# Fixed point theorems for contraction mappings in modular metric spaces

## Abstract

In this article, we study and prove the new existence theorems of fixed points for contraction mappings in modular metric spaces.

AMS: 47H09; 47H10.

## 1 Introduction

Let (X, d) be a metric space. A mapping T : XX is a contraction if

$d\left(T\left(x\right),T\left(y\right)\right)\le kd\left(x,y\right),$
(1.1)

for all x, y X, where 0 ≤ k < 1. The Banach Contraction Mapping Principle appeared in explicit form in Banach's thesis in 1922 . Since its simplicity and usefulness, it has become a very popular tool in solving existence problems in many branches of mathematical analysis. Banach contraction principle has been extended in many different directions, see . The notion of modular spaces, as a generalize of metric spaces, was introduced by Nakano  and was intensively developed by Koshi, Shimogaki, Yamamuro  and others. Further and the most complete development of these theories are due to Luxemburg, Musielak, Orlicz, Mazur, Turpin  and their collaborators. A lot of mathematicians are interested fixed points of Modular spaces, for example [4, 1926].

In 2008, Chistyakov  introduced the notion of modular metric spaces generated by F-modular and develop the theory of this spaces, on the same idea he was defined the notion of a modular on an arbitrary set and develop the theory of metric spaces generated by modular such that called the modular metric spaces in 2010 .

In this article, we study and prove the existence of fixed point theorems for contraction mappings in modular metric spaces.

## 2 Preliminaries

We will start with a brief recollection of basic concepts and facts in modular spaces and modular metric spaces (see [14, 15, 2729] for more details).

Definition 2.1. Let X be a vector space over (or ). A functional ρ : X → [0, ∞] is called a modular if for arbitrary x and y, elements of X satisfies the following three conditions :

(A.1) ρ(x) = 0 if and only if x = 0;

(A.2) ρ(αx) = ρ(x) for all scalar α with |α| = 1;

(A.3) ρ(αx + βy) ≤ ρ(x) + ρ(y), whenever α, β ≥ 0 and α + β = 1.

If we replace (A.3) by

(A.4) ρ(αx + βy) ≤ αs ρ(x) + βs ρ(y), for α, β ≥ 0, αs + βs = 1 with an s (0, 1], then the modular ρ is called s-convex modular, and if s = 1, ρ is called a convex modular.

If ρ is modular in X, then the set defined by

$\begin{array}{c}\hfill {X}_{\rho }=\left\{x\in X:\rho \left(\lambda x\right)\to 0\phantom{\rule{2.77695pt}{0ex}}\text{as}\phantom{\rule{2.77695pt}{0ex}}\lambda \to {0}^{+}\right\}\hfill \end{array}$
(2.1)

is called a modular space. X ρ is a vector subspace of X it can be equipped with an F-norm defined by setting

$\begin{array}{c}\hfill {∥x∥}_{\rho }=\text{inf}\left\{\lambda >0:\rho \left(\frac{x}{\lambda }\right)\le \lambda \right\},\phantom{\rule{1em}{0ex}}x\in {X}_{\rho }.\hfill \end{array}$
(2.2)

In addition, if ρ is convex, then the modular space X ρ coincides with

(2.3)

and the functional ${∥x∥}_{\rho }^{*}=\text{inf}\left\{\lambda >0:\rho \left(\frac{x}{\lambda }\right)\le 1\right\}$is an ordinary norm on ${X}_{\rho }^{*}$ which is equivalence to ${∥x∥}_{\rho }$(see ).

Let X be a nonempty set, λ (0, ∞) and due to the disparity of the arguments, function w : (0, ∞) × X × X → [0, ∞] will be written as wλ(x, y) = w(λ, x, y) for all λ > 0 and x, y X.

Definition 2.2. [, Definition 2.1] Let X be a nonempty set. A function w : (0, ∞) × X × X → [0, ∞] is said to be a metric modular on X if satisfying, for all x, y, z X the following condition holds:

(i) w λ (x, y) = 0 for all λ > 0 if and only if x = y;

(ii) w λ (x, y) = w λ (y, x) for all λ > 0;

(iii) wλ + μ(x, y) ≤ w λ (x, z) + w μ (z, y) for all λ, μ > 0.

If instead of (i), we have only the condition

(i') w λ (x, x) = 0 for all λ > 0, then w is said to be a (metric) pseudomodular on X.

The main property of a (pseudo) modular w on a set X is a following: given x, y X, the function 0 < λ w λ (x, y) [0, ∞] is a nonincreasing on (0, ∞).

In fact, if 0 < μ < λ, then (iii), (i') and (ii) imply

$\begin{array}{ccc}\hfill {w}_{\lambda }\left(x,y\right)\hfill & \hfill \le {w}_{\lambda -\mu }\left(x,x\right)+{w}_{\mu }\left(x,y\right)\hfill & \hfill ={w}_{\mu }\left(x,y\right).\hfill \end{array}$
(2.4)

It follows that at each point λ > 0 the right limit ${w}_{\lambda +0}\left(x,y\right):=\underset{\epsilon \to +0}{\text{lim}}{w}_{\lambda +\epsilon }\left(x,y\right)$ and the left limit ${w}_{\lambda -0}\left(x,y\right):=\underset{\epsilon \to +0}{\text{lim}}{w}_{\lambda -\epsilon }\left(x,y\right)$ exists in [0, ∞] and the following two inequalities hold :

$\begin{array}{ccc}\hfill {w}_{\lambda +0}\left(x,y\right)\hfill & \hfill \le {w}_{\lambda }\left(x,y\right)\hfill & \hfill \le {w}_{\lambda -0}\left(x,y\right).\hfill \end{array}$
(2.5)

Definition 2.3. [, Definition 3.3] A function w : (0, ∞) × X × X → [0, ∞] is said to be a convex (metric) modular on X if it is satisfies the conditions (i) and (ii) from Definition 2.2 as well as this condition holds;

(iv) ${w}_{\lambda +\mu }\left(x,y\right)=\frac{\lambda }{\lambda +\mu }{w}_{\lambda }\left(x,z\right)+\frac{\mu }{\lambda +\mu }{w}_{\mu }\left(z,y\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}for\phantom{\rule{2.77695pt}{0ex}}all\phantom{\rule{2.77695pt}{0ex}}\lambda ,\mu >0\phantom{\rule{2.77695pt}{0ex}}and\phantom{\rule{2.77695pt}{0ex}}x,y,z\in X.$

If instead of (i), we have only the condition (i') from Definition 2.2, then w is called a convex(metric) pseudomodular on X.

From [27, 28], we know that, if x0 X, the set ${X}_{w}=\left\{x\in X:\underset{\lambda \to \infty }{\text{lim}}{w}_{\lambda }\left(x,{x}_{0}\right)=0\right\}$ is a metric space, called a modular space, whose metric is given by ${d}_{w}^{\circ }\left(x,y\right)=\text{inf}\left\{\lambda >0:{w}_{\lambda }\left(x,y\right)\le \lambda \right\}$ for all x, y X w . Moreover, if w is convex, the modular set X w is equal to ${X}_{w}^{*}=\left\{x\in X:\exists \lambda =\lambda \left(x\right)>0$ such that w λ (x, x0) <∞} and metrizable by ${d}_{w}^{*}\left(x,y\right)=\text{inf}\left\{\lambda >0:{w}_{\lambda }\left(x,y\right)\le 1\right\}$for all $x,y\in {X}_{w}^{*}$. We know that (see [, Theorem 3.11]) if X is a real linear space, ρ : X → [0, ∞] and

(2.6)

then ρ is modular (convex modular) on X in the sense of (A.1)-(A.4) if and only if w is metric modular (convex metric modular, respectively) on X. On the other hand, if w satisfy the following two conditions (i) w λ (μx, 0) = w λ/μ (x, 0) for all λ, μ > 0 and x X, (ii) w λ (x + z, y + z) = w λ (x, y) for all λ > 0 and x, y, z X, if we set ρ(x) = w1(x, 0) with (2.6) holds, where x X, then

1. (i)

X ρ = X w is a linear subspace of X and the functional ${∥x∥}_{\rho }={d}_{w}^{\circ }\left(x,0\right)$, x X ρ , is an F-norm on X ρ ;

2. (ii)

if w is convex, ${X}_{\rho }^{*}\equiv {X}_{w}^{*}\left(0\right)={X}_{\rho }$ is a linear subspace of X and the functional ${∥x∥}_{\rho }={d}_{w}^{*}\left(x,0\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{0.3em}{0ex}}x\in {X}_{\rho }^{*}$, is an norm on ${X}_{\rho }^{*}$.

Similar assertions hold if replace the word modular by pseudomodular. If w is metric modular in X, we called the set X w is modular metric space.

By the idea of property in metric spaces and modular spaces, we defined the following:

Definition 2.4. Let X w be a modular metric space.

(1) The sequence (x n )n in X w is said to be convergent to x X w if w λ (x n , x) → 0, as n →for all λ > 0.

(2) The sequence (x n ) n in X w is said to be Cauchy if w λ ( x m , x n ) → 0, as m, n →for all λ > 0.

(3) A subset C of X w is said to be closed if the limit of a convergent sequence of C always belong to C.

(4) A subset C of X w is said to be complete if any Cauchy sequence in C is a convergent sequence and its limit is in C.

(5) A subset C of X w is said to be bounded if for all λ > 0 δ w (C) = sup{w λ (x, y); x, y C} <∞.

## 3 Main results

In this section, we prove the existence of fixed points theorems for contraction mapping in modular metric spaces.

Definition 3.1. Let w be a metric modular on X and X w be a modular metric space induced by w and T : X w → X w be an arbitrary mapping. A mapping T is called a contraction if for each x, y X w and for all λ > 0 there exists 0 ≤ k < 1 such that

${w}_{\lambda }\left(Tx,Ty\right)\le k{w}_{\lambda }\left(x,y\right).$
(3.1)

Theorem 3.2. Let w be a metric modular on X and X w be a modular metric space induced by w. If X w is a complete modular metric space and T : X w → X w is a contraction mapping, then T has a unique fixed point in X w . Moreover, for any x X w , iterative sequence {Tnx} converges to the fixed point.

Proof. Let x0 ba an arbitrary point in X w and we write x1 = Tx0, x2 = Tx1 = T2x0, and in general, x n = Txn-1= Tnx0 for all n . Then,

$\begin{array}{ll}\hfill {w}_{\lambda }\left({x}_{n+1},{x}_{n}\right)& ={w}_{\lambda }\left(T{x}_{n},T{x}_{n-1}\right)\phantom{\rule{2em}{0ex}}\\ \le k{w}_{\lambda }\left({x}_{n},{x}_{n-1}\right)\phantom{\rule{2em}{0ex}}\\ =k{w}_{\lambda }\left(T{x}_{n-1},T{x}_{n-2}\right)\phantom{\rule{2em}{0ex}}\\ \le {k}^{2}{w}_{\lambda }\left({x}_{n-1},{x}_{n-2}\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}⋮\phantom{\rule{2em}{0ex}}\\ \le {k}^{n}{w}_{\lambda }\left({x}_{1},{x}_{0}\right)\phantom{\rule{2em}{0ex}}\end{array}$

for all λ > 0 and for each n . Therefore, $\underset{n\to \infty }{\text{lim}}{w}_{\lambda }\left({x}_{n+1},{x}_{n}\right)=0$ for all λ > 0. So for each λ > 0, we have for all > 0 there exists n0 such that w λ (x n , xn+1) < for all n with n ≥ n0. Without loss of generality, suppose m, n and m > n. Observe that, for $\frac{\lambda }{m-n}>0$, there exists nλ/(m-n) such that

${w}_{\frac{\lambda }{m-n}}\left({x}_{n},{x}_{n+1}\right)<\frac{\epsilon }{m-n}$

for all n ≥ nλ/(m-n). Now, we have

$\begin{array}{ll}\hfill {w}_{\lambda }\left({x}_{n},{x}_{m}\right)& \le {w}_{\frac{\lambda }{m-n}}\left({x}_{n},{x}_{n+1}\right)+{w}_{\frac{\lambda }{m-n}}\left({x}_{n+1},{x}_{n+2}\right)+\cdots +{w}_{\frac{\lambda }{m-n}}\left({x}_{m-1},\phantom{\rule{0.3em}{0ex}}\phantom{\rule{0.3em}{0ex}}{x}_{m}\right)\phantom{\rule{2em}{0ex}}\\ <\frac{\epsilon }{m-n}+\frac{\epsilon }{m-n}+\cdots +\frac{\epsilon }{m-n}\phantom{\rule{2em}{0ex}}\\ =\epsilon \phantom{\rule{2em}{0ex}}\end{array}$

for all m, n ≥ nλ/(m-n). This implies {x n }nis a Cauchy sequence. By the completeness of X w , there exists a point x X w such that x n → × as n → ∞.

By the notion of metric modular w and the contraction of T, we get

$\begin{array}{ccc}\hfill {w}_{\lambda }\left(Tx,x\right)\hfill & \hfill \le \hfill & \hfill {w}_{\frac{\lambda }{2}}\left(Tx,T{x}_{n}\right)+{w}_{\frac{\lambda }{2}}\left(T{x}_{n},x\right)\hfill \\ \hfill \le \hfill & \hfill k{w}_{\frac{\lambda }{2}}\left(x,{x}_{n}\right)+{w}_{\frac{\lambda }{2}}\left({x}_{n+1},x\right)\hfill \end{array}$
(3.2)

for all λ > 0 and for each n . Taking n → ∞ in (3.2) implies that w λ (Tx, x) = 0 for all λ > 0 and thus Tx = x. Hence, x is a fixed point of T. Next, we prove that x is a unique fixed point. Suppose that z is another fixed point of T. We see that

$\begin{array}{ccc}\hfill {w}_{\lambda }\left(x,z\right)\hfill & \hfill =\hfill & \hfill {w}_{\lambda }\left(Tx,Tz\right)\hfill \\ \hfill \le \hfill & \hfill k{w}_{\lambda }\left(x,z\right)\hfill \end{array}$

for all λ > 0. Since 0 ≤ k < 1, we get w λ (x, z) = 0 for all λ > 0 this implies that x = z. Therefore, x is a unique fixed point of T and the proof is complete.   □

Theorem 3.3. Let w be a metric modular on X and X w be a modular metric space induced by w. If X w is a complete modular metric space and T : X w → X w is a contraction mapping. Suppose x* X w is a fixed point of T, {ε n } is a sequence of positive numbers for which $\underset{n\to \infty }{\text{lim}}{\epsilon }_{n}=0$, and {y n } X w satisfies

${w}_{\lambda }\left({y}_{n+1},\phantom{\rule{0.3em}{0ex}}\phantom{\rule{0.3em}{0ex}}T{y}_{n}\right)\le {\epsilon }_{n}$

for all λ > 0. Then, $\underset{n\to \infty }{\text{lim}}{y}_{n}={x}^{*}$.

Proof. For each m , we observe that

$\begin{array}{ll}\hfill {w}_{\lambda }\left({T}^{m+1}x,{y}_{m+1}\right)& ={w}_{\frac{\lambda \cdot m}{m}}\left({T}^{m+1}x,{y}_{m+1}\right)\phantom{\rule{2em}{0ex}}\\ \le {w}_{\frac{\lambda \cdot \left(m-1\right)}{m}}\left({T}^{m+1}x,T{y}_{m}\right)+{w}_{\frac{\lambda }{m}}\left(T{y}_{m},{y}_{m+1}\right)\phantom{\rule{2em}{0ex}}\\ \le k{w}_{\frac{\lambda \cdot \left(m-1\right)}{m}}\left({T}^{m}x,{y}_{m}\right)+{\epsilon }_{m}\phantom{\rule{2em}{0ex}}\\ \le k{w}_{\frac{\lambda \cdot \left(m-2\right)}{m}}\left({T}^{m}x,T{y}_{m-1}\right)+k{w}_{\frac{\lambda }{m}}\left(T{y}_{m-1}x,{y}_{m}\right)+{\epsilon }_{m}\phantom{\rule{2em}{0ex}}\\ \le {k}^{2}{w}_{\frac{\lambda \cdot \left(m-2\right)}{m}}\left({T}^{m-1}x,{y}_{m-1}\right)+k{\epsilon }_{m-1}+{\epsilon }_{m}\phantom{\rule{2em}{0ex}}\\ ⋮\phantom{\rule{2em}{0ex}}\\ \le \sum _{i=0}^{m}{k}^{m-i}{\epsilon }_{i}\phantom{\rule{2em}{0ex}}\end{array}$
(3.3)

for all λ > 0. Thus, we get

$\begin{array}{ll}\hfill {w}_{\lambda }\left({y}_{m+1},{x}^{*}\right)& \le {w}_{\frac{\lambda }{2}}\left({y}_{m+1},{T}^{m+1}x\right)+{w}_{\frac{\lambda }{2}}\left({T}^{m+1}x,{x}^{*}\right)\phantom{\rule{2em}{0ex}}\\ \le \sum _{i=0}^{m}{k}^{m-i}{\epsilon }_{i}+{w}_{\frac{\lambda }{2}}\left({T}^{m+1}x,{x}^{*}\right).\phantom{\rule{2em}{0ex}}\end{array}$
(3.4)

Next, we claimed that $\underset{m\to \infty }{\text{lim}}{w}_{\lambda }\left({y}_{m+1},{x}^{*}\right)=0$ for all λ > 0.

Now let ε > 0. Since $\underset{n\to \infty }{\text{lim}}{\epsilon }_{n}=0$, there exists N such that for m ≥ N, ε m ε. Thus,

$\begin{array}{ll}\hfill \sum _{i=0}^{m}{k}^{m-i}{\epsilon }_{i}& =\sum _{i=0}^{N}{k}^{m-i}{\epsilon }_{i}+\sum _{i=N+1}^{m}{k}^{m-i}{\epsilon }_{i}\phantom{\rule{2em}{0ex}}\\ \le {k}^{m-N}\sum _{i=0}^{N}{k}^{N-i}{\epsilon }_{i}+\epsilon \sum _{i=N+1}^{m}{k}^{m-i}.\phantom{\rule{2em}{0ex}}\end{array}$
(3.5)

Taking limit as m → ∞ in (3.5), we have

$\underset{m\to \infty }{\text{lim}}\sum _{i=0}^{m}{k}^{m-i}{\epsilon }_{i}=0.$
(3.6)

Since x0 is a fixed point of T and using result of Theorem 3.2, we get the sequence {Tnx} converge to x*. This implies that

$\underset{m\to \infty }{\text{lim}}{w}_{\frac{\lambda }{2}}\left({T}^{m+1}x,{x}^{*}\right)=0$
(3.7)

for all λ > 0. From (3.4), (3.6) and (3.7), we have

$\underset{m\to \infty }{\text{lim}}{w}_{\lambda }\left({y}_{m+1},{x}^{*}\right)=0$
(3.8)

for all λ > 0 which implies that $\underset{n\to \infty }{\text{lim}}{y}_{n}={x}^{*}$.   □

Theorem 3.4. Let w be a metric modular on X and X w be a modular metric space induced by w. If X w is a complete modular metric space and T : X w X w is a mapping, which TN is a contraction mapping for some positive integer N. Then, T has a unique fixed point in X w .

Proof. By Theorem 3.2 , TN has a unique fixed point u X w . From TN(T u ) = TN+1u = T(TNu) = Tu, so Tu is a fixed point of TN. By the uniqueness of fixed point of TN, we have Tu = u. Thus, u is a fixed point of T. Since fixed point of T is also fixed point of TN, we can conclude that T has a unique fixed point in X w .   □

Theorem 3.5. Let w be metric modular on X, X w be a complete modular metric space induced by w and for x* X w we define

${B}_{w}\left({x}^{*},\gamma \right):=\left\{x\in {X}_{w}|{w}_{\lambda }\left(x,{x}^{*}\right)\le \gamma \phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}for\phantom{\rule{2.77695pt}{0ex}}all\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\lambda >0\right\}.$

If T : B w (x*, γ) → X w is a contraction mapping with

${w}_{\frac{\lambda }{2}}\left(T{x}^{*},{x}^{*}\right)\le \left(1-k\right)\gamma$
(3.9)

for all λ > 0, where 0 ≤ k < 1. Then, T has a unique fixed point in B w (x*, γ).

Proof. By Theorem 3.2 , we only prove that B w (x*, γ) is complete and Tx B w (x*, γ), for all x B w (x*, γ). Suppose that {x n } is a Cauchy sequence in B w (x*, γ), also {x n } is a Cauchy sequence in X w . Since X w is complete, there exists x X w such that

$\underset{n\to \infty }{\text{lim}}{w}_{\frac{\lambda }{2}}\left({x}_{n},x\right)=0$
(3.10)

for all λ > 0. Since for each n , x n B w (x*, γ), using the property of metric modular, we get

$\begin{array}{c}{w}_{\lambda }\left({x}^{*},x\right)\le {w}_{\frac{\lambda }{2}}\left({x}^{*},{x}_{n}\right)+{w}_{\frac{\lambda }{2}}\left({x}_{n},x\right)\\ \le \gamma +{w}_{\frac{\lambda }{2}}\left({x}_{n},{x}^{*}\right)\end{array}$
(3.11)

for all λ > 0. It follows the inequalities (3.10) and (3.11), we have w λ (x*, x) ≤ γ which implies that x B w (x*, γ). Therefore, {x n } is convergent sequence in B w (x*, γ) and also B w (x*, γ) is complete.

Next, we prove that Tx B w (x*, γ) for all x B w (x*, γ). Let x B w (x*, γ). From the inequalities (3.9), using the contraction of T and the notion of metric modular, we have

$\begin{array}{ll}\hfill {w}_{\lambda }\left({x}^{*},Tx\right)& \le {w}_{\frac{\lambda }{2}}\left({x}^{*},T{x}^{*}\right)+{w}_{\frac{\lambda }{2}}\left(T{x}^{*},Tx\right)\phantom{\rule{2em}{0ex}}\\ \le \left(1-k\right)\gamma +k{w}_{\frac{\lambda }{2}}\left({x}^{*},x\right)\phantom{\rule{2em}{0ex}}\\ \le \left(1-k\right)\gamma +k\gamma \phantom{\rule{2em}{0ex}}\\ =\gamma .\phantom{\rule{2em}{0ex}}\end{array}$

Therefore, Tx B w (x*, γ) and the proof is complete.

Theorem 3.6. Let w be a metric modular on X, X w be a complete modular metric space induced by w and T : X w X w . If

${w}_{\lambda }\left(Tx,Ty\right)\le k\left({w}_{2\lambda }\left(Tx,x\right)+{w}_{2\lambda }\left(Ty,y\right)\right)$
(3.12)

for all x, y X w and for all λ > 0, where $k\in \left[0,\frac{1}{2}\right)$, then T has a unique fixed point in X w . Moreover, for any x X w , iterative sequence {Tnx} converges to the fixed point.

Proof. Let x0 be an arbitrary point in X w and we write x1 = Tx0, x2 = Tx1 = T2x0, and in general, x n = Txn-1= Tnx0 for all n . If $T{x}_{{n}_{0}-1}=T{x}_{{n}_{0}}$for some n0 , then $T{x}_{{n}_{0}}={x}_{{n}_{0}}$. Thus, ${x}_{{n}_{0}}$ is a fixed point of T. Suppose that Txn-1Tx n for all n . For $k\in \left[0,\frac{1}{2}\right)$, we have

$\begin{array}{ll}\hfill {w}_{\lambda }\left({x}_{n+1},{x}_{n}\right)& ={w}_{\lambda }\left(T{x}_{n},T{x}_{n-1}\right)\phantom{\rule{2em}{0ex}}\\ \le k\left({w}_{2\lambda }\left(T{x}_{n},{x}_{n}\right)+{w}_{2\lambda }\left(T{x}_{n-1},{x}_{n-1}\right)\right)\phantom{\rule{2em}{0ex}}\\ \le k\left({w}_{\lambda }\left({x}_{n+1},{x}_{n}\right)+{w}_{\lambda }\left({x}_{n},{x}_{n-1}\right)\right)\phantom{\rule{2em}{0ex}}\end{array}$
(3.13)

for all λ > 0 and for all n . Hence,

${w}_{\lambda }\left({x}_{n+1},{x}_{n}\right)\le \frac{k}{1-k}{w}_{\lambda }\left({x}_{n},{x}_{n-1}\right)$
(3.14)

for all λ > 0 and for all n . Put $\beta :=\frac{k}{1-k}$, since $k\in \left[0,\frac{1}{2}\right)$, we get β [0, 1) and hence

$\begin{array}{ccc}\hfill {w}_{\lambda }\left({x}_{n+1},{x}_{n}\right)\hfill & \hfill \le \hfill & \hfill \beta {w}_{\lambda }\left({x}_{n},{x}_{n-1}\right)\hfill \\ \hfill \le \hfill & \hfill {\beta }^{2}{w}_{\lambda }\left({x}_{n-1},{x}_{n-2}\right)\hfill \\ \hfill ⋮\hfill \\ \hfill \le \hfill & \hfill {\beta }^{n}{w}_{\lambda }\left({x}_{1},{x}_{0}\right)\hfill \end{array}$
(3.15)

for all λ > 0 and for all n . Similar to the proof of Theorem 3.2, we can conclude that {x n } is a Cauchy sequence and by the completeness of X w there exists a point x X w such that x n x as n → ∞. By the property of metric modular and the inequality (3.12), we have

$\begin{array}{ll}\hfill {w}_{\lambda }\left(Tx,x\right)& \le {w}_{\frac{\lambda }{2}}\left(Tx,T{x}_{n}\right)+{w}_{\frac{\lambda }{2}}\left(T{x}_{n},x\right)\phantom{\rule{2em}{0ex}}\\ \le k\left({w}_{\lambda }\left(Tx,x\right)+{w}_{\lambda }\left(T{x}_{n},{x}_{n}\right)\right)+{w}_{\frac{\lambda }{2}}\left(T{x}_{n},x\right)\phantom{\rule{2em}{0ex}}\\ \le k\left({w}_{\lambda }\left(Tx,x\right)+{w}_{\frac{\lambda }{2}}\left(T{x}_{n},x\right)+{w}_{\frac{\lambda }{2}}\left(x,{x}_{n}\right)\right)+{w}_{\frac{\lambda }{2}}\left(T{x}_{n},x\right)\phantom{\rule{2em}{0ex}}\\ =k\left({w}_{\lambda }\left(Tx,x\right)+{w}_{\frac{\lambda }{2}}\left({x}_{n+1},x\right)+{w}_{\frac{\lambda }{2}}\left(x,{x}_{n}\right)\right)+{w}_{\frac{\lambda }{2}}\left({x}_{n+1},x\right)\phantom{\rule{2em}{0ex}}\end{array}$
(3.16)

for all λ > 0 and for all n . Taking n → ∞ in the inequality (3.16), we obtained that

${w}_{\lambda }\left(Tx,x\right)\le k{w}_{\lambda }\left(Tx,x\right).$
(3.17)

Since $k\in \left[0,\frac{1}{2}\right)$, we have Tx = x. Thus, x is a fixed point of T. Next, we prove that x is a unique fixed point. Suppose that z be another fixed point of T. We note that

$\begin{array}{ll}\hfill {w}_{\lambda }\left(x,z\right)& ={w}_{\lambda }\left(Tx,Tz\right)\phantom{\rule{2em}{0ex}}\\ \le k\left({w}_{\frac{\lambda }{2}}\left(Tx,x\right)+{w}_{\frac{\lambda }{2}}\left(Tz,z\right)\right)\phantom{\rule{2em}{0ex}}\\ =0\phantom{\rule{2em}{0ex}}\end{array}$

for all λ > 0, which implies that x = z. Therefore, x is a unique fixed point of T.   □

Now, we shall give a validate example of Theorem 3.2 .

Example 3.7. Let X = {(a, 0) 2|0 ≤ a ≤ 1} {(0, b) 2|0 ≤ b ≤ 1}.

Defined the mapping w : (0, ∞) × X × X → [0, ∞] by

${w}_{\lambda }\left(\left({a}_{1},0\right),\left({a}_{2},0\right)\right)=\frac{4|{a}_{1}-{a}_{2}|}{3\lambda },$
${w}_{\lambda }\left(\left(0,{b}_{1}\right),\left(0,{b}_{2}\right)\right)=\frac{|{b}_{1}-{b}_{2}|}{\lambda },$

and

${w}_{\lambda }\left(\left(a,0\right),\left(0,b\right)\right)=\frac{4a}{3\lambda }+\frac{b}{\lambda }={w}_{\lambda }\left(\left(0,b\right),\left(a,0\right)\right).$

We note that if we take λ → ∞, then we see that X = X w and also X w is a complete modular metric space. We let a mapping T : X w X w is define by

$T\left(\left(a,0\right)\right)=\left(0,a\right)$

and

$T\left(\left(0,b\right)\right)=\left(\frac{b}{2},0\right).$

Simple computations show that

${w}_{\lambda }\left(T\left(\left({a}_{1},{b}_{1}\right)\right),T\left(\left({a}_{2},{b}_{2}\right)\right)\right)\le \phantom{\rule{2.77695pt}{0ex}}\frac{3}{4}{w}_{\lambda }\left(\left({a}_{1},{b}_{1}\right),\left({a}_{2},{b}_{2}\right)\right)$

for all (a1, b1), (a2, b2) X w . Thus, T is a contraction mapping with constant $k=\frac{3}{4}$. Therefore, T has a unique fixed point that is (0, 0) X w .

On the Euclidean metric d on X w , we see that

$d\left(T\left(\left(0,0\right)\right),T\left(\left(1,0\right)\right)\right)=d\left(\left(0,0\right),\left(0,1\right)\right)=1>k=kd\left(\left(0,0\right),\left(1,0\right)\right)$

for all k [0, 1). Thus, T is not a contraction mapping and then the Banach contraction mapping cannot be applied to this example.

## References

1. Banach S: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund Math 1922, 3: 133–181.

2. Jungck G: Compatible mappings and common fixed points. Int J Math Math Sci 1986, 9: 771–779. 10.1155/S0161171286000935

3. Jungck G, Rhoades BE: Fixed points for set valued functions without continuity. Indian J Pure Appl Math 1998, 29: 227–238.

4. Razani A, Nabizadeh E, Beyg Mohamadi M, Homaeipour S: Fixed point of nonlinear and asymptotic contractions in the modular space. Abstr Appl Anal 2007., 2007: Article ID 40575, 10

5. Rhoades BE: Some theorems on weakly contractive maps. Nonlinear Anal 2001, 47: 2683–2693. 10.1016/S0362-546X(01)00388-1

6. Sintunavarat W, Kumam P: Coincidence and common fixed points for hybrid strict contractions without the weakly commuting condition. Appl Math Lett 2009, 22: 1877–1881. 10.1016/j.aml.2009.07.015

7. Sintunavarat W, Kumam P: Weak condition for generalized multi-valued ( f , α , β )-weak contraction mappings. Appl Math Lett 2011, 24: 460–465. 10.1016/j.aml.2010.10.042

8. Sintunavarat W, Kumam P: Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type. J Inequal Appl 2011, 2011: 3. 10.1186/1029-242X-2011-3

9. Sintunavarat W, Cho YJ, Kumam P: Common fixed point theorems for c -distance in ordered cone metric spaces. Comput Math Appl 2011, 62: 1969–1978. 10.1016/j.camwa.2011.06.040

10. Sintunavarat W, Kumam P:Common fixed point theorems for generalized $\mathcal{J}\mathcal{H}$-operator classes and invariant approximations. J Inequal Appl 2011, 2011: 67. 10.1186/1029-242X-2011-67

11. Nakano H: Modulared Semi-Ordered Linear Spaces. In Tokyo Math Book Ser. Volume 1. Maruzen Co., Tokyo; 1950.

12. Koshi S, Shimogaki T: On F-norms of quasi-modular spaces. J Fac Sci Hokkaido Univ Ser I 1961,15(3–4):202–218.

13. Yamamuro S: On conjugate spaces of Nakano spaces. Trans Amer Math Soc 1959, 90: 291–311. 10.1090/S0002-9947-1959-0132378-1

14. Luxemburg WAJ: Banach function spaces. Thesis, Delft, Inst of Techn Assen, The Netherlands 1955.

15. Mosielak J, Orlicz W: On modular spaces. Studia Math 1959, 18: 49–65.

16. Musielak J, Orlicz W: Some remarks on modular spaces. Bull Acad Polon Sci Sr Sci Math Astron Phys 1959, 7: 661–668.

17. Mazur S, Orlicz W: On some classes of linear spaces. Studia Math 1958, 17: 97–119. Reprinted in : 981–1003

18. Turpin Ph: Fubini inequalities and bounded multiplier property in generalized modular spaces. Comment. Math Tomus specialis in honorem Ladislai Orlicz I 1978, 331–353.

19. Beygmohammadi M, Razani A: Two fixed point theorems for mappings satisfying a general contractive condition of integral type in the modular spaces. Int J Math Math Sci 2010, 2010: Article ID 317107, 10.

20. Dominguez-Benavides T, Khamsi MA, Samadi S: Uniformly Lipschitzian mappings in modular function spaces. Nonlinear Anal Theory Methods Appl 2001, 46: 267–278. 10.1016/S0362-546X(00)00117-6

21. Khamsi MA: Quasicontraction mappings in modular spaces without Δ 2 -condition. Fixed Point Theory Appl 2008., 2008: Article ID 916187, 6

22. Khamsi MA, Kozlowski WM, Reich S: Fixed point theory in modular function spaces. Nonlinear Anal. Theory Methods Appl 1990, 14: 935–953. 10.1016/0362-546X(90)90111-S

23. Kuaket K, Kumam P: Fixed point for asymptotic pointwise contractions in modular spaces. Appl Math Lett 2011, 24: 1795–1798. 10.1016/j.aml.2011.04.035

24. Kumam P: On uniform opial condition, uniform Kadec-Klee property in modular spaces and application to fixed point theory. J Interdisciplinary Math 2005, 8: 377–385.

25. Kumam P: Fixed point theorems for nonexpansive mapping in modular spaces. Arch Math 2004, 40: 345–353.

26. Mongkolkeha C, Kumam P: Fixed point and common fixed point theorems for generalized weak contraction mappings of integral type in modular spaces. Int J Math Math Sci 2011., 2011: Article ID 705943, 12

27. Chistyakov VV: Modular metric spaces generated by F -modulars. Folia Math 2008, 14: 3–25.

28. Chistyakov VV: Modular metric spaces I basic concepts. Nonlinear Anal 2010, 72: 1–14. 10.1016/j.na.2009.04.057

29. Chistyakov VV: Metric modulars and their application. Dokl Math 2006,73(1):32–35. 10.1134/S106456240601008X

## Acknowledgements

The authors thank the referee for comments and suggestions on this manuscript. The first author was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0029/2553). The second author would like to thank the Research Professional Development Project Under the Science Achievement Scholarship of Thailand (SAST) and the Faculty of Science, KMUTT for financial support during the preparation of this manuscript for the Ph.D. Program. The third author was supported by the Commission on Higher Education and the Thailand Research Fund (Grant No.MRG5380044). Moreover, this study was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (under NRU-CSEC Project No. 54000267).

## Author information

Authors

### Corresponding author

Correspondence to Poom Kumam.

### Competing interests

The authors declare that they have no competing interests.

### Authors' contributions

All authors read and approved the final manuscript.

## Rights and permissions

Reprints and Permissions

Mongkolkeha, C., Sintunavarat, W. & Kumam, P. Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl 2011, 93 (2011). https://doi.org/10.1186/1687-1812-2011-93

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1687-1812-2011-93

### Keywords

• modular metric spaces
• modular spaces
• contraction mappings
• fixed points 