Skip to main content

# Coupled fixed point of generalized contractive mappings on partially ordered G-metric spaces

## Abstract

Coupled fixed point results for nonlinear contraction mappings having a mixed monotone property in a partially ordered G-metric space due to Choudhury and Maity are extended and unified. We also provide example to validate the main results in this article.

Mathematics Subject classification (2000): 47H10; 54H25.

## 1. Introduction

One of the simplest and the most useful result in the fixed point theory is the Banach-Caccioppoli contraction [1] mapping principle, a power tool in analysis. This principle has been generalized in different directions in different spaces by mathematicians over the years (see [210] and references mentioned therein). On the other hand, fixed point theory has received much attention in metric spaces endowed with a partial ordering. The first result in this direction was given by Ran and Reurings [11] and they presented applications of their results to matrix equations. Subsequently, Nieto and Rodríguez-López [12] extended the results in [11] for nondecreasing mappings and obtained a unique solution for a first order ordinary differential equation with periodic boundary conditions (see also, [1319]).

Bhaskar and Lakshmikantham [20] introduced the concept of a coupled fixed point and the mixed monotone property. Furthermore, they proved some coupled fixed point theorems for mappings which satisfy the mixed monotone property and gave some applications in the existence and uniqueness of a solution for a periodic boundary value problem. A number of articles in this topic have been dedicated to the improvement and generalization see in [2124] and reference therein.

Mustafa and Sims [25, 26] introduced a new concept of generalized metric spaces, called G-metric spaces. In such spaces every triplet of elements is assigned to a non-negative real number. Based on the notion of G-metric spaces, Mustafa et al. [27] established fixed point theorems in G-metric spaces. Afterward, many fixed point results were proved in this space (see [2834]).

Recently, Choudhury and Maity [35] studied necessary conditions for existence of coupled fixed point in partially ordered G-metric spaces. They obtained the following interesting result.

Theorem 1.1 ([35]). Let (X, ) be a partially ordered set such that X is a complete G-metric space and F: X × XX be a mapping having the mixed monotone property on X. Suppose there exists k [0,1) such that

$G\left(F\left(x,y\right),F\left(u,v\right),F\left(w,z\right)\right)\le \frac{k}{2}\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)$

for all x, y, z, u, v, w X for which x u w and y v z, where either uw or vz. If there exists x0, y0 X such that

${x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}and\phantom{\rule{2.77695pt}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right)$

and either

(a) F is continuous or

(b) X has the following property:

1. (i)

if a non-decreasing sequence {x n } → x, then x n x for all n ,

2. (ii)

if a non-increasing sequence {y n } → y, then y n y for all n ,

then F has a coupled fixed point.

The aim of this article is to extend and unify coupled fixed point results in [35] and to study necessary conditions to guarantee the uniqueness of coupled fixed point. We also provide illustrative example in support of our results.

## 2. Preliminaries

Throughout this article, (X, ) denotes a partially ordered set with the partial order .

By x y, we mean x y but xy. If (X, ) is a partially ordered set. A mapping f: XX is said to be non-decreasing (non-increasing) if for all x, y X, x y implies f(x) f(y) (f(y) f(x), respectively).

Definition 2.1 ([20]). Let (X, ) be a partial ordered set. A mapping F: X × XX is said to has the a mixed monotone property if F is monotone non-decreasing in its first argument and is monotone non-increasing in its second argument, that is, for any x, y X

${x}_{1},{x}_{2}\in X,{x}_{1}\preccurlyeq {x}_{2}⇒F\left({x}_{1},y\right)\preccurlyeq F\left({x}_{2},y\right)$
(2.1)

and

${y}_{1},{y}_{2}\in X,{y}_{1}\preccurlyeq {y}_{2}⇒F\left(x,{y}_{1}\right)\succcurlyeq F\left(x,{y}_{2}\right).$
(2.2)

Definition 2.2 ([20]). An element (x, y) X × X is called a coupled fixed point of mapping F: X × XX if

$x=F\left(x,y\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}y=F\left(y,x\right).$

Consistent with Mustafa and Sims [25, 26], the following definitions and results will be needed in the sequel.

Definition 2.3 ([26]). Let X be a nonempty set. Suppose that a mapping G: X × X × X+ satisfies:

(G1) G(x,y,z) = 0 if x = y = z;

(G2) G(x, x, y) > 0 for all x, y X with xy;

(G3) G(x,x,y) ≤ G(x,y,z) for all x,y,z X with zy;

(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = ..., (symmetry in all three variables);

(G5) G(x,y,z) ≤ G(x,a,a) + G(a,y, z) for all x,y,z,a X (rectangle inequality).

Then G is called a G-metric on X and (X, G) is called a G-metric space.

Definition 2.4 ([26]). Let X be a G-metric space and let {x n } be a sequence of points of X, a point x X is said to be the limit of a sequence {x n } if G(x,x n ,x m ) → 0 as n, m → ∞ and sequence {x n } is said to be G-convergent to x.

From this definition, we obtain that if x n x in a G-metric space X, then for any ϵ > 0 there exists a positive integer N such that G(x,x n ,x m ) < ϵ, for all n,mN.

It has been shown in [26] that the G-metric induces a Hausdorff topology and the convergence described in the above definition is relative to this topology. So, a sequence can converge at the most to one point.

Definition 2.5 ([26]). Let X be a G-metric space, a sequence {x n } is called G-Cauchy if for every ϵ > 0 there is a positive integer N such that G(x n ,x m ,x l ) < ϵ for all n, m, lN, that is, if G(x n , x m , x l ) → 0, as n, m, l → ∞.

We next state the following lemmas.

Lemma 2.6 ([26]). If X is a G-metric space, then the following are equivalent:

1. (1)

{x n } is G-convergent to x.

2. (2)

G(x n ,x n ,x) → 0 as n → ∞.

3. (3)

G(x n ,x,x) → 0 as n → ∞.

4. (4)

G(x m ,x n ,x) → 0 as n,m → ∞.

Lemma 2.7 ([26]). If X is a G-metric space, then the following are equivalent:

(a) The sequence {x n } is G-Cauchy.

(b) For every ϵ > 0, there exists a positive integer N such that G(x n ,x m ,x m ) < ϵ, for all n,mN.

Lemma 2.8 ([26]). If X is a G-metric space then G(x,y,y) ≤ 2G(y,x,x) for all x,y X.

Definition 2.9 ([26]). Let (X, G), (X', G') be two generalized metric spaces. A mapping f: XX' is G-continuous at a point x X if and only if it is G sequentially continuous at x, that is, whenever {x n } is G-convergent to x, {f(x n )} is G'-convergent to f(x).

Definition 2.10 ([26]). A G-metric space X is called a symmetric G-metric space if

$G\left(x,y,y\right)=G\left(y,x,x\right)$

for all x,y X.

Definition 2.11 ([26]). A G-metric space X is said to be G-complete (or a complete G-metric space) if every G-Cauchy sequence in X is convergent in X.

Definition 2.12 ([26]). Let X be a G-metric space. A mapping F: X × XX is said to be continuous if for any two G-convergent sequences {x n } and {y n } converging to x and y, respectively, {F(x n ,y n )} is G-convergent to F(x,y).

## 3. Coupled fixed point in G-metric spaces

Let Θ denotes the class of all functions θ: [0, ∞) × [0, ∞) → [0,1) which satisfies following condition:

For any two sequences {t n } and {s n } of nonnegative real numbers,

$\theta \left({t}_{n},{s}_{n}\right)\to 1\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\text{implies}\phantom{\rule{2.77695pt}{0ex}}\text{that}\phantom{\rule{2.77695pt}{0ex}}{t}_{n},{s}_{n}\to 0.$

Following are examples of some function in Θ.

1. (1)

θ 1(s,t) = k for s,t [0,∞), where k [0,1).

2. (2)

${\theta }_{2}\left(s,t\right)=\left\{\begin{array}{cc}\frac{\text{ln}\left(1+ks+lt\right)}{ks+lt};\hfill & s>0\phantom{\rule{2.77695pt}{0ex}}\text{or}\phantom{\rule{2.77695pt}{0ex}}t>0,\hfill \\ r\in \left[0,1\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{0.3em}{0ex}};\hfill & s=0,t=0,\hfill \end{array}\right\$

where k, l (0,1)

1. (3)

${\theta }_{3}\left(s,t\right)=\left\{\begin{array}{cc}\frac{\text{ln}\left(1+\text{max}\left\{s,t\right\}\right)}{\text{max}\left\{s,t\right\}};\hfill & s>0\phantom{\rule{2.77695pt}{0ex}}\text{or}\phantom{\rule{2.77695pt}{0ex}}t>0,\hfill \\ r\in \left[0,1\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{0.3em}{0ex}};\hfill & s=0,t=0,\hfill \end{array}\right\$

Now, we prove our main result.

Theorem 3.1. Let (X, ) be a partially ordered set such that there exists a complete G-metric on X and F: X × XX be a continuous mapping having the mixed monotone property. Suppose that there exists θ Θ such that

$\begin{array}{c}G\left(F\left(x,y\right),F\left(u,v\right),F\left(w,z\right)\right)+G\left(F\left(y,x\right),F\left(v,u\right),F\left(z,w\right)\right)\\ \phantom{\rule{1em}{0ex}}\le \theta \left(G\left(x,u,w\right),G\left(y,v,z\right)\right)\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)\end{array}$
(3.1)

for all x, y, z, u, v, w X for which x u w and y v z where either uw or vz. If there exists x0, y0 X such that

${x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}and\phantom{\rule{2.77695pt}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right),$

then F has a coupled fixed point.

Proof. As F(X × X) X, we can construct sequences {x n } and {y n } in X such that

${x}_{n+1}=F\left({x}_{n},{y}_{n}\right)\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}{y}_{n+1}=F\left({y}_{n},{x}_{n}\right)\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}n\ge 0.$
(3.2)

Next, we show that

${x}_{n}\preccurlyeq {x}_{n+1}\phantom{\rule{2.77695pt}{0ex}}and\phantom{\rule{2.77695pt}{0ex}}{y}_{n}\succcurlyeq {y}_{n+1}\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}n\ge 0.$
(3.3)

Since x0 F(x0,y0) = x1 and y0 F(y0,x0) = y1, therefore (3.3) holds for n = 0.

Suppose that (3.3) holds for some fixed n ≥ 0, that is,

${x}_{n}\preccurlyeq {x}_{n+1}\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}{y}_{n}\succcurlyeq {y}_{n+1}.$
(3.4)

Since F has a mixed monotone property, from (3.4) and (2.1), we have

$F\left({x}_{n},y\right)\preccurlyeq F\left({x}_{n+1},y\right)\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}F\left({y}_{n+1},x\right)\preccurlyeq F\left({y}_{n},x\right)$
(3.5)

for all x, y X and from (3.4) and (2.2), we have

$F\left(y,{x}_{n}\right)\succcurlyeq F\left(y,{x}_{n+1}\right)\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}F\left(x,{y}_{n+1}\right)\succcurlyeq F\left(x,{y}_{n}\right),$
(3.6)

for all x,y X. If we take y = y n and x = x n in (3.5), then we obtain

${x}_{n+1}=F\left({x}_{n},{y}_{n}\right)\preccurlyeq F\left({x}_{n+1},{y}_{n}\right)\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}F\left({y}_{n+1},{x}_{n}\right)\preccurlyeq F\left({y}_{n},{x}_{n}\right)={y}_{n+1}.$
(3.7)

If we take y = yn+1and x = xn+1in (3.6), then

$F\left({y}_{n+1},{x}_{n}\right)\succcurlyeq F\left({y}_{n+1},{x}_{n+1}\right)={y}_{n+2}\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}{x}_{n+2}=F\left({x}_{n+1},{y}_{n+1}\right)\succcurlyeq F\left({x}_{n+1},{y}_{n}\right).$
(3.8)

Now, from (3.7) and (3.8), we have

${x}_{n+1}\preccurlyeq {x}_{n+2}\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}{y}_{n+1}\succcurlyeq {y}_{n+2}.$
(3.9)

Therefore, by the mathematical induction, we conclude that (3.3) holds for all n ≥ 0, that is,

${x}_{0}\preccurlyeq {x}_{1}\preccurlyeq {x}_{2}\preccurlyeq \cdots \preccurlyeq {x}_{n}{\preccurlyeq }_{n+1}\preccurlyeq \cdots$
(3.10)

and

${y}_{0}\succcurlyeq {y}_{1}\succcurlyeq {y}_{2}\succcurlyeq \cdots \succcurlyeq {y}_{n}\succcurlyeq {y}_{n+1}\succcurlyeq \cdots \phantom{\rule{0.3em}{0ex}}.$
(3.11)

If there exists some integer k ≥ 0 such that

$G\left({x}_{k+1},{x}_{k+1},{x}_{k}\right)+G\left({y}_{k+1},{y}_{k+1},{y}_{k}\right)=0,$

then G(xk+1,xk+1,x k ) = G(yk+1,yk+1,y k ) = 0 implies that x k = xk+1and y k = yk+1. Therefore, x k = F(x k ,y k ) and y k = F(y k ,x k ) gives that (x k ,y k ) is a coupled fixed point of F.

Now, we assume that G(xn+1,xn+1,x n ) + G(yn+1,yn+1,y n ) ≠ 0 for all n ≥ 0. Since x n xn+1and y n yn+1for all n ≥ 0 so from (3.1) and (3.2), we have

$\begin{array}{l}G\left({x}_{n+1},{x}_{n+1},{x}_{n}\right)+G\left({y}_{n+1},{y}_{n+1},{y}_{n}\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}=G\left(F\left({x}_{n},{y}_{n}\right),F\left({x}_{n},{y}_{n}\right),F\left({x}_{n-1},{y}_{n-1}\right)\right)+G\left(F\left({y}_{n},{x}_{n}\right),F\left({y}_{n},{x}_{n}\right),F\left({y}_{n-1},{x}_{n-1}\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}\le \theta \left(G\left({x}_{n},{x}_{n},{x}_{n-1},\right),G\left({y}_{n},{y}_{n},{y}_{n-1}\right)\right)\left[G\left({x}_{n},{x}_{n},{x}_{n-1},\right)+G\left({y}_{n},{y}_{n},{y}_{n-1}\right)\right]\phantom{\rule{2em}{0ex}}\end{array}$
(3.12)

which implies that

$G\left({x}_{n+1},{x}_{n+1},{x}_{n}\right)+G\left({y}_{n+1},{y}_{n+1},{y}_{n}\right)
(3.13)

Thus the sequence {Gn+1:= G(xn+1, xn+1, x n ) + G(yn+1, yn+1, y n )} is monotone decreasing. It follows that G n g as n → ∞ for some g ≥ 0. Next, we claim that g = 0. Assume on contrary that g > 0, then from (3.12), we obtain

$\frac{G\left({x}_{n+1},{x}_{n+1},{x}_{n}\right)+G\left({y}_{n+1},{y}_{n+1},{y}_{n}\right)}{G\left({x}_{n},{x}_{n},{x}_{n-1}\right)+G\left({y}_{n},{y}_{n},{y}_{n-1}\right)}\le \theta \left(G\left({x}_{n},{x}_{n},{x}_{n-1}\right),G\left({y}_{n},{y}_{n},{y}_{n-1}\right)\right)<1.$

On taking limit as n → ∞, we obtain

$\theta \left(G\left({x}_{n},{x}_{n},{x}_{n-1}\right),G\left({y}_{n},{y}_{n},{y}_{n-1}\right)\right)\to 1.$

By property of function θ, we have G(x n , x n , xn-1) → 0, G(y n , y n , yn-1) → 0 as n → ∞ and we have

$G\left({x}_{n},{x}_{n},{x}_{n-1}\right)+G\left({y}_{n},{y}_{n},{y}_{n-1}\right)\to 0,$
(3.14)

a contradiction. Therefore,

$G\left({x}_{n+1},{x}_{n+1},{x}_{n}\right)+G\left({y}_{n+1},{y}_{n+1},{y}_{n}\right)\to 0.$

Similarly, we can prove that

${G}_{n+1}^{\prime }:=G\left({x}_{n+1},{x}_{n},{x}_{n}\right)+G\left({y}_{n+1},{y}_{n},{y}_{n}\right)\to 0.$
(3.15)

Next, we show that {x n } and {y n } are Cauchy sequences. On contrary, assume that at least one of {x n } or {y n } is not a Cauchy sequence. By Lemma 2.7, there is an ϵ > 0 for which we can find subsequences {xn(k)}, {xm(k)} of {x n } and {yn(k)}, {ym(k)} of {y n } with m(k) > n(k) ≥ k such that

$G\left({x}_{n\left(k\right)},{x}_{m\left(k\right)},{x}_{m\left(k\right)}\right)+G\left({y}_{n\left(k\right)},{y}_{m\left(k\right)},{y}_{m\left(k\right)}\right)\ge \epsilon .$
(3.16)

and

$G\left({x}_{n\left(k\right)-1},{x}_{m\left(k\right)},{x}_{m\left(k\right)}\right)+G\left({y}_{n\left(k\right)-1},{y}_{m\left(k\right)},{y}_{m\left(k\right)}\right)<\epsilon .$
(3.17)

Using (3.16), (3.17) and the rectangle inequality, we have

$\begin{array}{ll}\hfill \epsilon \le {r}_{k}& :=G\left({x}_{n\left(k\right),}{x}_{m\left(k\right)},{x}_{m\left(k\right)}\right)+G\left({y}_{n\left(k\right),}{y}_{m\left(k\right)},{y}_{m\left(k\right)}\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\le G\left({x}_{n\left(k\right),}{x}_{n\left(k\right)-1},{x}_{n\left(k\right)-1}\right)+G\left({x}_{n\left(k\right)-1,}{x}_{m\left(k\right)},{x}_{m\left(k\right)}\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}+G\left({y}_{n\left(k\right),}{y}_{n\left(k\right)-1},{y}_{n\left(k\right)-1}\right)+G\left({y}_{n\left(k\right)-1,}{y}_{m\left(k\right)},{y}_{m\left(k\right)}\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}

On taking limit as k → ∞, we have

${r}_{k}=G\left({x}_{n\left(k\right)},{x}_{m\left(k\right)},{x}_{m\left(k\right)}\right)+G\left({y}_{n\left(k\right)},{y}_{m\left(k\right)},{y}_{m\left(k\right)}\right)\to \epsilon .$
(3.18)

By the rectangle inequality, we get

Therefore, we have

${r}_{k}\le \theta \left(G\left({x}_{n\left(k\right)},{x}_{m\left(k\right)},{x}_{m\left(k\right)}\right),G\left({y}_{n\left(k\right)},{y}_{m\left(k\right)},{y}_{m\left(k\right)}\right)\right){r}_{k}+{G}_{n\left(k\right)+1}+{G}_{m\left(k\right)+1}^{\prime }.$

This further implies that

$\frac{{r}_{k}-{G}_{n\left(k\right)+1}-{{G}^{\prime }}_{m\left(k\right)+1}}{{r}_{k}}\le \theta \left(G\left({x}_{n\left(k\right)},{x}_{m\left(k\right)},{x}_{m\left(k\right)}\right),G\left({y}_{n\left(k\right)},{y}_{m\left(k\right)},{y}_{m\left(k\right)}\right)\right)<1.$

On taking limit as k → ∞ and using (3.14), (3.15) and (3.18), we obtain

$\theta \left(G\left({x}_{n\left(k\right),}{x}_{m\left(k\right)},{x}_{m\left(k\right)}\right),G\left({y}_{n\left(k\right),}{y}_{m\left(k\right)},{y}_{m\left(k\right)}\right)\right)\to 1.$

Since θ Θ, we have G(xn(k), xm(k), xm(k)) → 0 and G(yn(k), ym(k), ym(k)) → 0, that is

$G\left({x}_{n\left(k\right)},{x}_{m\left(k\right)},{x}_{m\left(k\right)}\right)+G\left({y}_{n\left(k\right)},{y}_{m\left(k\right)},{y}_{m\left(k\right)}\right)\to 0,$

a contradiction. Therefore, {x n } and {y n } are G-Cauchy sequence. By G-completeness of X, there exists x,y X such that {x n } and {y n } G-converges to x and y, respectively. Now, we show that F has a coupled fixed point. Since F is a continuous, taking n → ∞ in (3.2), we get

$x=\underset{n\to \infty }{\text{lim}}{x}_{n+1}=\underset{n\to \infty }{\text{lim}}F\left({x}_{n},{y}_{n}\right)=F\left(\underset{n\to \infty }{\text{lim}}{x}_{n},\underset{n\to \infty }{\text{lim}}{y}_{n}\right)=F\left(x,y\right)$

and

$y=\underset{n\to \infty }{\text{lim}}{y}_{n+1}=\underset{n\to \infty }{\text{lim}}F\left({y}_{n},{x}_{n}\right)=F\left(\underset{n\to \infty }{\text{lim}}{y}_{n},\underset{n\to \infty }{\text{lim}}{x}_{n}\right)=F\left(y,x\right).$

Therefore, x = F(x, y) and y = F(y, x), that is, F has a coupled fixed point.

Theorem 3.2. Let (X, ) be a partially ordered set such that there exists a complete G-metric on X and F: X × XX be a mapping having the mixed monotone property. Suppose that there exists θ Θ such that

$\begin{array}{l}G\left(F\left(x,y\right),F\left(u,v\right),F\left(w,z\right)\right)+G\left(F\left(y,x\right),F\left(v,u\right),F\left(z,w\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\le \theta \left(G\left(x,u,w\right),G\left(y,v,z\right)\right)\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)\phantom{\rule{2em}{0ex}}\end{array}$
(3.19)

for all x, y, z, u, v, w X for which x u w and y v z where either uw or vz. If there exists x0,y0 X such that

${x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}and\phantom{\rule{2.77695pt}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right)$

and X has the following property:

1. (i)

if a non-decreasing sequence {x n } → x, then x n x for all n ,

2. (ii)

if a non-increasing sequence {y n } → y, then y n y for all n ,

then F has a coupled fixed point.

Proof. Following arguments similar to those given in Theorem 3.1, we obtain a non-decreasing sequence {x n } converges to x and a non-increasing sequence {y n } converges to y for some x,y X. By using (i) and (ii), we have x n x and y n y for all n.

If x n = x and y n = y for some n ≥ 0, then, by construction, xn+1= x and yn+1= y. Thus (x, y) is a coupled fixed point of F. So we may assume either x n x or y n y, for all n ≥ 0. Then by the rectangle inequality, we obtain

$\begin{array}{l}\phantom{\rule{1em}{0ex}}G\left(F\left(x,y\right),x,x\right)+G\left(F\left(y,x\right),y,y\right)\phantom{\rule{2em}{0ex}}\\ \le G\left(F\left(x,y\right),F\left({x}_{n},{y}_{n}\right),F\left({x}_{n},{y}_{n}\right)\right)+G\left(F\left({x}_{n},{y}_{n}\right),x,x\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}+G\left(F\left(y,x\right),F\left({y}_{n},{x}_{n}\right),F\left({y}_{n},{x}_{n}\right)\right)+G\left(F\left({y}_{n},{x}_{n}\right),y,y\right)\phantom{\rule{2em}{0ex}}\\ =G\left(F\left({x}_{n},{y}_{n}\right),F\left({x}_{n},{y}_{n}\right),F\left(x,y\right)\right)+G\left({x}_{n+1},x,x\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}+G\left(F\left({y}_{n},{x}_{n}\right),F\left({y}_{n},{x}_{n}\right),F\left(y,x\right)\right)+G\left({y}_{n+1},y,y\right)\phantom{\rule{2em}{0ex}}\\ =G\left(F\left({y}_{n},{x}_{n}\right),F\left({y}_{n},{x}_{n}\right),F\left(y,x\right)\right)+G\left(F\left({x}_{n},{y}_{n}\right),F\left({x}_{n},{y}_{n}\right),F\left(x,y\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}+G\left({x}_{n+1},x,x\right)+G\left({y}_{n+1},y,y\right)\phantom{\rule{2em}{0ex}}\\ \le \theta \left(G\left({y}_{n},{y}_{n},y\right)+G\left({x}_{n},{x}_{n},x\right)\right)\left(G\left({y}_{n},{y}_{n},y\right)+G\left({x}_{n},{x}_{n},x\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}+G\left({x}_{n+1},x,x\right)+G\left({y}_{n+1},y,y\right)\phantom{\rule{2em}{0ex}}\\ \le \left(G\left({y}_{n},{y}_{n},y\right)+G\left({x}_{n},{x}_{n},x\right)\right)+G\left({x}_{n+1},x,x\right)+G\left({y}_{n+1},y,y\right).\phantom{\rule{2em}{0ex}}\end{array}$

On taking limit as n → ∞, we have G(F(x,y),x,x) + G(F(y,x),y,y) = 0. Thus x = F(x,y) and y = F(x, y) and so (x, y) is a coupled fixed point of F.

Corollary 3.3. Let (X, ) be a partially ordered set such that there exists a complete G-metric on X and F: X × XX be a mapping having the mixed monotone property. Suppose that there exists η Θ such that

$G\left(F\left(x,y\right),F\left(u,v\right),F\left(w,z\right)\right)\le \frac{1}{2}\eta \left(G\left(x,u,w\right),G\left(y,v,z\right)\right)\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)$
(3.20)

for all x, y, z, u, v, w X for which x u w and y v z, where either uw or vz. If there exists x0,y0 X such that

${x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}and\phantom{\rule{2.77695pt}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right)$

and either

(a) F is continuous or

(b) X has the following property:

1. (i)

if a non-decreasing sequence {x n } → x, then x n x for all n ,

2. (ii)

if a non-increasing sequence {y n } → y, then y n y for all n ,

then F has a coupled fixed point.

Proof. For x,y,z,u,v,w X with x u w and y v z, where either uw or vz, from (3.20), we have

$G\left(F\left(x,y\right),F\left(u,v\right),F\left(w,z\right)\right)\le \frac{1}{2}\eta \left(G\left(x,u,w\right),G\left(y,v,z\right)\right)\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)$
(3.21)

and

$\begin{array}{ll}\hfill G\left(F\left(y,x\right),F\left(v,u\right),F\left(z,w\right)\right)& =G\left(F\left(z,w\right),F\left(v,u\right),F\left(y,x\right)\right)\phantom{\rule{2em}{0ex}}\\ \le \frac{1}{2}\eta \left(G\left(z,v,y\right),G\left(w,u,x\right)\right)\left(G\left(z,v,y\right)+G\left(w,u,x\right)\right)\phantom{\rule{2em}{0ex}}\\ =\frac{1}{2}\eta \left(G\left(y,v,z\right),G\left(x,u,w\right)\right)\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right).\phantom{\rule{2em}{0ex}}\end{array}$
(3.22)

From (3.21) and (3.22), we have

$\begin{array}{l}G\left(F\left(x,y\right),F\left(u,v\right),F\left(w,z\right)\right)+G\left(F\left(y,x\right),F\left(v,u\right),F\left(z,w\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}\le \frac{1}{2}\left[\eta \left(G\left(x,u,w\right),G\left(y,v,z\right)\right)+\eta \left(G\left(y,v,z\right),G\left(x,u,w\right)\right)\right]\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2em}{0ex}}\end{array}$
(3.23)
$=\theta \left(G\left(x,u,w\right),G\left(y,v,z\right)\right)\right)\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)$
(3.24)

for x,y,z,u,v,w X with x u w and y v z where either uw or vz, where

$\theta \left({t}_{1},{t}_{2}\right)=\frac{1}{2}\left[\eta \left({t}_{1},{t}_{2}\right)+\eta \left({t}_{2},{t}_{1}\right)\right]$

for all t1,t2 [0, ∞). It is easy to verify that θ Θ and we can apply Theorems 3.1 and 3.2. Hence F has a coupled fixed point.

Corollary 3.4. [[35], Theorems 3.1 and 3.2] Let (X,) be a partially ordered set such that there exists a complete G-metric on X and F: X × XX be a mapping having the mixed monotone property. Suppose that there exists a k [0,1) such that

$G\left(F\left(x,y\right),F\left(u,v\right),F\left(w,z\right)\right)\le \frac{k}{2}\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)$

for all x, y, z, u, v, w X for which x u w and y v z, where either uw or vz. If there exists x0, y0 X such that

${x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}and\phantom{\rule{2.77695pt}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right)$

and either

(a) F is continuous or

(b) X has the following property:

1. (i)

if a non-decreasing sequence {x n } → x, then x n x for all n ,

2. (ii)

if a non-increasing sequence {y n } → y, then y n y for all n ,

then F has a coupled fixed point.

Proof. Taking η(t1, t2) = k with k [0,1) for all t1, t2 [0, ∞) in Theorems 3.1 and 3.2, result follows immediately.

Let Ω denotes the class of those functions ω: [0, ∞) → [0,1) which satisfies the condition: For any sequences {t n } of nonnegative real numbers, ω(t n ) → 1 implies t n → 0.

Theorem 3.5. Let (X, ) be a partially ordered set such that there exists a complete G-metric on X and F: X × XX be a mapping having the mixed monotone property. Suppose that there exists ω Ω such that

$\begin{array}{l}G\left(F\left(x,y\right),F\left(u,v\right),F\left(w,z\right)\right)+G\left(F\left(y,x\right),F\left(v,u\right),F\left(z,w\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}\le \omega \left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)\phantom{\rule{2em}{0ex}}\end{array}$
(3.25)

for all x, y, z, u, v, w X for which x u w and y v z where either uw or vz. If there exists x0,y0 X such that

${x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}and\phantom{\rule{2.77695pt}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right)$

and either

(a) F is continuous or

(b) X has the following property:

1. (i)

if a non-decreasing sequence {x n } → x, then x n x for all n ,

2. (ii)

if a non-increasing sequence {y n } → y, then y n y for all n ,

then F has a coupled fixed point.

Proof. Taking θ(t1,t2) = ω(t1 + t2) for all t1,t2 [0,∞) in Theorems 3.1 and 3.2, result follows.

Taking ω(t) = k with k [0,1) for all t [0, ∞) in Theorem 3.5, we obtain the following corollary.

Corollary 3.6. Let (X, ) be a partially ordered set such that there exists a complete G-metric on X and F: X × XX be a mapping having the mixed monotone property. Suppose that there exists [0,1) such that

$\begin{array}{l}G\left(F\left(x,y\right),F\left(u,v\right),F\left(w,z\right)\right)+G\left(F\left(y,x\right),F\left(v,u\right),F\left(z,w\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}\le k\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)\phantom{\rule{2em}{0ex}}\end{array}$

for all x, y, z, u, v, w X for which x u w and y v z where either uw or vz. If there exists x0,y0 X such that

${x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}and\phantom{\rule{2.77695pt}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right)$

and either

(a) F is continuous or

(b) X has the following property:

1. (i)

if a non-decreasing sequence {x n } → x, then x n x for all n ,

2. (ii)

if a non-increasing sequence {y n } → y, then y n y for all n ,

then F has a coupled fixed point.

Theorem 3.7. Let (X, ) be a partially ordered set such that there exists a complete G-metric on X and F: X × XX be a mapping having the mixed monotone property and F(x,y) F(y,x), whenever x y. Suppose that there exists θ Θ such that

$\begin{array}{l}G\left(F\left(x,y\right),F\left(u,v\right),F\left(w,z\right)\right)+G\left(F\left(y,x\right),F\left(v,u\right),F\left(z,w\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}\le \theta \left(G\left(x,u,w\right),G\left(y,v,z\right)\right)\left(G\left(x,u,w\right)+G\left(y,v,z\right)\right)\phantom{\rule{2em}{0ex}}\end{array}$
(3.26)

for all x, y, z, u, v, w X for which w u x y v z, where either uw or vz. If there exists x0,y0 X such that

${x}_{0}\preccurlyeq {y}_{0},\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}{x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}and\phantom{\rule{2.77695pt}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right)$

and either

(a) F is continuous or

(b) X has the following property:

1. (i)

if a non-decreasing sequence {x n } → x, then x n x for all n ,

2. (ii)

if a non-increasing sequence {y n } → y, then y n y for all n ,

then F has a coupled fixed point.

Proof. By given hypothesis, there exist x0,y0 X such that

${x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right).$

We define x1,y1 X by

${x}_{1}=F\left({x}_{0},{y}_{0}\right)\succcurlyeq {x}_{0}\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}{y}_{1}=F\left({y}_{0},{x}_{0}\right)\preccurlyeq {y}_{0}.$

Since x0 y0, by given assumptions, we have F(x0,y0) F(y0,x0). Hence

${x}_{0}\preccurlyeq {x}_{1}=F\left({x}_{0},{y}_{0}\right)\preccurlyeq F\left({y}_{0},{x}_{0}\right)={y}_{1}\preccurlyeq {y}_{0}.$

Continuing the above process, we have two sequences {x n } and {y n } such that

${x}_{n+1}=F\left({x}_{n},{y}_{n}\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}{y}_{n+1}=F\left({y}_{n},{x}_{n}\right)$

and

${x}_{n}\preccurlyeq {x}_{n+1}=F\left({x}_{n},{y}_{n}\right)\preccurlyeq F\left({y}_{n},{x}_{n}\right)={y}_{n+1}\preccurlyeq {y}_{n}$

for all n ≥ 0. If there is k such that x k = y k = α (say), then we have

$\alpha \preccurlyeq F\left(\alpha ,\alpha \right)\preccurlyeq F\left(\alpha ,\alpha \right)\preccurlyeq \alpha ,$

that is, α = F(α, α). Therefore, (α, α) is a coupled fixed point of F. Next, assume that

${x}_{n}\prec {y}_{n}$
(3.27)

for all n . Further, using similar arguments as stated in Theorem 3.1, we may assume that (x n ,y n ) ≠ (xn+1,yn+1). Then, in view of (3.27), for all n ≥ 0, the inequality (3.26) holds with

$x={x}_{n+2},u={x}_{n+1},w={x}_{n},y={y}_{n},v={y}_{n+1}\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}z={y}_{n+2}.$

The rest of the proof follows by following the same steps as given in Theorem 3.1 for case (a). For case (b), we follow the same steps as given in Theorem 3.2.

Example 3.8. Let X = {0} and G: X × X × XX be define by

$G\left(x,y,z\right)=\left\{\begin{array}{cc}x+y+z\hfill & ;\text{if}\phantom{\rule{2.77695pt}{0ex}}x,y,z\phantom{\rule{2.77695pt}{0ex}}\text{are}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}\text{distinct}\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}\text{different}\phantom{\rule{2.77695pt}{0ex}}\text{from}\phantom{\rule{2.77695pt}{0ex}}\text{zero,}\hfill \\ x+z\hfill & ;\phantom{\rule{2.77695pt}{0ex}}\text{if}\phantom{\rule{2.77695pt}{0ex}}x=y\ne z\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}\text{are}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}\text{different}\phantom{\rule{2.77695pt}{0ex}}\text{from}\phantom{\rule{2.77695pt}{0ex}}\text{zero},\hfill \\ y+z+1\hfill & ;\phantom{\rule{2.77695pt}{0ex}}\text{if}\phantom{\rule{2.77695pt}{0ex}}x=0,y\ne z\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}y,z\phantom{\rule{0.3em}{0ex}}\text{di}\phantom{\rule{2.77695pt}{0ex}}\text{from}\phantom{\rule{2.77695pt}{0ex}}\text{zero},\hfill \\ y+2\hfill & ;\phantom{\rule{2.77695pt}{0ex}}\text{if}\phantom{\rule{2.77695pt}{0ex}}x=0,y=z\ne 0,\hfill \\ z+1\hfill & ;\phantom{\rule{2.77695pt}{0ex}}\text{if}\phantom{\rule{2.77695pt}{0ex}}x=y=0,z\ne 0,\hfill \\ 0\hfill & ;\phantom{\rule{2.77695pt}{0ex}}\text{if}\phantom{\rule{2.77695pt}{0ex}}x=y=z.\hfill \end{array}\right\$

Then X is a complete G-metric space. Let partial order on X be defined as follows: For x,y X,

$x\preccurlyeq y\phantom{\rule{2.77695pt}{0ex}}\text{holds}\phantom{\rule{2.77695pt}{0ex}}\text{if}\phantom{\rule{2.77695pt}{0ex}}x>y\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}3\phantom{\rule{2.77695pt}{0ex}}\text{divides}\phantom{\rule{2.77695pt}{0ex}}\left(x-y\right)\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}3\preccurlyeq 1\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}0\preccurlyeq 1\phantom{\rule{2.77695pt}{0ex}}\text{hold}.$

Let F: X × XX be defined by

$F\left(x,y\right)=\left\{\begin{array}{cc}1\hfill & ;\phantom{\rule{2.77695pt}{0ex}}\text{if}\phantom{\rule{2.77695pt}{0ex}}x\prec y,\hfill \\ 0\hfill & ;\phantom{\rule{2.77695pt}{0ex}}\text{if}\phantom{\rule{2.77695pt}{0ex}}\text{otherwise}.\hfill \end{array}\right\$

If w u x y v z holds, then we have wux > yvz. Therefore F(x,y) = F(u,v) = F(w,z) = 1 and F(y,x) = F(v,u) = F(z,w) = 0. So the left side of (3.26) becomes

$G\left(1,1,1\right)+G\left(0,0,0\right)=0$

and (3.26) is satisfied for all θ Θ. Thus Theorem 3.7 is applicable to this example with x0 = 0 and y0 = 81. Moreover, F has coupled fixed points (0,0) and (1,0).

Remark 3.9. A G-metric naturally induces a metric d G given by d G (x,y) = G(x,y,y) + G(x,x,y) [25]. From the condition that either uw or vz, the inequality (3.1), (3.19), (3.25) and (3.26) do not reduce to any metric inequality with the metric d G . Therefore, the corresponding metric space (X, d G ) results are not applicable to Example 3.8.

Remark 3.10. Example 3.8 is not supported by Theorems 3.1, 3.2 and 3.5. This is evident by the fact that the inequality (3.1), (3.19) and (3.25) are not satisfied when w = u = x = y = 3, v = 0 and z = 1. Moreover, the coupled fixed point is not unique.

## 4. Uniqueness of coupled fixed point in G-metric spaces

In this section, we study necessary conditions to obtain the uniqueness of a coupled fixed point in the setting of partially ordered G-metric spaces. If (X, ) is a partially ordered set, then we endow the product of X × X with the following partial order:

For (x, y), (u, v) X × X, (x, y) (u, v) if and only if x u and y v.

Theorem 4.1. In addition to the hypotheses in Theorem 3.1, suppose that for every (x, y), (z, t) X × X, there exists a point (u,v) X × X that is comparable to (x,y) and (z,t). Then F has a unique coupled fixed point.

Proof. From Theorem 3.1, F has a coupled fixed points. Suppose (x, y) and (z, t) are coupled fixed points of F, that is, x = F(x,y),y = F(y,x),z = F(z,t) and t = F(t,z). Next, we claim that x = z and y = t. By given hypothesis, there exists (u,v) X × X that is comparable to (x,y) and (z,t). We put u0 = u and v0 = v and construct sequences {u n } and {v n } by

${u}_{n}=F\left({u}_{n-1},{v}_{n-1}\right)\phantom{\rule{2.77695pt}{0ex}}\text{and}\phantom{\rule{2.77695pt}{0ex}}{v}_{n}=F\left({v}_{n-1},{u}_{n-1}\right)\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}n\in ℕ.$

Since (u,v) is comparable with (x,y), we assume that (u0,v0) = (u,v) (x,y). Using the mathematical induction, it is straight forward to prove that

$\left({u}_{n},{v}_{n}\right)⊴\left(x,y\right)\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}n\in ℕ.$

From (3.1), we have

$\begin{array}{ll}\hfill G\left(x,x,{u}_{n}\right)+G\left(y,y,{v}_{n}\right)& =G\left(F\left(x,y\right),F\left(x,y\right),F\left({u}_{n-1},{v}_{n-1}\right)\right)+G\left(F\left(y,x\right),F\left(y,x\right),F\left({v}_{n-1},{u}_{n-1}\right)\right)\phantom{\rule{2em}{0ex}}\\ \le \theta \left(G\left(x,x,{u}_{n-1}\right),G\left({v}_{n-1},y,y\right)\right)\left[G\left(x,x,{u}_{n-1}\right)+G\left({v}_{n-1},y,y\right)\right]\phantom{\rule{2em}{0ex}}\\
(4.1)

Consequently, sequence {G(x,x,u n ) + G(y,y,v n )} is non-negative and decreasing, so

$G\left(x,x,{u}_{n}\right)+G\left(y,y,{v}_{n}\right)\to g,$

for some g ≥ 0. We claim that g = 0. Indeed, if g > 0 then following similar arguments to those given in the proof of Theorem 3.1, we conclude that

$\theta \left(G\left(x,x,{u}_{n-1}\right),G\left({u}_{n-1},y,y\right)\right)\to 1.$

Since θ Θ, we obtain G(x,x,un-1) → 0 and G(vn-1,y,y) → 0. Therefore,

$G\left(x,x,{u}_{n-1}\right)+G\left({v}_{n-1},y,y\right)\to 0$

which is a contradiction. Hence

$G\left(x,x,{u}_{n}\right)+G\left({v}_{n},y,y\right)\to 0.$
(4.2)

Similarly, one can prove that

$G\left(x,{u}_{n},{u}_{n}\right)+G\left({v}_{n},{v}_{n},y\right)\to 0,$
(4.3)
$G\left(z,z,{u}_{n}\right)+G\left({v}_{n},t,t\right)\to 0,$
(4.4)

and

$G\left(z,{u}_{n},{u}_{n}\right)+G\left(t,{v}_{n},{v}_{n}\right)\to 0.$
(4.5)

From rectangular inequality, we have

$G\left(z,x,x\right)\le G\left(z,{u}_{n},{u}_{n}\right)+G\left({u}_{n},x,x\right)$
(4.6)

and

$G\left(y,t,t\right)\le G\left(y,{v}_{n},{v}_{n}\right)+G\left({v}_{n},t,t\right).$
(4.7)

Combine (4.6) and (4.7), we have

$\begin{array}{ll}\hfill G\left(z,x,x\right)+G\left(y,t,t\right)& \le \left(G\left(z,{u}_{n},{u}_{n}\right)+G\left({u}_{n},x,x\right)\right)+\left(G\left(y,{v}_{n},{v}_{n}\right)+G\left({v}_{n},t,t\right)\right)\phantom{\rule{2em}{0ex}}\\ \le \left(G\left(x,x,{u}_{n}\right)+G\left({v}_{n},y,y\right)\right)+\left(G\left(x,{u}_{n},{u}_{n}\right)+G\left({v}_{n},{v}_{n},y\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}+\left(G\left(z,z,{u}_{n}\right)+G\left({v}_{n},t,t\right)\right)+\left(G\left(z,{u}_{n},{u}_{n}\right)+G\left(t,{v}_{n},{v}_{n}\right)\right)\phantom{\rule{2em}{0ex}}\end{array}$

Taking n → ∞, by (4.2), (4.3), (4.4) and (4.5), we have G(z,x,x) + G(y,t,t) ≤ 0. So G(z,x,x) = 0 and G(y,t,t) = 0, that is, z = x and y = t. Therefore, F has a unique coupled fixed point. This completes the proof.

Theorem 4.2. In addition to the hypotheses in Theorem 3.2, suppose that for every (x, y), (z, t) X × X, there exists a point (u,v) X × X that is comparable to (x,y) and (z,t). Then F has a unique coupled fixed point.

Proof. Proof is similar to the one given in Theorems 4.1 and 3.2.

## References

1. Banach S: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund Math 1922, 3: 133–181.

2. Abbas M, Khan SH, Nazir T: Common fixed points of R-weakly commuting maps in generalized metric spaces. Fixed Point Theory Appl 2011, 2011: 41. 10.1186/1687-1812-2011-41

3. Boyd DW, Wong JSW: On nonlinear contractions. Proc Amer Math Soc 1969, 20: 458–464. 10.1090/S0002-9939-1969-0239559-9

4. Mongkolkeha C, Sintunavarat W, Kumam P: Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl 2011, 2011: 93. 10.1186/1687-1812-2011-93

5. Sintunavarat W, Kumam P: Weak condition for generalized multivalued ( f , α,β )-weak contraction mappings. Appl Math Lett 2011, 24: 460–465. 10.1016/j.aml.2010.10.042

6. Sintunavarat W, Kumam P: Gregus-type Common fixed point theorems for tangential multivalued mappings of integral type in metric spaces. International Journal of Mathematics and Mathematical Sciences 2011, 2011: 12. Article ID 923458

7. Sintunavarat W, Kumam P: Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type. J Inequal Appl 2011, 2011: 3. 10.1186/1029-242X-2011-3

8. Sintunavarat W, Kumam P: Common fixed point theorems for hybrid generalized multi-valued contraction mappings. Appl Math Lett 2012, 25: 52–57. 10.1016/j.aml.2011.05.047

9. Sintunavarat W, Kumam P:Common fixed point theorems for generalized $\mathcal{J}ℋ$-operator classes and invariant approximations. J Inequal Appl 2011, 2011: 67. 10.1186/1029-242X-2011-67

10. Dukić D, Kadelburg Z, Radenović S: Fixed point of Geraghty-type mappings in various generalized metric spaces. Abstract Appl Math 2011, 2011: 13. Article ID 561245

11. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc Am Math Soc 2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4

12. Nieto JJ, Lopez RR: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math Sinica Engl Ser 2007, 23(12):2205–2212. 10.1007/s10114-005-0769-0

13. Agarwal RP, El-Gebeily MA, O'Regan D: Generalized contractions in partially ordered metric spaces. Appl Anal 2008, 87: 1–8. 10.1080/00036810701714164

14. Altun I, Simsek H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl 2010, 2010: 17. Article ID 621469

15. Harjani J, Sadarangani K: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal 2010, 72: 1188–1197. 10.1016/j.na.2009.08.003

16. Kadelburg Z, Pavlović M, Radenović S: Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces. Comput Math Appl 2010, 59: 3148–3159. 10.1016/j.camwa.2010.02.039

17. Radenović S, Kadelburg Z: Generalized weak contractions in partially ordered metric spaces. Comput Math Appl 2010, 60: 1776–1783. 10.1016/j.camwa.2010.07.008

18. Sintunavarat W, Cho YJ, Kumam P: Common fixed point theorems for c -distance in ordered cone metric spaces. Comput Math Appl 2011, 62: 1969–1978. 10.1016/j.camwa.2011.06.040

19. Sintunavarat W, Cho YJ, Kumam P: Coupled fixed point theorems for weak contraction mappings under F -invariant set. Abstract Appl Anal, in press.

20. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

21. Abbas M, Khan AR, Nazir T: Coupled common fixed point results in two generalized metric spaces. Appl Math Comput 2011, 217: 6328–6336. 10.1016/j.amc.2011.01.006

22. Nashine HK, Kadelburg Z, Radenović S: Coupled common fixed point theorems for w -compatible mappings in ordered cone metric spaces. Appl Math Comput 2012, 218: 5422–5432. 10.1016/j.amc.2011.11.029

23. Shatanawi W, Abbas M, Nazir T: Common coupled fixed points results in two generalized metric spaces. Fixied Point Theory Appl 2011, 2011: 80. 10.1186/1687-1812-2011-80

24. Sintunavarat W, Cho YJ, Kumam P: Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl 2011, 2011: 81. 10.1186/1687-1812-2011-81

25. Mustafa Z, Sims B: Some remarks concerning D -metric spaces. Proc Int Conf on Fixed Point Theor Appl Valencia Spain 2003, 189–198.

26. Mustafa Z, Sims B: A new approach to generalized metric spaces. J Nonlinear Convex Anal 2006, 7(2):289–297.

27. Mustafa Z, Obiedat H, Awawdeh F: Some of fixed point theorem for mapping on complete G -metric spaces. Fixed Point Theory Appl 2008, 2008: 12. Article ID 189870

28. Abbas M, Rhoades BE: Common fixed point results for noncommuting mappings without continuity in generalised metric spaces. Appl Math Comput 2009, 215: 262–269. 10.1016/j.amc.2009.04.085

29. Abbas M, Nazir T, Radenovic S: Some periodic point results in generalized metric spaces. Appl Math Comput 2010, 217(8):4094–4099. 10.1016/j.amc.2010.10.026

30. Chugh R, Kadian T, Rani A, Rhoades BE: Property P in G -metric spaces. Fixed Point Theory Appl 2010, 2010: 12. Article ID 401684

31. Mustafa Z, Shatanawi W, Bataineh M: Fixed point theorems on uncomplete G -metric spaces. J Math Stat 2008, 4(4):196–201.

32. Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed point result in G -metric spaces. Int J Math Math Sci 2009, 2009: 10. Article ID 283028

33. Mustafa Z, Sims B: Fixed point theorems for contractive mappings in complete G -metric space. Fixed Point Theory Appl 2009, 2009: 10. Article ID 917175

34. Saadati R, Vaezpour SM, Vetro P, Rhoades BE: Fixed point theorems in generalized partially ordered G -metric spaces. Math Comput Model 2010, 52: 797–801. 10.1016/j.mcm.2010.05.009

35. Choudhury BS, Maity P: Coupled fixed point results in generalized metric spaces. Math Comput Model 2011, 54: 73–79. 10.1016/j.mcm.2011.01.036

Download references

## 5. Acknowledgements

This study was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission under the Computational Science and Engineering Research Cluster (CSEC Grant No. 54000267).

W. Sintunavarat would like to thank the Research Professional Development Project under the Science Achievement Scholarship of Thailand (SAST). The authors thank the referee for comments and suggestions on this manuscript.

## Author information

Authors

### Corresponding author

Correspondence to Poom Kumam.

## Additional information

### Competing interests

The authors declare that they have no competing interests.

### Authors' contributions

All authors read and approved the final manuscript.

## Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

## About this article

### Cite this article

Abbas, M., Sintunavarat, W. & Kumam, P. Coupled fixed point of generalized contractive mappings on partially ordered G-metric spaces. Fixed Point Theory Appl 2012, 31 (2012). https://doi.org/10.1186/1687-1812-2012-31

Download citation

• Received:

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1687-1812-2012-31

### Keywords

• coupled fixed points
• mixed monotone property
• G-metric spaces
• partially order set