Skip to main content

A generalization of Geraghty's theorem in partially ordered metric spaces and applications to ordinary differential equations

Abstract

The purpose of this article is to present some fixed point theorems for generalized contraction in partially ordered complete metric spaces. As an application, we give an existence and uniqueness for the solution of an initial-boundary-value problem.

2000 Mathematics Subject Classification: 47H10; 54H25; 34B15.

1. Introduction and preliminaries

Banach's contraction principle is one of the pivotal results of analysis. It is widely considered as the source of metric fixed point theory. Also, its significance lies in its vast applicability in a number of branches of mathematics. The existence of a fixed point, a common fixed point and a couple fixed point for some kinds of contraction type mappings in cone metric spaces, partially ordered metric spaces and fuzzy metric spaces has been considered recently by some authors [128] and, by using fixed point theorems, some of them have given some applications to matrix equations, ordinary diffierential equations, and integral equations are presented.

Let S denotes the class of the functions β : [0, ) → [0, 1) which satisfies the condition β(t n ) → 1 implies t n → 0.

The following generalization of Banach's contraction principle is due to Geraghty [13].

Theorem 1.1. Let (X, d) be a complete metric space and f : XX be a mapping such that there exists β S such that, for all x, y X,

d f ( x ) , f ( y ) β d ( x , y ) d ( x , y ) .

Then f has a unique fixed point z X and, for any choice of the initial point x0 X, the sequence {x n } defined x n = f (x n- 1 for each n ≥ 1 converges to the point z.

Very recently, Amini-Harandi and Emami [3] proved the following existence theorem:

Theorem 1.2. Let (X, ≤) be a partially ordered set and suppose that there exists a metric d in X such that (X, d) is a complete metric space. Let f : XX be an increasing mapping such that there exists x0 X with x0f (x0). Suppose that there exists β S such that

d f ( x ) , f ( y ) β d ( x , y ) d ( x , y )

for all x, y X with xy. Assume that either f is continuous or X is such that

if an increasing sequence {x n } converges to x, then x n x for each n ≥ 1.

Besides, if

for all x, y X, there exists z X which is comparable to x and y.

Then f has a unique fixed point in X.

In this article, we give a generalization of Theorem 1.2 in the context of partially ordered complete metric spaces. Moreover, by using our result, we show the existence of solution for the following initial-value problem:

u t ( x , t = u x x ( x , t + F ( x , t , u , u x ) , - < x < , 0 < t T , u ( x , 0 ) = φ x , - < x < ,

where we assume that φ is continuously differentiable and φ, φ' are bounded and F : × I × × with F (x, t, u, u x ) is a continuous function.

2. The main results

We begin with the following auxiliary lemma which is useful to prove some fixed point theorems in various spaces (see [25]):

Lemma 2.1. Let (X, d) be a metric space and {x n } be a sequence in X such that {d(x n +1, x n )} is decreasing and

lim n d x n + 1 , x n = 0 .

If {x2n} is not a Cauchy sequence, then there exist ε > 0 and two sequences {m k }, {n k } of positive integers such that the following four sequences tend to ε as k:

{ d ( x 2 m k , x 2 n k ) } , { d ( x 2 m k , x 2 n k + 1 ) } , { d ( x 2 m k - 1 , x 2 n k ) } , { d ( x 2 m k - 1 , x 2 n k + 1 ) } .

Let Ψ denotes the class of the functions ψ : [0, ) → [0, ) which satisfies the following conditions:

  1. (a)

    ψ is nondecreasing;

  2. (b)

    ψ is sub-additive, that is, ψ(s + t) ≤ ψ(s) + ψ(t);

  3. (c)

    ψ is continuous;

  4. (d)

    ψ(t) = 0 t = 0.

We are now ready to state and prove our main theorem.

Theorem 2.2. Let (X, ≤) be a partially ordered set and suppose that there exists a metric d in X such that (X, d) is a complete metric space. Let f : XX be a nondecreasing mapping such that there exists x0 X with x0f (x0). Suppose that there exist β S and ψ Ψ such that

ψ d f x , f y β ψ d x , y ψ d x , y
(2.1)

for all x, y X with xy. Assume that either f is continuous or X is such that

i f a n i n c r e a s i n g s e q u e n c e x n c o n v e r g e s t o x , t h e n x n x f o r e a c h n 1 .
(2.2)

Then f has a fixed point.

Proof. Since x0f (x0) and f is a nondecreasing function, we obtain, by induction, that

x 0 f x 0 f 2 x 0 f 3 x 0 f n x 0 f n + 1 x 0 .

Put x n : = fn(x0) for each n ≥ 1. Since x n x n +1 for each n ≥ 1, by (2.1), we have

ψ d x n + 1 , x n + 2 = ψ d f n + 1 x 0 , f n + 2 x 0 β ψ d x n , x n + 1 ψ d x n , x n + 1 ψ d x n , x n + 1 .

Thus it follows that {ψ(d(x n , x n +1))} is a nonincreasing sequence and bounded below and so lim n ψ(d(x n , x n +1)) = r exists. Let lim n ψ(d(x n , x n +1)) = r ≥ 0. Assume r > 0. Then, from (2.1), we have

ψ ( d ( x n + 1 , x n + 2 ) ) ψ ( d ( x n , x n + 1 ) ) β ψ d x n , x n + 1 1

for each n ≥ 1, which yields that

lim n β ψ d x n , x n + 1 =  1 .

On the other hand, since β S, we have lim n ψ(d(x n , x n +1)) = 0 and so r = 0.

Now, we show that {x n } is a Cauchy sequence. Suppose that {x n } is not a Cauchy sequence. Using Lemma 2.1, we know that there exist ε > 0 and two sequences {m k } and {n k } of positive integers such that the following four sequences tend to ε as k:

d x 2 m k , x 2 n k , d x 2 m k , x 2 n k + 1 , d x 2 m k - 1 , x 2 n k , d x 2 m k - 1 , x 2 n k + 1 .

Putting, in the contractive condition, x = x 2 m k - 1 and y= x 2 n k , it follows that

ψ d x 2 m k , x 2 n k + 1 β ψ d x 2 m k - 1 , x 2 n k ψ d x 2 m k - 1 , x 2 n k ψ d x 2 m k - 1 , x 2 n k

and so

ψ d x 2 m k , x 2 n k + 1 ψ ( d x 2 m k - 1 , x 2 n k β ψ d x 2 m k - 1 , x 2 n k 1

and

lim k β ψ d x 2 m k - 1 , x 2 n k = 1 .

Since β S, it follows that lim k ψ d x 2 m k - 1 , x 2 n k =0. Since ψ is a continuous mapping, ψ(ε) = 0 and so ε = 0, which contradicts ε > 0. Therefore, {x n } is a Cauchy sequence in (X, d). Since (X, d) is a complete metric space, there exists z X such that lim n x n = z.

Now, we show that z is a fixed point of f.

If f is continuous, then

z = lim n f n ( x 0 ) = lim n f n + 1 ( x 0 ) = f ( lim n f n ( x 0 ) ) = f ( z )

and hence f (z) = z.

If (2.2) holds, then we have

d ( f ( z ) , z ) d ( f ( z ) , f ( x n ) ) + d ( f ( x n ) , z ) .

On the other hand, since ψ is nondecreasing and sub-additive, we have

ψ ( d ( f ( z ) , z ) ) ψ ( d ( f ( z ) , f ( x n ) ) ) + ψ ( d ( f ( x n ) , z ) ) β ( ψ ( d ( z , x n ) ) ) ψ ( d ( z , x n ) ) + ψ ( d ( x n + 1 , z ) ) ψ ( d ( z , x n ) ) + ψ ( d ( x n + 1 , z ) ) .

Since d(z, x n ) → 0, ψ(d(z, x n )) → 0 and so

ψ ( d ( f ( z ) , z ) ) = 0 d ( f ( z ) , z ) = 0 .

Therefore, we get f (z) = z. this completes the proof. □

In the following, we give a sufficient condition for the uniqueness of the fixed point in Theorem 2.2. This condition is as follows:

e v e r y p a i r o f e l e m e n t s i n X h a s a l o w e r b o u n d o r a n u p p e r b o u n d .
(2.3)

In [20], it is proved that the condition (2.3) is equivalent to the following:

f o r e v e r y x , y X , t h e r e e x i s t s z X w h i c h i s c o m p a r a b l e t o x a n d y .
(2.4)

Theorem 2.3. Adding the condition (2.4) to the hypotheses of Theorem 2.2, the fixed point z of f is unique.

Proof. Let y be another fixed point of f. From (2.4), there exists x X which is comparable to y and z. The monotonicity implies that fn(x) is comparable to fn(y) = y and fn(z) = z for n ≥ 0. Moreover, we have

ψ ( d ( z , f n ( x ) ) ) = ψ ( d ( f n ( z ) , f n ( x ) ) ) = ψ ( d ( f ( f n - 1 ( z ) ) , f ( f n - 1 ( x ) ) ) ) β ( ψ ( d ( f n - 1 ( z ) , f n - 1 ( x ) ) ) ) . ψ ( d ( f n - 1 ( z ) , f n - 1 ( x ) ) ) ψ ( d ( f n - 1 ( z ) , f n - 1 ( x ) ) ) = ψ ( d ( z , f n - 1 ( x ) ) ) .
(2.5)

Consequently, the sequence {γ n } defined by γ n = ψ(d(z, fn(x))) is nonnegative and nonincreasing and so

lim n ψ ( d ( z , f n ( x ) ) ) = γ 0 .

Now, we show that γ = 0. Assume that γ > 0. By passing to the subsequences, if necessary, we may assume that lim n β(γ n ) = λ exists. From (2.5), it follows that λγ = γ and so λ = 1. Since β S,

γ = lim n γ n = lim n ψ ( d ( z , f n ( x ) ) ) = 0 .

This is a contradiction and so γ = 0.

Similarly, we can prove that

lim n ψ ( d ( y , f n ( x ) ) ) = 0 .

Finally, from d(z, y) ≤ d(z, fn(x)) + d(fn(x), y), it follows that

ψ ( d ( z , y ) ) ψ ( d ( z , f n ( x ) ) ) + ψ ( d ( f n ( x ) , y ) )

since ψ is nondecreasing and sub-additive. Therefore, taking n, we have ψ(d(z, y)) = 0.

It follows that d(z, y) = 0 and so z = y. This completes the proof. □

3. Applications

In this section, we show the existence of solution for the following initial-value problem by using Theorems 2.2 and 2.3:

u t ( x , t ) = u x x ( x , t ) + F ( x , t , u , u x ) , - < x < , 0 < t T , u ( x , 0 ) = φ ( x ) , - < x < ,
(3.1)

where we assume that φ is continuously differentiable and that φ and φ' are bounded and F (x, t, u, u x ) is a continuous function.

Definition 3.1. By a solution of an initial-boundary-value problem for any u t = u xx + F (x, t, u, u x ) in × I, where I = [0, T ], we mean a function u = u(x, t) defined in × I such that

  1. (a)

    u C( × I),

  2. (b)

    u t , u x and u xx C( × I),

  3. (c)

    u and u x are bounded in × I,

  4. (d)

    u t (x, t) = u xx (x, t) + F (x, t, u(x, t), u x (x, t)) for all (x, t) × I.

Now, we consider the space

Ω = { ν ( x , t ) : ν , ν x C ( × I a n d | | ν | | < } ,

where

| | ν | | = sup x , t I | ν ( x , t ) | + sup x , t I | ν x ( x , t ) | .

The set Ω with the norm ||·|| is a Banach space. Obviously, the space with the metric given by

d ( u , ν ) = sup x , t I | u ( x , t ) - ν ( x , t ) | + sup x , t I | u x ( x , t ) - ν x ( x , t ) |

is a complete metric space. The set Ω can also equipped with a partial order given by

u , ν Ω , u ν u ( x , t ) ν ( x , t ) , u x ( x , t ) ν x ( x , t )

for any x and t I. Obviously, (Ω, ≤) satisfies the condition (2.4) since, for any u, ν Ω, the functions max{u, ν} and min{u, ν} are the least upper and greatest lower bounds of u and ν, respectively.

Taking a monotone nondecreasing sequence {ν n } Ω converging to ν in Ω, for any x and t I,

ν 1 ( x , t ) ν 2 ( x , t ) ν 3 ( x , t ) ν n ( x , t )

and

ν 1 x ( x , t ) ν 2 x ( x , t ) ν 3 x ( x , t ) ν n x ( x , t ) .

Further, since the sequences {ν n (x, t)} and { ν n x ( x , t ) } of real numbers converge to ν(x, t) and ν x (x, t), respectively, it follows that, for all x , t I and n ≥ 1,

ν n ( x , t ) ν ( x , t )

and

ν n x ( x , t ) ν x ( x , t ) .

Therefore, ν n ν for all n ≥ 1 and so (Ω, ≤) with the above mentioned metric satisfies the condition (2.2).

Definition 3.2. A lower solution of the initial-value problem (3.1) is a function u Ω such that

u t u x x + F ( x , t , u , u x ) , - < x < , 0 < t T , u ( x , 0 ) φ ( x ) , - < x < ,

where we assume that φ is continuously differentiable φ and φ' are bounded, the set Ω is defined in above and F (x, t, u, u x ) is a continuous function.

Theorem 3.3. Consider the problem (3.1) with F : × I × × continuous and assume the following:

  1. (1)

    for any c > 0 with |s| < c and |p| < c, the function F (x, t, s, p) is uniformly Hölder continuous in X and t for each compact subset of × I;

  2. (2)

    there exists a constant c F ( T + 2 π - 1 2 T 1 2 ) - 1 such that

    0 F ( x , t , s 2 , p 2 ) - F ( x , t , s 1 , p 1 ) c F ( ln ( s 2 - s 1 + p 2 - p 1 + 1 ) )

for all (s1, p1) and (s2, p2) in × with s1s2 and p1p2;

  1. (3)

    F is bounded for bounded s and p.

Then the existence of a lower solution for the initial-value problem (3.1) provides the existence of the unique solution of the problem (3.1).

Proof. The problem (3.1) is equivalent to the integral equation

u ( x , t ) = - k ( x - ξ , t ) φ ( ξ ) d ξ + 0 t - k ( x - ξ , t - τ ) F ( ξ , τ , u ( ξ , τ ) , u x ( ξ , τ ) ) d ξ d τ

for all x and 0 < tT , where

k ( x , t ) = 1 4 π t exp - x 2 4 t

for all x and t > 0. The initial-value problem (3.1) possesses a unique solution if and only if the above integral-differential equation possesses a unique solution u such that u and u x are continuous and bounded for all x and 0 < tT.

Define a mapping F: Ω → Ω by

( F u ) ( x , t ) = - k ( x - ξ , t ) φ ( ξ ) d ξ + 0 t - k ( x - ξ , t - τ ) F ( ξ , τ , u ( ξ , τ ) , u x ( ξ , τ ) ) d ξ d τ

for all x and t I. Note that, if u Ω is a fixed point of F, then u is a solution of the problem (3.1).

Now, we show that the hypothesis in Theorems 2.2 and 2.3 are satisfied. The mapping F is nondecreasing since, by the hypothesis, for uν,

F ( x , t , u ( x , t ) , u x ( x , t ) ) F ( x , t , ν ( x , t ) , ν x ( x , t ) ) .

By using that k(x, t) > 0 for all (x, t) × (0, T ], we conclude that

( F u ) ( x , t ) = - k ( x - ξ , t ) φ ( ξ ) d ξ + 0 t - k ( x - ξ , t - τ ) F ( ξ , τ , u ( ξ , τ ) , u x ( ξ , τ ) ) d ξ d τ - k ( x - ξ , t ) φ ( ξ ) d ξ + 0 t - k ( x - ξ , t - τ ) F ( ξ , τ , ν ( ξ , τ ) , ν x ( ξ , τ ) ) d ξ d τ = ( F ν ) ( x , t )

for all x and t I. Besides, we have

| ( F u ) ( x , t ) - ( F ν ) ( x , t ) | 0 t - k ( x - ξ , t - τ ) | F ( ξ , τ , u ( ξ , τ ) , u x ( ξ , τ ) ) - F ( ξ , τ , ν ( ξ , τ ) , ν x ( ξ , τ ) ) | d ξ d τ 0 t - k ( x - ξ , t - τ ) c F ln ( u ( ξ , τ ) - ν ( ξ , τ ) + u x ( ξ , τ ) - ν x ( ξ , τ ) + 1 ) d ξ d τ c F ln ( d ( u , ν ) + 1 ) 0 t - k ( x - ξ , t - τ ) d ξ d τ c F ln ( d ( u , v ) + 1 ) T
(3.2)

for all uν. Similarly, we have

F u x ( x , t ) - F ν x ( x , t ) c F ln ( d ( u , ν ) + 1 ) 0 t - | k x ( x - ξ , t - τ ) | d ξ d τ c F ln ( d ( u , ν ) + 1 ) 2 π - 1 2 T 1 2 .
(3.3)

Combining (3.2) with (3.3), we obtain

d ( F u , F ν ) c F ( T + 2 π - 1 2 T 1 2 ) ln ( d ( u , ν ) + 1 ) ln ( d ( u , ν ) + 1 ) ,

which implies that

ln ( d ( F u , F ν ) + 1 ) ln ( ln ( d ( u , ν ) + 1 ) + 1 ) = ln ( ln ( d ( u , ν ) + 1 ) + 1 ) ln ( d ( u , ν ) + 1 ) . ln ( d ( u , ν ) + 1 ) .

Put ψ(x) = ln(x + 1) and β ( x ) = ψ ( x ) x . Obviously, ψ : [0, ) → [0, ) is continuous, sub-additive, nondecreasing ( ψ ( x ) = 1 x + 1 > 0 ) and ψ is positive in (0, ) with ψ(0) = 0 and also ψ(x) < x for any x > 0 and β S.

Finally, let α(x, t) be a lower solution for (3.1). Then we show that αF α. Integrating the following:

( α ( ξ , τ ) k ( x - ξ , t - τ ) ) τ - ( α ξ ( ξ , τ ) k ( x - ξ , t - τ ) ) ξ + ( α ( ξ , τ ) k ξ ( x - ξ , t - τ ) ) ξ F ( ξ , τ , α ( ξ , τ ) , α ξ ( ξ , τ ) ) k ( x - ξ , t - τ )

for -∞ < ξ < ∞ and 0 < τ < t, we obtain the following:

α ( x , t ) - k ( x - ξ , t ) φ ( ξ ) d ξ + 0 t - k ( x - ξ , t - τ ) F ( ξ , τ , α ( ξ , τ ) , α ξ ( ξ , τ ) ) d ξ d τ = ( F α ) ( x , t )

for all x and t (0, T ]. Therefore, by Theorems 2.2 and 2.3, F has a unique fixed point. This completes the proof. □

References

  1. Abbas M, Cho YJ, Nazir T: Common fixed point theorems for four mappings in TVS-valued cone metric spaces. J Math Inequal 2011, 5: 287–299.

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal RP, El-Gebeily MA, O'regan D: Generalized contractions in partially ordered metric spaces. Appl Anal 2008, 87: 109–116. 10.1080/00036810701556151

    Article  MATH  MathSciNet  Google Scholar 

  3. Amini-Harandi A, Emami H: A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations. Nonlinear Anal 2010, 72: 2238–2242. 10.1016/j.na.2009.10.023

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MATH  MathSciNet  Google Scholar 

  5. Cho YJ, He G, Huang NJ: The existence results of coupled quasi-solutions for a class of operator equations. Bull Korean Math Soc 2010, 47: 455–465.

    Article  MATH  MathSciNet  Google Scholar 

  6. Cho YJ, Rhoades BE, Saadati R, Samet B, Shantawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl 2012, 2012: 8. 10.1186/1687-1812-2012-8

    Article  Google Scholar 

  7. Cho YJ, Saadati R, Wang S: Common fixed point theorems on generalized distance in order cone metric spaces. Comput Math Appl 2011, 61: 1254–1260. 10.1016/j.camwa.2011.01.004

    Article  MATH  MathSciNet  Google Scholar 

  8. Cho YJ, Shah MH, Hussain N: Coupled fixed points of weakly F -contractive mappings in topological spaces. Appl Math Lett 2011, 24: 1185–1190. 10.1016/j.aml.2011.02.004

    Article  MATH  MathSciNet  Google Scholar 

  9. Drici Z, McRae FA, Devi JV: Fixed point theorems in partially ordered metric spaces for operators with PPF dependence. Nonlinear Anal 2007, 7: 641–647.

    Article  Google Scholar 

  10. Dukic D, Kadelburg Z, Radenovic S: Fixed point of Geraghty-type mappings in various generalized metric spaces. Abstr Appl Anal 2011., 2011: Article ID 561245, 13

    Google Scholar 

  11. Gordji ME, Baghani H, Cho YJ: Coupled fixed point theorems for contractions in intuitionistic fuzzy normed spaces. Math Comput Model 2011, 54: 1897–1906. 10.1016/j.mcm.2011.04.014

    Article  MATH  Google Scholar 

  12. Gordji ME, Ramezani M: A generalization of Mizoguchi and Takahashi's theorem for single-valued mappings in partially ordered metric spaces. Nonlinear Anal 2011, 74: 4544–4549. 10.1016/j.na.2011.04.020

    Article  MATH  MathSciNet  Google Scholar 

  13. Geraghty M: On contractive mappings. Proc Amer Math Soc 1973, 40: 604–608. 10.1090/S0002-9939-1973-0334176-5

    Article  MATH  MathSciNet  Google Scholar 

  14. Graily E, Vaezpour SM, Saadati R, Cho YJ: Generalization of fixed point theorems in ordered metric spaces concerning generalized distance. Fixed Point Theory Appl 2011, 2011: 30. 10.1186/1687-1812-2011-30

    Article  MathSciNet  Google Scholar 

  15. Harjani J, Sadarangani K: Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal 2009, 71: 3403–3410. 10.1016/j.na.2009.01.240

    Article  MATH  MathSciNet  Google Scholar 

  16. Kadelburg Z, Pavlovic M, Radenovic S: Common fixed point theorems for ordered contractions and quasicontractions in ordered conemetric spaces. Comput Math Appl 2010, 59: 3148–3159. 10.1016/j.camwa.2010.02.039

    Article  MATH  MathSciNet  Google Scholar 

  17. Lakshmikantham V, Ćirić Lj: Couple fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020

    Article  MATH  MathSciNet  Google Scholar 

  18. Nashine HK, Kadelburg Z, Radenovic S: Coupled common fixed point theorems for w* - compatible mappings in ordered cone metric spaces. Appl Math Comput 2012, 218: 5422–5432. 10.1016/j.amc.2011.11.029

    Article  MATH  MathSciNet  Google Scholar 

  19. Nieto JJ, Pouso RL, Rodríguez-López R: Fixed point theorems in ordered abstract sets. Proc. Amer Math Soc 2007, 135: 2505–2517. 10.1090/S0002-9939-07-08729-1

    Article  MATH  Google Scholar 

  20. Nieto JJ, Rodríguez-López R: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22: 223–239. 10.1007/s11083-005-9018-5

    Article  MATH  MathSciNet  Google Scholar 

  21. Nieto JJ, Rodríguez-López R: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math Sin 2007, 23: 2205–2212. 10.1007/s10114-005-0769-0

    Article  MATH  Google Scholar 

  22. O'regan D, Petruṣel A: Fixed point theorems for generalized contractions in ordered metric spaces. J Math Anal Appl 2008, 341: 1241–1252. 10.1016/j.jmaa.2007.11.026

    Article  MATH  MathSciNet  Google Scholar 

  23. Petruṣel A, Rus IA: Fixed point theorems in ordered L-spaces. Proc Amer Math Soc 2006, 134: 411–418.

    Article  MathSciNet  Google Scholar 

  24. Radenović S, Kadelburg Z: Generalized weak contractions in partially ordered metric spaces. Comput Math Appl 2010, 60: 1776–1783. 10.1016/j.camwa.2010.07.008

    Article  MATH  MathSciNet  Google Scholar 

  25. Radenović S, Kadelburg Z, Jandrlic D, Jandrlic A: Some results on weakly contractive maps. Bull Iran Math Soc, in press.

  26. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc Amer Math Soc 2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4

    Article  MATH  MathSciNet  Google Scholar 

  27. Sintunavarat W, Cho YJ, Kumam P: Common fixed point theorems for c -distance in ordered cone metric spaces. Comput Math Appl 2011, 62: 1969–1978. 10.1016/j.camwa.2011.06.040

    Article  MATH  MathSciNet  Google Scholar 

  28. Sintunavarat W, Cho YJ, Kumam P: Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl 2011, 2011: 81. 10.1186/1687-1812-2011-81

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (Grant Number: 2011-0021821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeol Je Cho.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Gordji, M.E., Ramezani, M., Cho, Y.J. et al. A generalization of Geraghty's theorem in partially ordered metric spaces and applications to ordinary differential equations. Fixed Point Theory Appl 2012, 74 (2012). https://doi.org/10.1186/1687-1812-2012-74

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2012-74

Keywords