Skip to main content

Strong convergence of the hybrid method for a finite family of nonspreading mappings and variational inequality problems

Abstract

In this paper, we prove a strong convergence theorem by the hybrid method for finding a common element of the set of fixed points of a finite family of nonspreading mappings and the set of solutions of a finite family of variational inequality problems.

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Then a mapping T:CC is said to be nonexpansive if TxTyxy for all x,yC. Recall that the mapping T:CC is said to be quasi-nonexpansive if Txpxp, xC and pF(T), where F(T) denotes the set of fixed points of T. In 2008, Kohsaka and Takahashi [1] introduced the mapping T called the nonspreading mapping in Hilbert spaces H and defined it as follows: 2 T x T y 2 T x y 2 + x T y 2 , x,yC.

Let A:CH. The variational inequality problem is to find a point uC such that

Au,vu0
(1.1)

for all vC. The set of solutions of (1.1) is denoted by VI(C,A).

The variational inequality has emerged as a fascinating and interesting branch of mathematical and engineering sciences with a wide range of applications in industry, finance, economics, social, ecology, regional, pure and applied sciences; see, e.g., [25].

A mapping A of C into H is called inverse-strongly monotone (see [6]) if there exists a positive real number α such that

xy,AxAyα A x A y 2

for all x,yC. Throughout this paper, we will use the following notation:

  1. 1.

    for weak convergence and → for strong convergence.

  2. 2.

    ω( x n )={x: x n i x} denotes the weak ω-limit set of { x n }.

In 2008, Takahashi, Takeuchi and Kubota [7] proved the following strong convergence theorems by using the hybrid method for nonexpansive mappings in Hilbert spaces.

Theorem 1.1 Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let T be a nonexpansive mapping of C into H such that F(T) and let x 0 H. For C 1 =C and u 1 P C 1 x 0 , define a sequence { u n } of C as follows:

{ y n = α n u n + ( 1 α n ) u n , C n + 1 = { z C n : y n z u n z } , u n + 1 = P C n + 1 x 0 , n N ,

where 0 α n a<1 for all nN. Then { u n } converges strongly to z 0 = P F ( T ) x 0 .

In 2009, Iemoto and Takahashi [8] proved the convergence theorem of nonexpansive and nonspreading mappings as follows.

Theorem 1.2 Let H be a Hilbert space, and let C be a nonempty closed convex subset of H. Let S be a nonspreading mapping of C into itself, and let T be a nonexpansive mapping of C into itself such that F(S)F(T). Define a sequence { x n } as follows.

{ x 1 C , x n + 1 = α n x n + ( 1 α n ) ( β n S x n + ( 1 β n ) T x n )

for all nN, where { α n },{ β n }[0,1]. Then the following hold:

  1. (i)

    If lim inf n α n (1 α n )>0 and n = 1 (1 β n )<, then { x n } converges weakly to vF(S).

  2. (ii)

    If n = 1 α n (1 α n )= and n = 1 β n <, then { x n } converges weakly to vF(T).

  3. (iii)

    If lim inf n α n (1 α n )>0 and lim inf n β n (1 β n )>0, then { x n } converges weakly to vF(S)F(T).

Inspired and motivated by these facts and the research in this direction, we prove the strong convergence theorem by the hybrid method for finding a common element of the set of fixed points of a finite family of nonspreading mappings and the set of solutions of a finite family of variational inequality problems.

2 Preliminaries

In this section, we collect and give some useful lemmas that will be used for our main result in the next section.

Let C be a closed convex subset of a real Hilbert space H, let P C be the metric projection of H onto C, i.e., for xH, P C x satisfies the property

x P C x= min y C xy.

The following characterizes the projection P C .

Lemma 2.1 (See [9])

Given xH and yC. Then P C x=y if and only if the following inequality holds:

xy,yz0zC.

Lemma 2.2 (See [8])

Let C be a nonempty closed convex subset of H. Then a mapping S:CC is nonspreading if and only if

S x S y 2 x y 2 +2xSx,ySy

for all x,yC.

Example 2.3 Let denote the reals with the usual norm. Let T:RR be defined by

Tx={ x 1 if  x ( , 0 ] , ( x + 1 ) if  x ( 0 , )

for all xR.

To see that T is a nonspreading mapping, if x,y(0,), then we have Tx=(x+1) and Ty=(y+1). From the definition of the mapping T, we have

| T x T y | 2 = | ( x + 1 ) ( ( y + 1 ) ) | 2 = | y x | 2 = | x y | 2

and

2 x T x , y T y = 2 x + x + 1 , y + y + 1 = 2 2 x + 1 , 2 y + 1 = 2 ( 2 x + 1 ) ( 2 y + 1 ) > 0 ( since  x , y > 0 ) .

The above implies that

| T x T y | 2 = | x y | 2 < | x y | 2 +2xTx,yTy.

For every x,y(,0], we have Tx=x1 and Ty=y1. From the definition of T, we have

| T x T y | 2 = | x 1 ( y 1 ) | 2 = | x y | 2 ,

and

2xTx,yTy=2 x ( x 1 ) , y ( y 1 ) =2.

From above, we have

| T x T y | 2 = | x y | 2 < | x y | 2 +2xTx,yTy.

Finally, for every x(,0] and y(0,), we have Tx=x1 and Ty=(y+1). From the definition of T, we have

and

2 x T x , y T y = 2 x ( x 1 ) , y + ( y + 1 ) = 2 1 , 2 y + 1 = 2 ( 2 y + 1 ) > 0 ( since  y > 0 ) .

From above, we have

| T x T y | 2 = | x + y | 2 = ( x + y ) 2 | x y | 2 < | x y | 2 + 2 x T x , y T y .

Hence, for all x,yR, we have

| T x T y | 2 < | x y | 2 +2xTx,yTy.

Then T is a nonspreading mapping.

Lemma 2.4 (See [1])

Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let S be a nonspreading mapping of C into itself. Then F(S) is closed and convex.

Lemma 2.5 (See [9])

Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let A be a mapping of C into H. Let uC. Then for λ>0,

u= P C (IλA)uuVI(C,A),

where P C is the metric projection of H onto C.

Lemma 2.6 (See [10])

Let C be a closed convex subset of a strictly convex Banach space E. Let { T n :nN} be a sequence of nonexpansive mappings on C. Suppose n = 1 F( T n ) is nonempty. Let { λ n } be a sequence of positive numbers with n = 1 λ n =1. Then a mapping S on C defined by

S(x)= n = 1 λ n T n x

for xC is well defined, nonexpansive and F(S)= n = 1 F( T n ) holds.

Lemma 2.7 (See [11])

Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of E, and S:CC be a nonexpansive mapping. Then IS is demi-closed at zero.

Lemma 2.8 (See [12])

Let C be a closed convex subset of H. Let { x n } be a sequence in H and uH. Let q= P C u. If { x n } is such that ω( x n )C and satisfies the condition

x n uuq,nN,

then x n q, as n.

In 2009, Kangtunyakarn and Suantai [13] introduced an S-mapping generated by T 1 ,, T N and λ 1 ,, λ N as follows.

Definition 2.1 Let C be a nonempty convex subset of a real Banach space. Let { T i } i = 1 N be a finite family of (nonexpansive) mappings of C into itself. For each j=1,2,,N, let α j =( α 1 j , α 2 j , α 3 j )I×I×I, where I[0,1] and α 1 j + α 2 j + α 3 j =1. Define the mapping S:CC as follows:

(2.1)
(2.2)

This mapping is called an S-mapping generated by T 1 ,, T N and α 1 , α 2 ,, α N .

The next lemma is very useful for our consideration.

Lemma 2.9 Let C be a nonempty closed convex subset of a real Hilbert space. Let { T i } i = 1 N be a finite family of nonspreading mappings of C into C with i = 1 N F( T i ), and let α j =( α 1 j , α 2 j , α 3 j )I×I×I, j=1,2,3,,N, where I=[0,1], α 1 j + α 2 j + α 3 j =1, α 1 j , α 3 j (0,1) for all j=1,2,,N1 and α 1 N (0,1], α 3 N [0,1), α 2 j [0,1) for all j=1,2,,N. Let S be the mapping generated by T 1 ,, T N and α 1 , α 2 ,, α N . Then F(S)= i = 1 N F( T i ) and S is a quasi-nonexpansive mapping.

Proof It easy to see that i = 1 N F( T i )F(S). Let x 0 F(S) and x i = 1 N F( T i ). Since { T i } i = 1 N is a finite family of nonspreading mappings of C into itself, for every yC, we have

T i y x 2 1 2 ( T i y x 2 + y x 2 ) .
(2.3)

This implies that

T i y x 2 y x 2 ,yC and i=1,2,,N.
(2.4)

From the definition of S and (2.4),

S x 0 x 2 = α 1 N T N U N 1 x 0 + α 2 N U N 1 x 0 + α 3 N x 0 x 2 = α 1 N ( T N U N 1 x 0 x ) + α 2 N ( U N 1 x 0 x ) + α 3 N ( x 0 x ) 2 α 1 N T N U N 1 x 0 x 2 + α 2 N U N 1 x 0 x 2 + α 3 N x 0 x 2 ( 1 α 3 N ) U N 1 x 0 x 2 + α 3 N x 0 x 2 = ( 1 α 3 N ) α 1 N 1 ( T N 1 U N 2 x 0 x ) + α 2 N 1 ( U N 2 x 0 x ) + α 3 N 1 ( x 0 x ) 2 + α 3 N x 0 x 2 ( 1 α 3 N ) ( α 1 N 1 T N 1 U N 2 x 0 x 2 + α 2 N 1 U N 2 x 0 x 2 + α 3 N 1 x 0 x 2 ) + α 3 N x 0 x 2 ( 1 α 3 N ) ( ( 1 α 3 N 1 ) U N 2 x 0 x 2 + α 3 N 1 x 0 x 2 ) + α 3 N x 0 x 2 = ( 1 α 3 N ) ( 1 α 3 N 1 ) U N 2 x 0 x 2 + α 3 N 1 ( 1 α 3 N ) x 0 x 2 + α 3 N x 0 x 2 = j = N 1 N ( 1 α 3 j ) U N 2 x 0 x 2 + ( 1 j = N 1 N ( 1 α 3 j ) ) x 0 x 2 j = 3 N ( 1 α 3 j ) U 2 x 0 x 2 + ( 1 j = 3 N ( 1 α 3 j ) ) x 0 x 2 j = 2 N ( 1 α 3 j ) U 1 x 0 x 2 + ( 1 j = 2 N ( 1 α 3 j ) ) x 0 x 2 = j = 2 N ( 1 α 3 j ) α 1 1 ( T 1 x 0 x ) + ( 1 α 1 1 ) ( x 0 x ) 2 + ( 1 j = 2 N ( 1 α 3 j ) ) x 0 x 2 = j = 2 N ( 1 α 3 j ) ( α 1 1 T 1 x 0 x 2 + ( 1 α 1 1 ) x 0 x 2 α 1 1 ( 1 α 1 1 ) T 1 x 0 x 0 ) + ( 1 j = 2 N ( 1 α 3 j ) ) x 0 x 2 j = 2 N ( 1 α 3 j ) ( x 0 x 2 α 1 1 ( 1 α 1 1 ) T 1 x 0 x 0 2 ) + ( 1 j = 2 N ( 1 α 3 j ) ) x 0 x 2 .
(2.5)

From (2.5), we have

x 0 x 2 j = 2 N ( 1 α 3 j ) ( x 0 x 2 α 1 1 ( 1 α 1 1 ) T 1 x 0 x 0 2 ) + ( 1 j = 2 N ( 1 α 3 j ) ) x 0 x 2 ,

which implies that

x 0 x 2 x 0 x 2 α 1 1 ( 1 α 1 1 ) T 1 x 0 x 0 2 .
(2.6)

Since α 1 j (0,1) for all j=1,2,,N1 and (2.6), we have x 0 F( T 1 ). From x 0 = T 1 x 0 and the definition of S, we have

U 1 x 0 = α 1 1 T 1 x 0 + α 2 1 x 0 + α 3 1 x 0 = x 0 .

From (2.5) and x 0 F( U 1 ), we have

x 0 x 2 j = 3 N ( 1 α 3 j ) U 2 x 0 x 2 + ( 1 j = 3 N ( 1 α 3 j ) ) x 0 x 2 = j = 3 N ( 1 α 3 j ) α 1 2 T 2 U 1 x 0 + α 2 2 U 1 x 0 + α 3 2 x 0 x 2 + ( 1 j = 3 N ( 1 α 3 j ) ) x 0 x 2 = j = 3 N ( 1 α 3 j ) α 1 2 ( T 2 x 0 x ) + ( 1 α 1 2 ) ( x 0 x ) 2 + ( 1 j = 3 N ( 1 α 3 j ) ) x 0 x 2 = j = 3 N ( 1 α 3 j ) ( α 1 2 T 2 x 0 x 2 + ( 1 α 1 2 ) x 0 x 2 α 1 2 ( 1 α 1 2 ) T 2 x 0 x 0 2 ) + ( 1 j = 3 N ( 1 α 3 j ) ) x 0 x 2 j = 3 N ( 1 α 3 j ) ( x 0 x 2 α 1 2 ( 1 α 1 2 ) T 2 x 0 x 0 2 ) + ( 1 j = 3 N ( 1 α 3 j ) ) x 0 x 2 ,

which implies that

x 0 x 2 x 0 x 2 α 1 2 ( 1 α 1 2 ) T 2 x 0 x 0 2 .
(2.7)

Since α 1 j (0,1) for all j=1,2,,N1 and (2.7), we have x 0 F( T 2 ). From the definition of S and x 0 = T 2 x 0 , we have

U 2 x 0 = α 1 2 T 2 U 1 x 0 + α 2 2 U 1 x 0 + α 3 2 x 0 = x 0 .

By continuing in this way, we can show that x 0 F( T i ) and x 0 F( U i ) for all i=1,2,,N1.

Finally, we shall show that x 0 F( T N ).

Since

0 = S x 0 x 0 = α 1 N T N U N 1 x 0 + α 2 N U N 1 x 0 + α 3 N x 0 x 0 = α 1 N ( T N x 0 x 0 ) ,

and α 1 N (0,1], we obtain T N x 0 = x 0 so that x 0 F( T N ). Then we have x 0 i = 1 N F( T i ). Hence, F(S) i = 1 N F( T i ).

Next, we show that S is a quasi-nonexpansive mapping. Let xC and yF(S). From (2.5), we can imply that

S x y 2 j = 2 N ( 1 α 3 j ) ( x y 2 α 1 1 ( 1 α 1 1 ) T 1 x x ) + ( 1 j = 2 N ( 1 α 3 j ) ) x y 2 x y 2 .

Then we have the S-mapping is quasi-nonexpansive. □

Example 2.10 Let T 1 :[1,1][1,1] be a mapping defined by

T 1 x={ x + 1 2 if  x ( 0 , 1 ] , x + 1 2 if  x [ 1 , 0 ]

for all x[1,1].

Let T 2 :[1,1][1,1] be a mapping defined by

T 2 x={ x + 2 3 if  x ( 0 , 1 ] , x + 2 3 if  x [ 1 , 0 ]

for all x[1,1].

To see that T 1 is a nonspreading mapping, observe that if x,y(0,1], we have T 1 x= x + 1 2 and T 1 y= y + 1 2 . Then we have

| T 1 x T 1 y | 2 = | x + 1 2 y + 1 2 | 2 = 1 4 | x y | 2

and

2 x T 1 x , y T 1 y = 2 x ( x + 1 2 ) , y ( y + 1 2 ) = 2 x 1 2 , y 1 2 = 1 2 ( x 1 ) ( y 1 ) 0 ( since  x 1 , y 1 ,  then  ( x 1 ) ( y 1 ) 0 ) .

From above, we have

| x y | 2 + 2 x T 1 x , y T 1 y | x y | 2 1 4 | x y | 2 = | T 1 x T 1 y | 2 .

For every x,y[1,0], we have T 1 x= x + 1 2 and T 1 y= y + 1 2 . From the definition of T 1 , we have

| T 1 x T 1 y | 2 = | x + 1 2 ( y + 1 2 ) | 2 = | y x 2 | 2 = 1 4 | x y | 2

and

2 x T 1 x , y T 1 y = 2 x ( 1 x 2 ) , y ( 1 y 2 ) = 2 3 x 1 2 , 3 y 1 2 = 1 2 ( 3 x 1 ) ( 3 y 1 ) = 1 2 ( 3 x ( 3 y 1 ) ( 3 y 1 ) ) = 1 2 ( 9 x y 3 x 3 y + 1 ) > 0 ( since  1 x , y 0 ,  then  9 x y , 3 x , 3 y 0 ) .

From above, we have

| x y | 2 + 2 x T 1 x , y T 1 y > | x y | 2 1 4 | x y | 2 = | T 1 x T 1 y | 2 .

Finally, for every x(0,1] and y[1,0], we have T 1 x= x + 1 2 and T 1 y= y + 1 2 . From the definition of T 1 , we have

| T 1 x T 1 y | 2 = | x + 1 2 y + 1 2 | 2 = 1 4 | x + y | 2

and

2 x T 1 x , y T 1 y = 2 x ( x + 1 2 ) , y ( y + 1 2 ) = 2 x 1 2 , 3 y 1 2 = 1 2 ( x 1 ) ( 3 y 1 ) = 1 2 ( x ( 3 y 1 ) ( 3 y 1 ) ) = 1 2 ( 3 x y x 3 y + 1 ) = 1 2 ( 3 y ( x 1 ) + ( 1 x ) ) 0 ( since  0 < x 1  and  1 y 0 ,  then  3 y ( x 1 ) , ( 1 x ) 0 ) .

From above, we have

| x y | 2 + 2 x T 1 x , y T 1 y | x y | 2 = x 2 2 x y + y 2 = x 2 + 2 x y + y 2 4 x y x 2 + 2 x y + y 2 ( since  4 x y 0 ) = ( x + y ) 2 1 4 ( x + y ) 2 = | T 1 x T 1 y | 2 .

Then for all x,y[1,1], we have

| T 1 x T 1 y | 2 | x y | 2 +x T 1 x,y T 1 y.

Hence, we have T 1 is a nonspreading mapping.

Next, we show that T 2 is a nonspreading mapping. Let x,y(0,1], then we have T 2 x= x + 2 3 and T 2 y= y + 2 3 . From the definition of T 2 , we have

| T 2 x T 2 y | 2 = | x + 2 3 y + 2 3 | 2 = 1 9 | x y | 2

and

2 x T 2 x , y T 2 y = 2 x ( x + 2 3 ) , y ( y + 2 3 ) = 2 2 x 2 3 , 2 y 2 3 = 8 9 ( x 1 ) ( y 1 ) 0 ( since  0 < x , y 1 ,  then  ( x 1 ) ( y 1 ) 0 ) .

From above, we have

| x y | 2 + 2 x T 2 x , y T 2 y | x y | 2 1 9 | x y | 2 = | T 2 x T 2 y | 2 .

For every x,y[1,0], we have T 2 x= 2 x 3 and T 2 y= 2 y 3 . From the definition of T 2 , we have

| T 2 x T 2 y | 2 = | 2 x 3 2 y 3 | 2 = | y x 3 | 2 = 1 9 | x y | 2

and

2 x T 2 x , y T 2 y = 2 x ( 2 x 3 ) , y ( 2 y 3 ) = 2 4 x 2 3 , 4 y 2 3 = 8 9 ( 2 x 1 ) ( 2 y 1 ) = 8 9 ( 2 x ( 2 y 1 ) ( 2 y 1 ) ) = 8 9 ( 4 x y 2 x 2 y + 1 ) > 0 ( since  1 x , y 0 ,  then  4 x y , 2 x , 2 y 0 ) .

From above, we have

| x y | 2 + 2 x T 2 x , y T 2 y > | x y | 2 1 9 | x y | 2 = | T 2 x T 2 y | 2 .

Finally, for every x(0,1] and y[1,0], we have T 2 x= x + 2 3 and T 2 y= 2 y 3 . From the definition of T 2 , we have

| T 2 x T 2 y | 2 = | x + 2 3 2 y 3 | 2 = 1 9 | x + y | 2

and

2 x T 2 x , y T 2 y = 2 x ( x + 2 3 ) , y ( 2 y 3 ) = 2 2 x 2 3 , 4 y 2 3 = 8 9 ( x 1 ) ( 2 y 1 ) = 8 9 ( x ( 2 y 1 ) ( 2 y 1 ) ) = 8 9 ( 2 x y x 2 y + 1 ) = 8 9 ( 2 y ( x 1 ) + ( 1 x ) ) 0 ( since  0 < x 1  and  1 y 0 ,  then  2 y ( x 1 ) , ( 1 x ) 0 ) .

From above, we have

| x y | 2 + 2 x T 2 x , y T 2 y | x y | 2 = x 2 2 x y + y 2 = x 2 + 2 x y + y 2 4 x y ( x + y ) 2 ( since  4 x y 0 ) 1 9 | x + y | 2 = | T 2 x T 2 y | 2 .

Then for every x,y[1,1], we have

| T 2 x T 2 y | 2 | x y | 2 +2x T 2 x,y T 2 y.

Hence, we have T 2 is a nonspreading mapping. Observe that 1F( T 1 )F( T 2 ). Let the mapping S:[1,1][1,1] be the S-mapping generated by T 1 , T 2 and α 1 , α 2 , where α 1 =( 1 6 , 2 6 , 3 6 ) and ( 4 15 , 5 15 , 6 15 ). From Lemma 2.9, we have 1F(S).

3 Main result

Theorem 3.1 Let C be a nonempty closed convex subset of a Hilbert space H. For every i=1,2,,N, let A i :CH be an α i -inverse strongly monotone mapping, and let { T i } i = 1 N be a finite family of nonspreading mappings with F= i = 1 N F( T i ) i = 1 N VI(C, A i ). For every i=1,2,,N, define the mapping G i :CC by G i x= P C (Iλ A i )x xC and λ[c,d](0,2 α i ). Let ρ j =( α 1 j , α 2 j , α 3 j )I×I×I, j=1,2,3,,N, where I=[0,1], α 1 j + α 2 j + α 3 j =1, α 1 j , α 3 j (0,1) for all j=1,2,,N1 and α 1 N (0,1], α 3 N [0,1) α 2 j (0,1) for all j=1,2,,N, and let S be the S-mapping generated by T 1 , T 2 ,, T N and ρ 1 , ρ 2 ,, ρ N . Let { x n } be a sequence generated by x 1 C 1 =C and

{ z n = i = 1 N δ n i G i x n , y n = α n x n + β n S x n + γ n z n , C n + 1 = { z C n : y n z x n z } , x n + 1 = P C n + 1 x 1 , n 1 ,
(3.1)

where { α n },{ β n },{ γ n }[0,1], α n + β n + γ n =1 and suppose the following conditions hold:

Then the sequence { x n } converges strongly to P F x 1 .

Proof First, we show that (Iλ A i ) is a nonexpansive mapping for every i=1,2,,N. Let x,yC. Since A is an α i -inverse strongly monotone and λ<2 α i , we have

( I λ A i ) x ( I λ A i ) y 2 = x y λ ( A i x A i y ) 2 = x y 2 2 λ x y , A i x A i y + λ 2 A i x A i y 2 x y 2 2 α i λ A i x A i y 2 + λ 2 A i x A i y 2 = x y 2 + λ ( λ 2 α i ) A i x A i y 2 x y 2 .

Thus (Iλ A i ) is a nonexpansive mapping for every i=1,2,,N. Since P C is a nonexpansive mapping, we have G i is a nonexpansive mapping for every i=1,2,,N. From Lemma 2.5, we have

F( G i )=F ( P C ( I λ A i ) ) =VI(C, A i ),i=1,2,,N.
(3.2)

From (3.2), VI(C, A i ) is closed and convex. Let zF. From (3.2), we have zF( P C (Iλ A i )) for every i=1,2,,N. By nonexpansiveness of G i , we have

z n z= i = 1 N δ n i ( G i x n z ) i = 1 N δ n i x n z= x n z.
(3.3)

Next, we show that C n is closed and convex for every nN. It is obvious that C n is closed. In fact, we know that for z C n ,

y n z x n zis equivalent to y n x n 2 +2 y n x n , x n z0.

So, for every z 1 , z 2 C n and t(0,1), it follows that

then, we have C n is convex. Since VI(C, A i ) is closed and convex for every i=1,2,,N, we have i = 1 N VI(C, A i ) is closed and convex. From Lemma 2.4, we have i = 1 N F( T i ) is closed and convex. Hence, we have F is closed and convex. This implies that P F is well defined. Next, we show that F C n for every nN. Let zF, then we have

y n z = α n ( x n z ) + β n ( S x n z ) + γ n ( z n z ) α n x n z + β n S x n z + γ n z n z x n z .

It follows that z C n . Hence, we have F C n for every nN. This implies that { x n } is well defined. Since x n = P C n x 1 , for every w C n , we have

x n x 1 w x 1 ,nN.
(3.4)

In particular, we have

x n x 1 P F x 1 x 1 .
(3.5)

By (3.4) we have { x n } is bounded, so are { G i x n }, { T i x n } for every i=1,2,,N, { z n }, { y n } and {S x n }. Since x n + 1 = P C n + 1 x 1 C n + 1 C n and x n = P C n x 1 , we have

0 x 1 x n , x n x n + 1 = x 1 x n , x n x 1 + x 1 x n + 1 x n x 1 2 + x n x 1 x 1 x n + 1 ,

which implies that

x n x 1 x n + 1 x 1 .

Hence, we have lim n x n x 1 exists. Since

x n x n + 1 2 = x n x 1 + x 1 x n + 1 2 = x n x 1 2 + 2 x n x 1 , x 1 x n + 1 + x 1 x n + 1 2 = x n x 1 2 + 2 x n x 1 , x 1 x n + x n x n + 1 + x 1 x n + 1 2 = x n x 1 2 2 x n x 1 2 + 2 x n x 1 , x n x n + 1 + x 1 x n + 1 2 x 1 x n + 1 2 x n x 1 2 ,
(3.6)

it implies that

lim n x n x n + 1 =0.
(3.7)

Since x n + 1 = P C n + 1 x 1 C n + 1 , we have

y n x n + 1 x n x n + 1 .

By (3.7) we have

lim n y n x n + 1 =0.
(3.8)

Since

y n x n y n x n + 1 + x n + 1 x n ,

by (3.7) and (3.8), we have

lim n y n x n =0.
(3.9)

Next, we will show that

lim n x n S x n =0.
(3.10)

For every i=1,2,,N, we have

(3.11)

From the definition of y n and (3.11), we have

y n z 2 α n x n z 2 + β n S x n z 2 + γ n z n z 2 α n x n z 2 + β n S x n z 2 + γ n i = 1 N δ n i P C ( I λ A i ) x n z 2 α n x n z 2 + β n S x n z 2 + γ n i = 1 N δ n i ( x n z 2 λ ( 2 α i λ ) A i x n A i z 2 ) = α n x n z 2 + β n S x n z 2 + γ n x n z 2 γ n i = 1 N δ n i λ ( 2 α i λ ) A i x n A i z 2 x n z 2 γ n i = 1 N δ n i λ ( 2 α i λ ) A i x n A i z 2 .

It follows that

γ n i = 1 N δ n i λ ( 2 α i λ ) A i x n A i z 2 x n z 2 y n z 2 ( x n z + y n z ) y n x n .

From conditions (i), (ii) and (3.9), it implies that

lim n A i x n A i z=0,i=1,2,,N.
(3.12)

Since

P C ( I λ A i ) x n z 2 ( I λ A i ) x n ( I λ A i ) z , P C ( I λ A i ) x n z = 1 2 ( ( I λ A i ) x n ( I λ A i ) z 2 + P C ( I λ A i ) x n z 2 ( I λ A i ) x n ( I λ A i ) z P C ( I λ A i ) x n + z 2 ) 1 2 ( x n z 2 + P C ( I λ A i ) x n z 2 x n P C ( I λ A i ) x n λ ( A i x n A i z ) 2 ) = 1 2 ( x n z 2 + P C ( I λ A i ) x n z 2 x n P C ( I λ A i ) x n 2 λ ( A i x n A i z ) 2 + 2 λ x n P C ( I λ A i ) x n , A i x n A i z ) ,

it implies that

P C ( I λ A i ) x n z 2 x n z 2 x n P C ( I λ A i ) x n 2 + 2 λ x n P C ( I λ A i ) x n A i x n A i z .
(3.13)

From the definition of y n and (3.13), we have

y n z 2 α n x n z 2 + β n S x n z 2 + γ n z n z 2 ( 1 γ n ) x n z 2 + γ n i = 1 N δ n i P C ( I λ A i ) x n z 2 ( 1 γ n ) x n z 2 + γ n i = 1 N δ n i ( x n z 2 x n P C ( I λ A i ) x n 2 + 2 λ x n P C ( I λ A i ) x n A i x n A i z ) = x n z 2 γ n i = 1 N δ n i x n P C ( I λ A i ) x n 2 + 2 γ n i = 1 N δ n i λ x n P C ( I λ A i ) x n A i x n A i z ,

which implies that

γ n i = 1 N δ n i x n P C ( I λ A i ) x n 2 x n z 2 y n z 2 + 2 γ n i = 1 N δ n i λ x n P C ( I λ A i ) x n A i x n A i z ( x n z + y n z ) y n x n + 2 γ n i = 1 N δ n i λ x n P C ( I λ A i ) x n A i x n A i z .

From conditions (i), (ii), (3.9) and (3.12), we have

lim n P C ( I λ A i ) x n x n =0,i=1,2,,N.
(3.14)

Since

z n x n i = 1 N δ n i P C ( I λ A i ) x n x n ,

from (3.14), we have

lim n z n x n =0.
(3.15)

Since

y n x n = β n (S x n x n )+ γ n ( z n x n )

from (3.9) and (3.15), we have

lim n S x n x n =0.

Next, we will show that

lim n T i U i 1 x n U i 1 x n =0,i=1,2,,N.
(3.16)

From the definition of y n , we have

y n z 2 α n x n z 2 + β n S x n z 2 + γ n z n z 2 ( 1 β n ) x n z 2 + β n α 1 N ( T N U N 1 x n z ) + α 2 N ( U N 1 x n z ) + α 3 N ( x n z ) ( 1 β n ) x n z 2 + β n ( α 1 N T N U N 1 x n z 2 + α 2 N U N 1 x n z 2 + α 3 N x n z 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) ( 1 β n ) x n z 2 + β n ( ( 1 α 3 N ) U N 1 x n z 2 + α 3 N x n z 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) = ( 1 β n ) x n z 2 + β n ( ( 1 α 3 N ) α 1 N 1 ( T N 1 U N 2 x n z ) + α 2 N 1 ( U N 2 x n z ) + α 3 N 1 ( x n z ) 2 + α 3 N x n z 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) ( 1 β n ) x n z 2 + β n ( ( 1 α 3 N ) ( α 1 N 1 T N 1 U N 2 x n z 2 + α 2 N 1 U N 2 x n z 2 + α 3 N 1 x n z 2 α 1 N 1 α 2 N 1 T N 1 U N 2 x n U N 2 x n 2 ) + α 3 N x n z 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) ( 1 β n ) x n z 2 + β n ( ( 1 α 3 N ) ( ( 1 α 3 N 1 ) U N 2 x n z 2 + α 3 N 1 x n z 2 α 1 N 1 α 2 N 1 T N 1 U N 2 x n U N 2 x n 2 ) + α 3 N x n z 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) = ( 1 β n ) x n z 2 + β n ( ( 1 α 3 N ) ( 1 α 3 N 1 ) U N 2 x n z 2 + ( 1 α 3 N ) α 3 N 1 x n z 2 α 1 N 1 α 2 N 1 ( 1 α 3 N ) T N 1 U N 2 x n U N 2 x n 2 + α 3 N x n z 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) = ( 1 β n ) x n z 2 + β n ( j = N 1 N ( 1 α 3 j ) U N 2 x n z 2 + ( 1 j = N 1 N ( 1 α 3 j ) ) x n z 2 α 1 N 1 α 2 N 1 ( 1 α 3 N ) T N 1 U N 2 x n U N 2 x n 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) = ( 1 β n ) x n z 2 + β n ( j = N 1 N ( 1 α 3 j ) α 1 N 2 ( T N 2 U N 3 x n z ) + α 2 N 2 ( U N 3 x n z ) + α 3 N 2 ( x n z ) 2 + ( 1 j = N 1 N ( 1 α 3 j ) ) x n z 2 α 1 N 1 α 2 N 1 ( 1 α 3 N ) T N 1 U N 2 x n U N 2 x n 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) ( 1 β n ) x n z 2 + β n ( j = N 1 N ( 1 α 3 j ) ( α 1 N 2 T N 2 U N 3 x n z 2 + α 2 N 2 U N 3 x n z 2 + α 3 N 2 x n z 2 α 1 N 2 α 2 N 2 T N 2 U N 3 x n U N 3 x n 2 ) + ( 1 j = N 1 N ( 1 α 3 j ) ) x n z 2 α 1 N 1 α 2 N 1 ( 1 α 3 N ) T N 1 U N 2 x n U N 2 x n 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) ( 1 β n ) x n z 2 + β n ( j = N 1 N ( 1 α 3 j ) ( ( 1 α 3 N 2 ) U N 3 x n z 2 + α 3 N 2 x n z 2 α 1 N 2 α 2 N 2 T N 2 U N 3 x n U N 3 x n 2 ) + ( 1 j = N 1 N ( 1 α 3 j ) ) x n z 2 α 1 N 1 α 2 N 1 ( 1 α 3 N ) T N 1 U N 2 x n U N 2 x n 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) = ( 1 β n ) x n z 2 + β n ( j = N 2 N ( 1 α 3 j ) U N 3 x n z 2 + ( 1 j = N 2 N ( 1 α 3 j ) ) x n z 2 α 1 N 2 α 2 N 2 j = N 1 N ( 1 α 3 j ) T N 2 U N 3 x n U N 3 x n 2 α 1 N 1 α 2 N 1 ( 1 α 3 N ) T N 1 U N 2 x n U N 2 x n 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) ( 1 β n ) x n z 2 + β n ( j = 1 N ( 1 α 3 j ) U 0 x n z 2 + ( 1 j = 1 N ( 1 α 3 j ) ) x n z 2 α 1 1 α 2 1 j = 2 N ( 1 α 3 j ) T 1 U 0 x n U 0 x n 2 α 1 N 2 α 2 N 2 j = N 1 N ( 1 α 3 j ) T N 2 U N 3 x n U N 3 x n 2 α 1 N 1 α 2 N 1 ( 1 α 3 N ) T N 1 U N 2 x n U N 2 x n 2 α 1 N α 2 N T N U N 1 x n U N 1 x n 2 ) = x n z 2 β n α 1 1 α 2 1 j = 2 N ( 1 α 3 j ) T 1 x n x n 2 β n α 1 N 2 α 2 N 2 j = N 1 N ( 1 α 3 j ) T N 2 U N 3 x n U N 3 x n 2 β n α 1 N 1 α 2 N 1 ( 1 α 3 N ) T N 1 U N 2 x n U N 2 x n 2 β n α 1 N α 2 N T N U N 1 x n U N 1 x n 2 .
(3.17)

From (3.17) and condition (ii), we have

β n α 1 1 α 2 1 j = 2 N ( 1 α 3 j ) T 1 x n x n 2 x n z 2 y n z 2 ( x n z + y n z ) y n x n .

Form (3.9), we have

lim n T 1 x n x n =0.
(3.18)

By using the same method as (3.18), we can conclude that

lim n T i U i 1 x n U i 1 x n =0,i=1,2,,N.

Let ω( x n ) be the set of all weakly ω-limit of { x n }. We shall show that ω( x n )F. Since { x n } is bounded, then ω( x n ). Let qω( x n ), there exists a subsequence { x n i } of { x n } which converges weakly to q.

Put Q:CC defined by

Qx= i = 1 N δ i G i x,xC.
(3.19)

Since G i = P C (Iλ A i ) is a nonexpansive mapping, for every i=1,2,,N, from Lemma 2.6 and 2.5, we have

F(Q)= i = 1 N F( G i )= i = 1 N VI(C, A i ).
(3.20)

Since

x n Q x n x n z n + z n Q x n = x n z n + i = 1 N δ n i G i x n i = 1 N δ i G i x n = x n z n + i = 1 N ( δ n i δ i ) G i x n x n z n + i = 1 N | δ n i δ i | G i x n ,

from the condition (i) and (3.15), we have

lim n x n Q x n =0.
(3.21)

From (3.21), we have

lim i x n i Q x n i =0.

From (3.19), it is easy to see that Q is a nonexpansive mapping. By Lemma 2.7 and x n i q as i, we have qF(Q)= i = 1 N F( G i ) From (3.2), we have

q i = 1 N VI(C, A i ).
(3.22)

Next, we will show that qF(S). Assume that qSq. From the Opial property, (3.10) and (3.16), we have

lim inf i x n i q 2 < lim inf i x n i S q 2 = lim inf i x n i S x n i + ( S x n i S q ) 2 = lim inf i ( x n i S x n i 2 + S x n i S q 2 + 2 x n i S x n i , S x n i S q ) = lim inf i S x n i S q 2 = lim inf i α 1 N T N U N 1 x n i + α 2 N U N 1 x n i + α 3 N x n i α 1 N T N U N 1 q α 2 N U N 1 q α 3 N q 2 = lim inf i α 1 N ( T N U N 1 x n i T N U N 1 q ) + α 2 N ( U N 1 x n i U N 1 q ) + α 3 N ( x n i q ) 2 lim inf i ( α 1 N T N U N 1 x n i T N U N 1 q 2 + α 2 N U N 1 x n i U N 1 q 2 + α 3 N x n i q 2 ) lim inf i ( α 1 N ( U N 1 x n i U N 1 q 2 + 2 U N 1 x n i T N U N 1 x n i , U N 1 q T N U N 1 q ) + α 2 N U N 1 x n i U N 1 q 2 + α 3 N x n i q 2 ) = lim inf i ( ( 1 α 3 N ) U N 1 x n i U N 1 q 2 + α 3 N x n i q 2 ) = lim inf i ( ( 1 α 3 N ) α 1 N 1 ( T N 1 U N 2 x n i T N 1 U N 2 q ) + α 2 N 1 ( U N 2 x n i U N 2 q ) + α 3 N 1 ( x n i q ) 2 + α 3 N x n i q 2 ) lim inf i ( ( 1 α 3 N ) ( α 1 N 1 T N 1 U N 2 x n i T N 1 U N 2 q 2 + α 2 N 1 U N 2 x n i U N 2 q 2 + α 3 N 1 x n i q 2 ) + α 3 N x n i q 2 ) lim inf i ( ( 1 α 3 N ) ( α 1 N 1 ( U N 2 x n i U N 2 q 2 + 2 U N 2 x n i T N 1 U N 2 x n i , U N 2 q T N 1 U N 2 q ) + α 2 N 1 U N 2 x n i U N 2 q 2 + α 3 N 1 x n i q 2 ) + α 3 N x n i q 2 ) = lim inf i ( ( 1 α 3 N ) ( ( 1 α 3 N 1 ) U N 2 x n i U N 2 q 2 + α 3 N 1 x n i q 2 ) + α 3 N x n i q 2 ) = lim inf i ( j = N 1 N ( 1 α 3 j ) U N 2 x n i U N 2 q 2 + ( 1 j = N 1 N ( 1 α 3 j ) ) x n i q 2 ) lim inf i ( j = 1 N ( 1 α 3 j ) U 0 x n i U 0 q 2 + ( 1 j = 1 N ( 1 α 3 j ) ) x n i q 2 ) = lim inf i ( j = 1 N ( 1 α 3 j ) x n i q 2 + ( 1 j = 1 N ( 1 α 3 j ) ) x n i q 2 ) = lim inf i x n i q 2 .

This is a contradiction. Then, we have qF(S). From Lemma 2.9, we have

q i = 1 N F( T i ).
(3.23)

From (3.22) and (3.23), we have qF. Hence, ω( x n )F. Therefore, by (3.5) and Lemma 2.8, we have { x n } converges strongly to P F x 1 . This completes the proof. □

The following result can be obtained from Theorem 3.1. We, therefore, omit the proof.

Corollary 3.2 Let C be a nonempty closed convex subset of a Hilbert space H. For every i=1,2,,N, let A i :CH be an α i -inverse strongly monotone mapping, and let T:CC be a nonspreading mapping with F=F(T) i = 1 N VI(C, A i ). For every i=1,2,,N, define the mapping G i :CC by G i x= P C (Iλ A i )x xC and λ[c,d](0,2 α i ). Let { x n } be a sequence generated by x 1 C 1 =C and

{ z n = i = 1 N δ n i G i x n , y n = α n x n + β n T x n + γ n z n , C n + 1 = { z C n : y n z x n z } , x n + 1 = P C n + 1 x 1 , n 1 ,
(3.24)

where { α n },{ β n },{ γ n }[0,1], α n + β n + γ n =1 and suppose the following conditions hold:

Then the sequence { x n } converges strongly to P F x 1 .

Corollary 3.3 Let C be a nonempty closed convex subset of a Hilbert space H. Let A:CH be an α-inverse strongly monotone mapping, and let { T i } i = 1 N be a finite family of nonspreading mappings with F= i = 1 N F( T i )VI(C,A). Let ρ j =( α 1 j , α 2 j , α 3 j )I×I×I, j=1,2,3,,N, where I=[0,1], α 1 j + α 2 j + α 3 j =1, α 1 j , α 3 j (0,1) for all j=1,2,,N1 and α 1 N (0,1], α 3 N [0,1), α 2 j (0,1) for all j=1,2,,N, and let S be the S-mapping generated by T 1 , T 2 ,, T N and ρ 1 , ρ 2 ,, ρ N . Let { x n } be a sequence generated by x 1 C 1 =C and

{ y n = α n x n + β n S x n + γ n P C ( I λ A ) x n , C n + 1 = { z C n : y n z x n z } , x n + 1 = P C n + 1 x 1 , n 1 ,
(3.25)

where { α n },{ β n },{ γ n }[a,b](0,1), α n + β n + γ n =1 and λ[c,d](0,2α). Then the sequence { x n } converges strongly to P F x 1 .

References

  1. Kohsaka F, Takahashi W: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. 2008, 91: 166–177. 10.1007/s00013-008-2545-8

    Article  MathSciNet  Google Scholar 

  2. Chang SS, Joseph Lee HW, Chan CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. 2009, 70: 3307–3319. 10.1016/j.na.2008.04.035

    Article  MathSciNet  Google Scholar 

  3. Nadezhkina N, Takahashi W: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 2006, 128: 191–201. 10.1007/s10957-005-7564-z

    Article  MathSciNet  Google Scholar 

  4. Yao JC, Chadli O: Pseudomonotone complementarity problems and variational inequalities. In Handbook of Generalized Convexity and Monotonicity. Edited by: Crouzeix JP, Haddjissas N, Schaible S. Springer, Netherlands; 2005:501–558.

    Chapter  Google Scholar 

  5. Yao Y, Yao JC: On modified iterative method for nonexpansive mappings and monotone mappings. Appl. Math. Comput. 2007, 186(2):1551–1558. 10.1016/j.amc.2006.08.062

    Article  MathSciNet  Google Scholar 

  6. Iiduka H, Takahashi W: Weak convergence theorem by Cesàro means for nonexpansive mappings and inverse-strongly monotone mappings. J. Nonlinear Convex Anal. 2006, 7: 105–113.

    MathSciNet  Google Scholar 

  7. Takahashi W, Takeuchi Y, Kubota R: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2008, 341: 276–286. 10.1016/j.jmaa.2007.09.062

    Article  MathSciNet  Google Scholar 

  8. Iemoto S, Takahashi W: Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space. Nonlinear Anal. 2009, 71: 2082–2089. 10.1016/j.na.2009.03.064

    Article  MathSciNet  Google Scholar 

  9. Takahashi W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama; 2000.

    Google Scholar 

  10. Bruck RE: Properties of fixed point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math. Soc. 1973, 179: 251–262.

    Article  MathSciNet  Google Scholar 

  11. Browder FE: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Symp. Pure Math. 1976, 18: 78–81.

    Google Scholar 

  12. Matines-Yanes C, Xu HK: Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal. 2006, 64: 2400–2411. 10.1016/j.na.2005.08.018

    Article  MathSciNet  Google Scholar 

  13. Kangtunyakarn A, Suantai S: Hybrid iterative scheme for generalized equilibrium problems and fixed point problems of finite family of nonexpansive mappings. Nonlinear Anal. Hybrid Syst. 2009, 3: 296–309. 10.1016/j.nahs.2009.01.012

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Administration Division of King Mongkut’s Institute of Technology, Ladkrabang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atid Kangtunyakarn.

Additional information

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kangtunyakarn, A. Strong convergence of the hybrid method for a finite family of nonspreading mappings and variational inequality problems. Fixed Point Theory Appl 2012, 188 (2012). https://doi.org/10.1186/1687-1812-2012-188

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2012-188

Keywords