1 ) such that
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) k ( q ( x , x ) + q ( y , y ) )

holds for all x , y , x , y X .

Then F has a unique coupled fixed point of the form ( u , u ) .

Corollary 2.8 Let ( X , q ) be a complete quasi-partial metric space and let F : X × X X be a mapping. Suppose that there exists k [ 0 , 1 ) with k < 1 such that
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) k ( q ( x , F ( x , y ) ) + q ( y , F ( y , x ) ) )

holds for all x , y , x , y X .

Then F has a unique coupled fixed point of the form ( u , u ) .

Corollary 2.9 Let ( X , q ) be a complete quasi-partial metric space and let F : X × X X be a mapping. Suppose that there exists k [ 0 , 1 ) with k < 1 such that
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) k ( q ( x , F ( x , y ) ) + q ( y , F ( y , x ) ) )

holds for all x , y , x , y X .

Then F has a unique coupled fixed point of the form ( u , u ) .

Theorem 2.2 Let ( X , q ) be a complete quasi-partial metric space and let F : X × X X , g : X X be two mappings. Suppose that there exists a function ϕ : g X R + such that
q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) ϕ ( g x ) + ϕ ( g y ) ϕ ( F ( x , y ) ) ϕ ( F ( y , x ) )
holds for all ( x , y ) X × X . Also, assume that the following hypotheses are satisfied:
  1. (a)

    F ( X × X ) g X ;

     
  2. (b)

    if G : X × X R , G ( x , y ) = q ( F ( x , y ) , g x ) , then for each sequence ( g x n , g y n ) ( u , v ) , we have G ( u , v ) k lim inf n G ( x n , y n ) for some k > 0 .

     

Then F and g have a coupled coincidence point ( u , v ) . In addition, q ( g u , g u ) = 0 and q ( g v , g v ) = 0 .

Proof Consider ( x 0 , y 0 ) X × X . As F ( X × X ) g X , there are x 1 and y 1 from X such that g x 1 = F ( x 0 , y 0 ) and g y 1 = F ( y 0 , x 0 ) . By repeating this process, we construct two sequences, ( x n ) and ( y n ) with g x n + 1 = F ( x n , y n ) and g y n + 1 = F ( y n , x n ) .

The fourth property of the quasi-partial metric space gives us
q ( g x n , g x n + 2 ) + q ( g y n , g y n + 2 ) q ( g x n , g x n + 1 ) + q ( g x n + 1 , g x n + 2 ) q ( g x n + 1 , g x n + 1 ) + q ( g y n , g y n + 1 ) + q ( g y n + 1 , g y n + 2 ) q ( g y n + 1 , g y n + 1 ) q ( g x n , g x n + 1 ) + q ( g x n + 1 , g x n + 2 ) + q ( g y n , g y n + 1 ) + q ( g y n + 1 , g y n + 2 ) .
Based on the above inequality, for m > n , we obtain
q ( g x n , g x m ) + q ( g y n , g y m ) k = n m 1 [ q ( g x k , g x k + 1 ) + q ( g y k , g y k + 1 ) ]
(2.16)
= k = n m 1 [ q ( g x k , F ( x k , y k ) ) + q ( g y k , F ( y k , x k ) ) ] k = n m 1 [ ϕ ( g x k ) + ϕ ( g y k ) ϕ ( F ( x k , y k ) ) ϕ ( F ( y k , x k ) ) ] = k = n m 1 [ ϕ ( g x k ) + ϕ ( g y k ) ϕ ( g x k + 1 ) ϕ ( g y k + 1 ) ] = ϕ ( g x n ) + ϕ ( g y n ) ϕ ( g x m ) ϕ ( g y m ) .
(2.17)
Consider S n ( x ) = k = 0 n [ q ( g x k , g x k + 1 ) + q ( g y k , g y k + 1 ) ] . Inequality (2.17) implies that
S n ( x ) ϕ ( g x 0 ) + ϕ ( g y 0 ) ,
hence the nondecreasing sequence { S n } is bounded, so it is convergent. Taking the limit as n , m + in (2.16), we conclude that
lim n , m + q ( g x n , g x m ) = lim n , m + q ( g y n , g y m ) .
Using similar arguments, it can be proved that
lim n , m q ( g x m , g x n ) = lim n , m q ( g y m , g y n ) = 0 .
As ( g x n ) and ( g y n ) are Cauchy sequences in the complete quasi-partial metric space ( X , q ) , there are u, v in X such that u = lim n g x n and v = lim n g v n . Having in mind hypothesis (b), the following relations hold true:
0 q ( F ( u , v ) , g u ) = G ( u , v ) k lim inf n G ( x n , y n ) = k lim inf n q ( F ( x n , y n ) , g x n ) = k lim inf n q ( g x n + 1 , g x n ) = 0 .

We get q ( F ( u , v ) , g u ) = 0 , and by Lemma 1.1, it follows that F ( u , v ) = g ( u ) .

Analogously, it can be proved that F ( v , u ) = g v .

As a conclusion, we have obtained that ( u , v ) is a coupled coincidence point of the mappings F and g, and q ( g u , g u ) = 0 , q ( g v , g v ) = 0 . □

Corollary 2.10 Let ( X , q ) be a complete quasi-partial metric space and let F : X × X X be a mapping. Suppose that there exists a function ϕ : X R + such that
q ( x , F ( x , y ) ) + q ( y , F ( y , x ) ) ϕ ( x ) + ϕ ( y ) ϕ ( F ( x , y ) ) ϕ ( F ( y , x ) )
holds for all ( x , y ) X × X . Also, assume that the following hypotheses are satisfied:
  1. (a)

    F ( X × X ) X ;

     
  2. (b)

    if G : X × X R , G ( x , y ) = q ( F ( x , y ) , x ) , then for each sequence ( x n , y n ) ( u , v ) , we have G ( u , v ) k lim inf n G ( x n , y n ) for some k > 0 .

     

Then F has a coupled coincidence point ( u , v ) . In addition, q ( u , u ) = 0 and q ( v , v ) = 0 .

Proof Follows from Theorem 2.2 by taking g = I X (the identity mapping). □

3 Examples

Now, we introduce some examples to support our results.

Example 3.1 On the set X = [ 0 , 1 ] , define
q : X × X R + , q ( x , y ) = | x y | + x .
Also, define
F : X × X X , F ( x , y ) = { 1 4 ( x y ) , x y ; 0 , x < y ,
and g : X X by g x = 1 2 x . Then
  1. (1)

    ( X , q ) is a complete quasi-partial metric space.

     
  2. (2)

    F ( X × X ) g X .

     
  3. (3)
    For any x , y , x , y X , we have
    q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) 1 2 ( q ( g x , g x ) + q ( g y , g y ) ) .
     

Proof The proofs of (1) and (2) are clear. To prove (3), we consider the following cases.

Case 1: x < y and x < y . Here we have
F ( x , y ) = 0 , F ( x , y ) = 0 , F ( y , x ) = y x 4 , F ( y , x ) = y x 4 .
Therefore
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) = q ( 0 , 0 ) + q ( x y 4 , y x 4 ) = 1 4 | ( y x ) ( y x ) | + 1 4 ( y x ) 1 2 | ( 1 2 y 1 2 x ) ( 1 2 y 1 2 x ) | + 1 2 ( 1 2 y 1 2 x ) 1 2 | ( 1 2 x 1 2 x ) ( 1 2 y 1 2 y ) | + 1 2 ( 1 2 y + 1 2 x ) 1 2 ( | 1 2 x 1 2 x | + 1 2 x + | 1 2 y 1 2 y | + 1 2 y ) = 1 2 ( | g x g x | + g x + | g y g y | + g y ) = 1 2 ( q ( g x , g x ) + q ( g y , g y ) ) .
Case 2: x < y and x y . Here we have
F ( x , y ) = 0 , F ( x , y ) = x y 4 , F ( y , x ) = y x 4
and F ( y , x ) = 0 . Therefore
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) = q ( 0 , x y 4 ) + q ( y x 4 , 0 ) = 1 4 | 0 ( x y ) | + 1 4 | y x | + 1 4 ( y x ) = 1 4 ( x y ) + 1 4 ( y x ) + 1 4 ( y x ) = 1 2 ( ( 1 2 x 1 2 x ) 1 2 x + ( 1 2 y 1 2 y ) + 1 2 y ) 1 2 ( ( 1 2 x 1 2 x ) + 1 2 x + ( 1 2 y 1 2 y ) + 1 2 y ) 1 2 ( | 1 2 x 1 2 x | + 1 2 x + | 1 2 y 1 2 y | + 1 2 y ) = 1 2 ( | g x g x | + g x + | g y g y | + g y ) = 1 2 ( q ( g x , g x ) + q ( g y , g y ) ) .
Case 3: x > y and x < y . Using similar arguments to those given in Case (2), we can show that
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) 1 2 ( q ( g x , g x ) + q ( g y , g y ) ) .
Case 4: x y and x y . Using similar arguments to those given in Case (1), we can show that
q ( F ( x , y ) , F ( x , y ) ) + q ( F ( y , x ) , F ( y , x ) ) 1 2 ( q ( g x , g x ) + q ( g y , g y ) ) .

Thus F and g satisfy all the hypotheses of Corollary 2.7. So, F and g have a unique common fixed point. Here ( 0 , 0 ) is the unique common fixed point of F and g. □

We end with an example related to Theorem 2.2.

Example 3.2 Let X = [ 0 , + ) . Define
q : X × X R + , q ( x , y ) = | x y | + x .
Also, define
F : X × X X , F ( x , y ) = x ; g : X X , g x = 2 x ; ϕ : X R + , ϕ ( x ) = 2 x .
Then:
  1. (1)

    ( X , q ) is a complete quasi-partial metric space.

     
  2. (2)

    F ( X × X ) g X .

     
  3. (3)
    For any x , y X , we have
    q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) ϕ ( g x ) + ϕ ( g y ) ϕ ( F ( x , y ) ) ϕ ( F ( y , x ) ) .
     
  4. (4)

    Let G : X × X R + be defined by G ( x , y ) = q ( F ( x , y ) , g x ) . If ( g x n ) and ( g y n ) are two sequences in X with ( g x n , g y n ) ( u , v ) , then G ( u , v ) 4 lim inf n + G ( x n , y n ) .

     
Proof The proofs of (1) and (2) are clear. To prove (3) given x , y X , g x = 2 x , g y = 2 y , F ( x , y ) = x , F ( y , x ) = y , ϕ ( x ) = 2 x and ϕ ( y ) = 2 y . Thus
q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) = q ( 2 x , x ) + q ( 2 y , y ) = 2 x + 2 y 4 x + 4 y 2 x 2 y = ϕ ( 2 x ) + ϕ ( 2 y ) ϕ ( x ) ϕ ( y ) = ϕ ( g x ) + ϕ ( g y ) ϕ ( F ( x , y ) ) ϕ ( F ( y , x ) ) .
To prove (4), let ( g x n ) and ( g y n ) be two sequences in X such that ( g x n , g y n ) ( u , v ) for some u , v X . Then g x n u and g y n v . Thus
q ( g x n , u ) = q ( 2 x n , u ) q ( u , u )
and
q ( u , g x n ) = q ( u , 2 x n ) q ( u , u ) .
Therefore
| 2 x n u | + 2 x n u
and
| u 2 x n | + u u .
Therefore
| u 2 x n | 0 .
Hence x n 1 2 u in R + . Now
G ( u , v ) = q ( F ( u , v ) , u ) = q ( u , u ) = u 4 ( 1 2 u ) = 4 lim inf n + x n = 4 lim inf n + G ( x n , x n ) = 4 lim inf n + G ( F ( x n , y n ) , x n ) .

So, F and g satisfy all the hypotheses of Theorem 2.2. Hence F and g have a coupled coincidence point. Here ( 0 , 0 ) is the coupled coincidence point of F and g. □

Declarations

Authors’ Affiliations

(1)
Department of Mathematics, Hashemite University
(2)
Faculty of Applied Sciences, University Politehnica of Bucharest

References

  1. Matthews SG: Partial metric topology. Ann. N. Y. Acad. Sci. 728. General Topology and Its Applications 1994, 183–197., Proc. 8th Summer Conf., Queen’s College, 1992Google Scholar
  2. Abdeljawad T, Karapinar E, Taş K: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 2011, 24(11):1900–1904. 10.1016/j.aml.2011.05.014MathSciNetView ArticleGoogle Scholar
  3. Abdeljawad T, Karapinar E, Taş K: A generalized contraction principle with control functions on partial metric spaces. Comput. Math. Appl. 2012, 63(3):716–719.MathSciNetView ArticleGoogle Scholar
  4. Abdeljawad T: Fixed points for generalized weakly contractive mappings in partial metric spaces. Math. Comput. Model. 2011, 54(11–12):2923–2927. 10.1016/j.mcm.2011.07.013MathSciNetView ArticleGoogle Scholar
  5. Altun I, Erduran A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 508730Google Scholar
  6. Altun I, Simsek H: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 2008, 1(1–2):1–8.MathSciNetGoogle Scholar
  7. Altun I, Simsek H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl. 2010., 2010: Article ID 6214469Google Scholar
  8. Altun I, Sola F, Simsek H: Generalized contractions on partial metric spaces. Topol. Appl. 2010, 157(18):2778–2785. 10.1016/j.topol.2010.08.017MathSciNetView ArticleGoogle Scholar
  9. Altun I, Sadarangani K: Corrigendum to “Generalized contractions on partial metric spaces” [Topology Appl. 157 (2010) 2778–2785]. Topol. Appl. 2011, 158(13):1738–1740. 10.1016/j.topol.2011.05.023MathSciNetView ArticleGoogle Scholar
  10. Aydi H: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl. 2011, 4(2):1–12.MathSciNetGoogle Scholar
  11. Aydi H: Some coupled fixed point results on partial metric spaces. Int. J. Math. Math. Sci. 2011., 2011: Article ID 647091Google Scholar
  12. Aydi H: Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces. J. Nonlinear Anal. Optim. Theory Appl. 2011, 2(2):33–48.MathSciNetGoogle Scholar
  13. Aydi H, Karapinar E, Shatanawi W:Coupled fixed point results for ( ψ , φ ) -weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 2011, 62: 4449–4460.MathSciNetView ArticleGoogle Scholar
  14. Ćirić L, Samet B, Aydi H, Vetro C: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218: 2398–2406. 10.1016/j.amc.2011.07.005MathSciNetView ArticleGoogle Scholar
  15. Golubović Z, Kadelburg Z, Radenović S: Coupled coincidence points of mappings in ordered partial metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 192581Google Scholar
  16. Karapınar E, Erhan I: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24: 1894–1899. 10.1016/j.aml.2011.05.013MathSciNetView ArticleGoogle Scholar
  17. Nashine HK, Kadelburg Z, Radenović S: Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces. Math. Comput. Model. 2013, 57: 2355–2365. 10.1016/j.mcm.2011.12.019View ArticleGoogle Scholar
  18. Oltra S, Valero O: Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 2004, 36(1–2):17–26.MathSciNetGoogle Scholar
  19. Romaguera S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 493298Google Scholar
  20. Romaguera S: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 2012, 159: 194–199. 10.1016/j.topol.2011.08.026MathSciNetView ArticleGoogle Scholar
  21. Samet B, Rajović M, Lazović R, Stoiljković R: Common fixed point results for nonlinear contractions in ordered partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 71Google Scholar
  22. Shatanawi W, Nashine HK: A generalization of Banach’s contraction principle for nonlinear contraction in a partial metric space. J. Nonlinear Sci. Appl. 2012, 5: 37–43.MathSciNetGoogle Scholar
  23. Shatanawi W, Nashine HK, Tahat N: Generalization of some coupled fixed point results on partial metric spaces. Int. J. Math. Math. Sci. 2012., 2012: Article ID 686801Google Scholar
  24. Shatanawi W, Samet B, Abbas M: Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math. Comput. Model. 2012, 55: 680–687. 10.1016/j.mcm.2011.08.042MathSciNetView ArticleGoogle Scholar
  25. Shatanawi W, Postolache M: Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 54Google Scholar
  26. Radenović S: Remarks on some coupled fixed point results in partial metric spaces. Nonlinear Funct. Anal. Appl. 2013, 18(1):39–50.Google Scholar
  27. Nashine HK, Kadelburg Z, Radenović S: Fixed point theorems via various cyclic contractive conditions in partial metric spaces. Publ. Inst. Math. (Belgr.) 2013, 93(107):69–93. 10.2298/PIM1307069NView ArticleGoogle Scholar
  28. Valero O: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 2005, 6(2):229–240.MathSciNetView ArticleGoogle Scholar
  29. Altun I, Acar Ö: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol. Appl. 2012, 159: 2642–2648. 10.1016/j.topol.2012.04.004MathSciNetView ArticleGoogle Scholar
  30. Haghi RH, Rezapour Sh, Shahzad N: Be careful on partial metric fixed point results. Topol. Appl. 2013, 160: 450–454. 10.1016/j.topol.2012.11.004MathSciNetView ArticleGoogle Scholar
  31. Haghi RH, Rezapour S, Shahzad N: Some fixed point generalizations are not real generalizations. Nonlinear Anal. 2011, 74: 1799–1803. 10.1016/j.na.2010.10.052MathSciNetView ArticleGoogle Scholar
  32. Karapinar E, Erhan İ, Öztürk A: Fixed point theorems on quasi-partial metric spaces. Math. Comput. Model. 2012. doi:10.1016/j.mcm.2012.06.036Google Scholar
  33. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017MathSciNetView ArticleGoogle Scholar
  34. Lakshmikantham V, Ćirić L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020MathSciNetView ArticleGoogle Scholar
  35. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012., 2012: Article ID 8Google Scholar
  36. Choudhury BS, Maity P: Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 2011, 54: 73–79. 10.1016/j.mcm.2011.01.036MathSciNetView ArticleGoogle Scholar
  37. Choudhury, BS, Metiya, N, Postolache, M: A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. (submitted)Google Scholar
  38. Karapinar E: Couple fixed point theorems for nonlinear contractions in cone metric spaces. Comput. Math. Appl. 2010, 59: 3656–3668.MathSciNetView ArticleGoogle Scholar
  39. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 2010, 72: 4508–4517. 10.1016/j.na.2010.02.026MathSciNetView ArticleGoogle Scholar
  40. Sedghi S, Altun I, Shobe N: Coupled fixed point theorems for contractions in fuzzy metric spaces. Nonlinear Anal. 2010, 72: 1298–1304. 10.1016/j.na.2009.08.018MathSciNetView ArticleGoogle Scholar
  41. Shatanawi W, Samet B, Abbas M: Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math. Comput. Model. 2012, 55: 680–687. 10.1016/j.mcm.2011.08.042MathSciNetView ArticleGoogle Scholar
  42. Shatanawi W: On w -compatible mappings and common coupled coincidence point in cone metric spaces. Appl. Math. Lett. 2012, 25: 925–931. 10.1016/j.aml.2011.10.037MathSciNetView ArticleGoogle Scholar
  43. Aydi H, Postolache M, Shatanawi W: Coupled fixed point results for ( ψ , ϕ ) -weakly contractive mappings in ordered G -metric spaces. Comput. Math. Appl. 2012, 63(1):298–309.MathSciNetView ArticleGoogle Scholar
  44. Radenović S: Remarks on some recent coupled coincidence point results in symmetric G -metric spaces. J. Operators 2013., 2013: Article ID 290525. doi:10.1155/2013/290525Google Scholar
  45. Radenović S: Remarks on some coupled coincidence point result in partially ordered metric spaces. Arab J. Math. Sci. 2013. doi:10.1016/j.ajmsc.2013.02.003Google Scholar
  46. Shatanawi W: Fixed point theorems for nonlinear weakly C -contractive mappings in metric spaces. Math. Comput. Model. 2011. doi:10.1016/j.mcm.2011.06.069Google Scholar
  47. Abbas M, Khan MA, Radenović S: Common coupled fixed point theorems in cone metric spaces for w -compatible mapping. Appl. Math. Comput. 2010, 217(1):195–202. 10.1016/j.amc.2010.05.042MathSciNetView ArticleGoogle Scholar

Copyright

© Shatanawi and Pitea; licensee Springer. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.