Skip to main content

Common fixed points for (ψ,α,β)-weakly contractive mappings in generalized metric spaces

Abstract

We establish some common fixed point theorems for mappings satisfying a (ψ,α,β)-weakly contractive condition in generalized metric spaces. Presented theorems extend and generalize many existing results in the literature.

MSC: Primary 54H25; secondary 47H10.

1 Introduction and preliminaries

In 2000, Branciari [1] introduced the concept of a generalized metric space where the triangle inequality of a metric space was replaced by an inequality involving three terms instead of two. As such, any metric space is a generalized metric space, but the converse is not true [1]. He proved the Banach fixed point theorem in such a space. After that, many fixed point results have been established for this interesting space. For more, the reader can refer to [212].

It is also known that common fixed point theorems are generalizations of fixed point theorems. Recently, many researchers have interested in generalizing fixed point theorems to coincidence point theorems and common fixed point theorems. In a recent paper, Choudhury and Kundu [13] established the (ψ,α,β)-weak contraction principle to coincidence point and common fixed point results in partially ordered metric spaces.

The purpose of this paper is to extend the results in [13] to the set of generalized metric spaces.

Definition 1 ([1])

Let X be a non-empty set and let d:X×X[0,+) be a mapping such that for all x,yX and for all distinct points u,vX, each of them different from x and y, one has

  1. (i)

    d(x,y)=0 if and only if x=y,

  2. (ii)

    d(x,y)=d(y,x),

  3. (iii)

    d(x,y)d(x,u)+d(u,v)+d(v,y) (the rectangular inequality).

Then (X,d) is called a generalized metric space (or for short g.m.s.).

Definition 2 ([1])

Let (X,d) be a g.m.s., let { x n } be a sequence in X and xX.

  1. (i)

    We say that { x n } is a g.m.s. convergent to x if and only if d( x n ,x)0 as n+. We denote this by x n x.

  2. (ii)

    We say that { x n } is a g.m.s. Cauchy sequence if and only if for each ε>0 there exists a natural number n(ε) such that d( x n , x m )<ε for all n>m>n(ε).

  3. (iii)

    (X,d) is called a complete g.m.s. if every g.m.s. Cauchy sequence is g.m.s. convergent in X.

We denote by Ψ the set of functions ψ:[0,+)[0,+) satisfying the following hypotheses:

(ψ 1) ψ is continuous and monotone nondecreasing,

(ψ 2) ψ(t)=0 if and only if t=0.

We denote by Φ the set of functions α:[0,+)[0,+) satisfying the following hypotheses:

(α 1) α is continuous,

(α 2) α(t)=0 if and only if t=0.

We denote by Γ the set of functions β:[0,+)[0,+) satisfying the following hypotheses:

(β 1) β is lower semi-continuous,

(β 2) β(t)=0 if and only if t=0.

2 Main results

Definition 3 ([14])

Let X be a non-empty set and let T,F:XX. The mappings T, F are said to be weakly compatible if they commute at their coincidence points, that is, if Tx=Fx for some xX implies that TFx=FTx.

Lemma 1 Let { a n } be a sequence of non-negative real numbers. If

ψ( a n + 1 )α( a n )β( a n )
(2.1)

for all nN, where ψΨ, αΦ, βΓ and

ψ(t)α(t)+β(t)>0 for all t>0,
(2.2)

then the following hold:

  1. (i)

    a n + 1 a n if a n >0,

  2. (ii)

    a n 0 as n+.

Proof (i) Let, if possible, a n < a n + 1 for some nN. Then, using the monotone property of ψ and (2.1), we have

ψ( a n )ψ( a n + 1 )α( a n )β( a n ),

which implies that a n =0 by (2.2), a contradiction with a n >0. Therefore, for all nN,

a n + 1 a n .

(ii) By (i) the sequence { a n } is non-increasing, hence there is a0 such that a n a as n+. Letting n+ in (2.1), using the lower semi-continuity of β and the continuities of ψ and α, we obtain ψ(a)α(a)β(a), which by (2.2) implies that a=0. □

Theorem 1 Let (X,d) be a Hausdorff and complete g.m.s. and let T,F:XX be self-mappings such that TXFX, and FX is a closed subspace of X, and that the following condition holds:

ψ ( d ( T x , T y ) ) α ( d ( F x , F y ) ) β ( d ( F x , F y ) )
(2.3)

for all x,yX, where ψΨ, αΦ, βΓ and satisfy condition (2.2). Then T and F have a unique coincidence point in X. Moreover, if T and F are weakly compatible, then T and F have a unique common fixed point.

Proof Let x 0 be an arbitrary point in X. Since TXFX, we can define the sequence { x n } in X by

T x n =F x n + 1 for all n0.
(2.4)

Substituting x= x n and y= x n + j for every jN in (2.3), using (2.4), we have

ψ ( d ( T x n , T x n + j ) ) α ( d ( F x n , F x n + j ) ) β ( d ( F x n , F x n + j ) ) = α ( d ( T x n 1 , T x n + j 1 ) ) β ( d ( T x n 1 , T x n + j 1 ) ) .

By (ii) of Lemma 1, we obtain that

lim n + d(T x n ,T x n + j )=0.
(2.5)

Next we prove that {T x n } is a g.m.s. Cauchy sequence. Suppose that {T x n } is not a g.m.s. Cauchy sequence. Then there exists ε>0, for which we can find subsequences {T x m k } and {T x n k } of {T x n } with n k > m k >k such that

d(T x n k ,T x m k )ε.
(2.6)

Further, corresponding to m k , we can choose n k in such a way that it is the smallest integer with n k > m k satisfying (2.6). Then

d(T x n k 1 ,T x m k )<ε.
(2.7)

Now, using (2.6), (2.7) and the rectangular inequality, we have

ε d ( T x n k , T x m k ) d ( T x n k , T x n k 2 ) + d ( T x n k 2 , T x n k 1 ) + d ( T x n k 1 , T x m k ) < d ( T x n k , T x n k 2 ) + d ( T x n k 2 , T x n k 1 ) + ε .

Letting k+ in the above inequality, using (2.5) with j=1,2, we obtain

lim k + d(T x n k ,T x m k )=ε.
(2.8)

Again, the rectangular inequality gives us

d ( T x n k , T x m k ) d ( T x n k , T x n k 1 ) + d ( T x n k 1 , T x m k 1 ) + d ( T x m k 1 , T x m k ) , d ( T x n k 1 , T x m k 1 ) d ( T x n k 1 , T x n k ) + d ( T x n k , T x m k ) + d ( T x m k , T x m k 1 ) .

Taking k+ in the above inequalities and using (2.5) and (2.8), we get

lim k + d(T x n k 1 ,T x m k 1 )=ε.
(2.9)

Substituting x= x n k and y= x m k in (2.3), we have

ψ ( d ( T x n k , T x m k ) ) α ( d ( F x n k , F x m k ) ) β ( d ( F x n k , F x m k ) ) = α ( d ( T x n k 1 , T x m k 1 ) ) β ( d ( T x n k 1 , T x m k 1 ) ) .
(2.10)

Letting k+ in (2.10) and using the lower semi-continuity of β and the continuities of ψ and α, we obtain

ψ(ε)α(ε)β(ε),

which implies that ε=0 by (2.2), a contradiction with ε>0. It then follows that {T x n } is a g.m.s. Cauchy sequence, and hence {T x n } is convergent in the complete g.m.s. (X,d). Since FX is closed and by (2.4), T x n =F x n + 1 for all n0, we have that there exists wFX for which

lim n + F x n = lim n + T x n =w.
(2.11)

We can find y in X such that Fy=w. From (2.3), we get

ψ ( d ( F x n + 1 , T y ) ) = ψ ( d ( T x n , T y ) ) α ( d ( F x n , F y ) ) β ( d ( F x n , F y ) ) .

On taking limit as n+ and using (2.11), we have

ψ ( d ( w , T y ) ) α(0)β(0),

which implies that ψ(d(w,Ty))=0, and Ty=w. Then we obtain

w=Fy=Ty.
(2.12)

Therefore, w is a point of coincidence of T and F. The uniqueness of the point of coincidence is a consequence of condition (2.3).

Now, we show that there exists a common fixed point of T and F. Since T and F are weakly compatible, by (2.12), we have that TFy=FTy, and

Tw=TFy=FTy=Fw.
(2.13)

If y=w, then y is a common fixed point. If yw, then by (2.3) we have

ψ ( d ( F y , F w ) ) = ψ ( d ( T y , T w ) ) α ( d ( F y , F w ) ) β ( d ( F y , F w ) ) .

From (2.2), Fy=Fw. Then, by (2.12) and (2.13), we have w=Fw=Tw. Consequently, w is the unique common fixed point of T and F. □

Denote by Λ the set of functions γ:[0,+)[0,+) satisfying the following hypotheses:

( h 1 ) γ is a Lebesgue-integrable mapping on each compact of [0,+).

( h 2 ) For every ε>0, we have

0 ε γ(s)ds>0.

We have the following result.

Theorem 2 Let (X,d) be a Hausdorff and complete g.m.s. and let T,F:XX be self-mappings such that TXFX, and FX is a closed subspace of X, and that the following condition holds:

0 d ( T x , T y ) γ 1 (s)ds 0 d ( F x , F y ) γ 2 (s)ds 0 d ( F x , F y ) γ 3 (s)ds

for all x,yX, where γ 1 , γ 2 , γ 3 Λ and satisfy condition (2.2). If T and F are weakly compatible, then T and F have a unique fixed point.

Proof Follows from Theorem 1 by taking ψ(t)= 0 t γ 1 (s)ds, α(t)= 0 t γ 2 (s)ds and β(t)= 0 t γ 3 (s)ds. □

Taking γ 3 (s)=(1k) γ 2 (s) for k[0,1) in Theorem 2, we obtain the following result.

Corollary 1 Let (X,d) be a Hausdorff and complete g.m.s. and let T,F:XX be self-mappings such that TXFX, and FX is a closed subspace of X, and that the following condition holds:

0 d ( T x , T y ) γ 1 (s)dsk 0 d ( F x , F y ) γ 2 (s)ds

for all x,yX, where γ 1 , γ 2 Λ and k[0,1) and satisfy condition (2.2). If T and F are weakly compatible, then T and F have a unique fixed point.

References

  1. Branciari A: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. (Debr.) 2000, 57: 31–37.

    MathSciNet  Google Scholar 

  2. Das P: A fixed point theorem in a generalized metric space. Soochow J. Math. 2007, 33(1):33–39.

    MathSciNet  Google Scholar 

  3. Das P, Lahiri BK: Fixed point of a Ljubomir Ćirić’s quasi-contraction mapping in a generalized metric space. Publ. Math. (Debr.) 2002, 61: 589–594.

    MathSciNet  Google Scholar 

  4. Das P, Lahiri BK: Fixed point of contractive mappings in generalized metric spaces. Math. Slovaca 2009, 59(4):499–504. 10.2478/s12175-009-0143-2

    Article  MathSciNet  Google Scholar 

  5. Azam A, Arshad M: Kannan fixed point theorem on generalized metric spaces. J. Nonlinear Sci. Appl. 2008, 1(1):45–48.

    MathSciNet  Google Scholar 

  6. Fora A, Bellour A, Al-Bsoul A: Some results in fixed point theory concerning generalized metric spaces. Mat. Vesn. 2009, 61(3):203–208.

    MathSciNet  Google Scholar 

  7. Mihet D: On Kannan fixed point principle in generalized metric spaces. J. Nonlinear Sci. Appl. 2009, 2(2):92–96.

    MathSciNet  Google Scholar 

  8. Samet B: A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type. Int. J. Math. Anal. 2009, 3(26):1265–1271.

    MathSciNet  Google Scholar 

  9. Samet B: Discussion on: a fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces by A. Branciari. Publ. Math. (Debr.) 2010, 76(4):493–494.

    MathSciNet  Google Scholar 

  10. Sarma IR, Rao JM, Rao SS: Contractions over generalized metric spaces. J. Nonlinear Sci. Appl. 2009, 2(3):180–182.

    MathSciNet  Google Scholar 

  11. Lakzian H, Samet B:Fixed point for (ψ,φ)-weakly contractive mappings in generalized metric spaces. Appl. Math. Lett. 2012, 25(5):902–906. 10.1016/j.aml.2011.10.047

    Article  MathSciNet  Google Scholar 

  12. Di Bari C, Vetro P: Common fixed points in generalized metric spaces. Appl. Math. Comput. 2012, 218(13):7322–7325. 10.1016/j.amc.2012.01.010

    Article  MathSciNet  Google Scholar 

  13. Choudhury BS, Kundu A:(ψ,α,β)-weak contractions in partially ordered metric spaces. Appl. Math. Lett. 2012, 25(1):6–10. 10.1016/j.aml.2011.06.028

    Article  MathSciNet  Google Scholar 

  14. Jungck G, Rhoades BE: Fixed point for set valued functions without continuity. Indian J. Pure Appl. Math. 1998, 29(3):227–238.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Işık.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in this research work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Işık, H., Türkoğlu, D. Common fixed points for (ψ,α,β)-weakly contractive mappings in generalized metric spaces. Fixed Point Theory Appl 2013, 131 (2013). https://doi.org/10.1186/1687-1812-2013-131

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-131

Keywords