• Research
• Open Access

# Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces

Fixed Point Theory and Applications20112011:81

https://doi.org/10.1186/1687-1812-2011-81

• Accepted: 18 November 2011
• Published:

## Abstract

Recently, Gordji et al. [Math. Comput. Model. 54, 1897-1906 (2011)] prove the coupled coincidence point theorems for nonlinear contraction mappings satisfying commutative condition in intuitionistic fuzzy normed spaces. The aim of this article is to extend and improve some coupled coincidence point theorems of Gordji et al. Also, we give an example of a nonlinear contraction mapping which is not applied by the results of Gordji et al., but can be applied to our results.

2000 MSC: primary 47H10; secondary 54H25; 34B15.

## Keywords

• intuitionistic fuzzy normed space
• coupled fixed point
• coupled coincidence point
• partially ordered set
• commutative condition

## 1. Introduction

The classical Banach's contraction mapping principle first appear in [1]. Since this principle is a powerful tool in nonlinear analysis, many mathematicians have much contributed to the improvement and generalization of this principle in many ways (see [210] and others).

One of the most interesting is study to other spaces such as probabilistic metric spaces (see [1115]). The fuzzy theory was introduced simultaneously by Zadeh [16]. The idea of intuitionistic fuzzy set was first published by Atanassov [17]. Since then, Saadati and Park [18] introduced the concept of intuitionistic fuzzy normed spaces (IFNSs). In [19], Saadati et al. have modified the notion of IFNSs of Saadati and Park [18].

Several researchers have applied fuzzy theory to the well-known results in many fields, for example, quantum physics [20], nonlinear dynamical systems [21], population dynamics [22], computer programming [23], fixed point theorem [2427], fuzzy stability problems [2830], statistical convergence [3134], functional equation [35], approximation theory [36], nonlinear equation [37, 38] and many others.

In the other hand, coupled fixed points and their applications for binary mappings in partially ordered metric spaces were introduced by Bhaskar and Lakshmikantham [39]. They applied coupled fixed point theorems to show the existence and uniqueness of a solution for a periodic boundary value problem. After that, Lakshmikantham and Ćirić [40] proved some more generalizations of coupled fixed point theorems in partially ordered sets.

Recently, Gordji et al. [41] proved some coupled coincidence point theorems for contractive mappings satisfying commutative condition in partially complete IFNSs as follows:

Theorem 1.1 (Gordji et al. [41]). Let (X, ) be a partially ordered set and (X, μ, ν, *, ) a complete IFNS such that (μ, ν) has n-property and
$a\phantom{\rule{0.3em}{0ex}}◊\phantom{\rule{0.3em}{0ex}}b\le ab\le a*b,\phantom{\rule{1em}{0ex}}\forall a,b\in \left[0,1\right].$
(1.1)
Let F: X × XX and g : XX be two mappings such that F has the mixed g-monotone property and
$\begin{array}{cc}\hfill \mu \left(F\left(x,y\right)-F\left(u,v\right),kt\right)\ge \mu \left(gx-gu,t\right)*\mu \left(gy-gv,t\right),\hfill & \hfill \forall x,y,u,v\in X,\hfill \\ \hfill \nu \left(F\left(x,y\right)-F\left(u,v\right),kt\right)\le \nu \left(gx-gu,t\right)◊\nu \left(gy-gv,t\right),\hfill & \hfill \forall x,y,u,v\in X,\hfill \end{array}$
(1.2)
for which g(x) g(u) and g(y) z g(v), where 0 <k < 1, F(X × X) g(X), g is continuous and g commuting with F. Suppose that either
1. (1)

F is continuous or

2. (2)

X has the following properties:

3. (a)

if {x n } is a non-decreasing sequence with {x n } → x, then gx n gx for all n ,

4. (b)

if {y n } is a non-increasing sequence with {y n } → y, then gy gy n for all n .

If there exist x0, y0 X such that
$g\left({x}_{0}\right)\preccurlyeq F\left({x}_{0},{y}_{0}\right),\phantom{\rule{1em}{0ex}}g\left({y}_{0}\right)\succcurlyeq F\left({y}_{0},{x}_{0}\right),$

then F and g have a coupled coincidence point in X × X.

In this article, we improve the result given by Gordji et al. [41] without using the commutative condition and also give an example to validate the main results in this article. Our results improve and extend some couple fixed point theorems due to Gordji et al. [41] and other couple fixed point theorems.

## 2. Preliminaries

Now, we give some definitions, examples and lemmas for our main results in this article.

Definition 2.1 ([42]). A binary operation *: [0,1]2 → [0,1] is called a continuous t-norm if ([0,1], *) is an abelian topological monoid, i.e.,
1. (1)

* is associative and commutative;

2. (2)

* is continuous;

3. (3)

a * 1 = a for all a [0,1];

4. (4)

a * bc * d whenever ac and bd for all a, b, c, d [0,1].

Definition 2.2 ([42]). A binary operation : [0,1]2 → [0,1] is called a continuous t-conorm if ([0,1],) is an abelian topological monoid, i.e.,
1. (1)

is associative and commutative;

2. (2)

is continuous;

3. (3)

a 0 = a for all a [0,1];

4. (4)

a bc d whenever a ≤ c and bd for all a, b, c, d [0,1].

Using the continuous t-norm and t-conorm, Saadati and Park [18] introduced the concept of IFNSs.

Definition 2.3 ([18]). The 5-tuple (X, μ, ν, *,) is called an IFNS if X is a vector space, * is a continuous t-norm, is a continuous t-conorm and μ, ν are fuzzy sets on X × (0, ∞) satisfying the following conditions: for all x, y X and s, t > 0,

(IF1) μ(x, t) + ν(x, t) ≤ 1;

(IF2) μ(x, t) > 0;

(IF3) μ(x, t) = 1 if and only if x = 0;

(IF4) $\mu \left(\alpha x,t\right)=\mu \left(x,\frac{t}{|\alpha |}\right)$ for all α ≠ 0;

(IF5) μ(x, t) * μ(y, s) ≤ μ(x + y, t + s);

(IF6) μ(x,.): (0, ∞) → [0,1] is continuous;

(IF7) μ is a non-decreasing function on +,
$\underset{t\to \mathrm{\infty }}{lim}\mu \left(x,t\right)=1,\phantom{\rule{1em}{0ex}}\underset{t\to 0}{lim}\mu \left(x,t\right)=0;$

(IF8) ν(x, t) < 1;

(IF9) ν(x, t) = 0 if and only if x = 0;

(IF10) $\nu \left(\alpha x,t\right)=\nu \left(x,\frac{t}{|\alpha |}\right)$ for all α ≠ 0;

(IF11) ν(x, t) ν(y, s) ≥ ν(x + y, t + s);

(IF12) ν(x,·): (0, ∞) → [0,1] is continuous;

(IF13) ν is a non-increasing function on +,
$\underset{t\to \mathrm{\infty }}{lim}\nu \left(x,t\right)=0,\phantom{\rule{1em}{0ex}}\underset{t\to 0}{lim}\nu \left(x,t\right)=1.$

In this case, (μ, ν) is called an intuitionistic fuzzy norm.

Definition 2.4 ([18]). Let (X, μ, ν, *,) be an IFNS.
1. (1)
A sequence {x n } in X is said to be convergent to a point x X with respect to the intuitionistic fuzzy norm (μ, ν) if, for any ε > 0 and t > 0, there exists k such that
$\mu \left({x}_{n}-x,t\right)>1-\epsilon ,\phantom{\rule{1em}{0ex}}\nu \left({x}_{n}-x,t\right)<\epsilon ,\phantom{\rule{1em}{0ex}}\forall n\ge k.$

In this case, we write lim n →∞ x n = x. In fact that lim n →∞ x n = x if μ(x n - x, t) → 1 and ν(x n - x, t) → 0 as n → ∞ for every t > 0.
1. (2)
A sequence {x n } in X is called a Cauchy sequence with respect to the intuitionistic fuzzy norm (μ, ν) if, for any ε > 0 and t > 0, there exists k such that
$\mu \left({x}_{n}-{x}_{m},t\right)>1-\epsilon ,\phantom{\rule{1em}{0ex}}\nu \left({x}_{n}-{x}_{m},t\right)<\epsilon ,\phantom{\rule{1em}{0ex}}\forall n,m\ge k.$

This implies {x n } is Cauchy if μ(x n - x m , t) → 1 and ν(x n - x m , t) → 0 as n, m → ∞ for every t > 0.
1. (3)

An IFNS (X, μ, ν, *, ) is said to be complete if every Cauchy sequence in (X, μ, ν, *, ) is convergent.

Definition 2.5 ([43, 44]). Let X and Y be two IFNS. A function g : XY is said to be continuous at a point x0 X if, for any sequence {x n } in X converging to a point x0 X, the sequence {g(x n )} in Y converges to a point g(x0) Y. If g : XY is continuous at each x X, then g : XY is said to be continuous on X.

Example 2.6 ([41]). Let (X, || · ||) be an ordinary normed space and θ an increasing and continuous function from + into (0,1) such that limt→∞θ(t) = 1. Four typical examples of these functions are as follows:
$\theta \left(t\right)=\frac{t}{t+1},\phantom{\rule{1em}{0ex}}\theta \left(t\right)=sin\left(\frac{\pi t}{2t+1}\right),\phantom{\rule{1em}{0ex}}\theta \left(t\right)=1-{e}^{-t},\phantom{\rule{1em}{0ex}}\theta \left(t\right)={e}^{\frac{-1}{t}}.$
Let a * b = ab and a bab for all a, b [0,1]. If, for any t (0, ∞), we define
$\mu \left(x,t\right)={\left[\theta \left(t\right)\right]}^{||x||},\phantom{\rule{1em}{0ex}}\nu \left(x,t\right)=1-{\left[\theta \left(t\right)\right]}^{||x||},\phantom{\rule{1em}{0ex}}\forall x\in X,$

then (X, μ, ν, *, ) is an IFNS.

The other basic properties and examples of IFNSs are given in [18].

Definition 2.7 ([41]). Let (X, μ, ν, *,) be an IFNS. (μ, ν) is said to satisfy the n-property on X × (0, ∞) if
$\underset{n\to \mathrm{\infty }}{lim}{\left[\mu \left(x,{k}^{n}t\right)\right]}^{{n}^{p}}=1,\phantom{\rule{1em}{0ex}}\underset{n\to \mathrm{\infty }}{lim}{\left[\nu \left(x,{k}^{n}t\right)\right]}^{{n}^{p}}=0$

whenever x X, k > 1 and p > 0.

For examples for n-property see in [41]. Next, we give some notion in coupled fixed point theory.

Definition 2.8 ([39]). Let X be a non-empty set. An element (x, y) X × X is call a coupled fixed point of the mapping F : X × XX if
$x=F\left(x,y\right),\phantom{\rule{1em}{0ex}}y=F\left(y,x\right).$
Definition 2.9 ([40]). Let X be a non-empty set. An element (x, y) X × X is call a coupled coincidence point of the mappings F : X × XX and g : XX if
$g\left(x\right)=F\left(x,y\right),\phantom{\rule{1em}{0ex}}g\left(y\right)=F\left(y,x\right).$
Definition 2.10 ([39]). Let (X, ) be a partially ordered set and F : X × XX be a mapping. The mapping F is said to has the mixed monotone property if F is monotone non-decreasing in its first argument and is monotone non-increasing in its second argument, that is, for any x, y X
${x}_{1},{x}_{2}\in X,{x}_{1}\preccurlyeq {x}_{2}\phantom{\rule{1em}{0ex}}⇒\phantom{\rule{1em}{0ex}}F\left({x}_{1},y\right)\preccurlyeq F\left({x}_{2},y\right)$
(2.1)
and
${y}_{1},{y}_{2}\in X,{y}_{1}\preccurlyeq {y}_{2}\phantom{\rule{1em}{0ex}}⇒\phantom{\rule{1em}{0ex}}F\left(x,{y}_{1}\right)\succcurlyeq F\left(x,{y}_{2}\right).$
(2.2)
Definition 2.11 ([40]). Let (X, ) be a partially ordered set and F : X × XX, g : XX be mappings. The mapping F is said to has the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its second argument, that is, for any x, y X,
${x}_{1},{x}_{2}\in X,g\left({x}_{1}\right)\preccurlyeq g\left({x}_{2}\right)\phantom{\rule{1em}{0ex}}⇒\phantom{\rule{1em}{0ex}}F\left({x}_{1},y\right)\preccurlyeq F\left({x}_{2},y\right)$
(2.3)
and
${y}_{1},{y}_{2}\in X,g\left({y}_{1}\right)\preccurlyeq g\left({y}_{2}\right)\phantom{\rule{1em}{0ex}}⇒\phantom{\rule{1em}{0ex}}F\left(x,{y}_{1}\right)\succcurlyeq F\left(x,{y}_{2}\right).$
(2.4)
Definition 2.12 ([40]). Let X be a non-empty set and F : X × XX, g : XX be mappings. The mappings F and g are said to be commutative if
$g\left(F\left(x,y\right)\right)=F\left(g\left(x\right),g\left(y\right)\right),\phantom{\rule{1em}{0ex}}\forall x,y\in X.$

The following lemma proved by Haghi et al. [45] is useful for our main results:

Lemma 2.13 ([45]). Let X be a nonempty set and g : XX be a mapping. Then, there exists a subset E X such that g(E) = g(X) and g : EX is one-to-one.

## 3. Main Results

First, we prove a coupled fixed point theorem for a mapping F : X × XX which is an essential tool in the partial order IFNSs to show the existence of coupled fixed point. Although the proof in Theorem 3.1 is not difficult to modify, it is an important theorem which is helpful in proving some coupled coincidence point theorems without commutative condition.

Theorem 3.1. Let (X, ) be a partially ordered set and (X, μ, ν, *, ) a complete IFNS such that (μ, ν) has n-property and
$a\phantom{\rule{2.77695pt}{0ex}}◊\phantom{\rule{2.77695pt}{0ex}}b\le ab\le a*b,\phantom{\rule{1em}{0ex}}\forall a,b\in \left[0,1\right].$
(3.1)
Let F : X × XX be mapping such that F has the mixed monotone property and
$\begin{array}{cc}\hfill \mu \left(F\left(x,y\right)-F\left(u,v\right),kt\right)\ge \mu \left(x-u,t\right)*\mu \left(y-v,t\right),\hfill & \hfill \forall x,y,u,v\in X,\hfill \\ \hfill \nu \left(F\left(x,y\right)-F\left(u,v\right),kt\right)\le \nu \left(x-u,t\right)◊\nu \left(y-v,t\right),\hfill & \hfill \forall x,y,u,v\in X,\hfill \end{array}$
(3.2)
for which x u and y v, where 0 <k < 1. Suppose that either
1. (1)

F is continuous or

2. (2)

X has the following properties:

3. (a)

if {x n } is a non-decreasing sequence with {x n } → x, then x n x for all n ,

4. (b)

if {y n } is a non-increasing sequence with {y n } → y, then y y n for all n .

If there exist x0, y0 X such that
${x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right),\phantom{\rule{1em}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right),$

then F has a coupled fixed point in X × X.

Proof. Let x0, y0 X be such that
${x}_{0}\preccurlyeq F\left({x}_{0},{y}_{0}\right),\phantom{\rule{1em}{0ex}}{y}_{0}\succcurlyeq F\left({y}_{0},{x}_{0}\right).$
Since F(X × X) X, we can construct the sequences {x n } and {y n } in X such that
${x}_{n+1}=F\left({x}_{n},{y}_{n}\right),\phantom{\rule{1em}{0ex}}{y}_{n+1}=F\left({y}_{n},{x}_{n}\right),\phantom{\rule{1em}{0ex}}\forall n\ge 0.$
(3.3)
Now, we show that
${x}_{n}\preccurlyeq {x}_{n+1},\phantom{\rule{1em}{0ex}}{y}_{n}\succcurlyeq {y}_{n+1},\phantom{\rule{1em}{0ex}}\forall n\ge 0.$
(3.4)
In fact, by induction, we prove this. For n = 0, since x0 F(x0, y0) = x1 and y0 = F(y0, x0) y1, we show that (3.4) holds for n = 0. Suppose that (3.4) holds for any n ≥ 0. Then, we have
${x}_{n}\preccurlyeq {x}_{n+1},\phantom{\rule{1em}{0ex}}{y}_{n}\succcurlyeq {y}_{n+1}.$
(3.5)
Since F has the mixed monotone property, it follows from (3.5) and (2.1) that
$F\left({x}_{n},y\right)\preccurlyeq F\left({x}_{n+1},y\right),\phantom{\rule{1em}{0ex}}F\left({y}_{n+1},x\right)\preccurlyeq F\left({y}_{n},x\right),\phantom{\rule{1em}{0ex}}\forall x,y\in X,$
(3.6)
and also it follows from (3.5) and (2.2) that
$F\left(y,{x}_{n}\right)\succcurlyeq F\left(y,{x}_{n+1}\right),\phantom{\rule{1em}{0ex}}F\left(x,{y}_{n+1}\right)\succcurlyeq F\left(x,{y}_{n}\right),\phantom{\rule{1em}{0ex}}\forall x,y\in X.$
(3.7)
If we take y = y n and x = x n in (3.6), then we get
${x}_{n+1}=F\left({x}_{n},{y}_{n}\right)\preccurlyeq F\left({x}_{n+1},{y}_{n}\right),\phantom{\rule{1em}{0ex}}F\left({y}_{n+1},{x}_{n}\right)\preccurlyeq F\left({y}_{n},{x}_{n}\right)={y}_{n+1}.$
(3.8)
If we take y = yn+1and x = xn+1in (3.7), then we get
$F\left({y}_{n+1},{x}_{n}\right)\succcurlyeq F\left({y}_{n+1},{x}_{n+1}\right)={y}_{n+2},\phantom{\rule{1em}{0ex}}{x}_{n+2}=F\left({x}_{n+1},{y}_{n+1}\right)\succcurlyeq F\left({x}_{n+1},{y}_{n}\right).$
(3.9)
Hence, it follows from (3.8) and (3.9) that
${x}_{n+1}\preccurlyeq {x}_{n+2},\phantom{\rule{1em}{0ex}}{y}_{n+1}\succcurlyeq {y}_{n+2}.$
(3.10)
Therefore, by induction, we conclude that (3.4) holds for all n ≥ 0, that is,
${x}_{0}\preccurlyeq {x}_{1}\preccurlyeq {x}_{2}\preccurlyeq \cdots \preccurlyeq {x}_{n}\preccurlyeq {x}_{n+1}\preccurlyeq \cdots$
(3.11)
and
${y}_{0}\succcurlyeq {y}_{1}\succcurlyeq {y}_{2}\succcurlyeq \cdots \succcurlyeq {y}_{n}\succcurlyeq {y}_{n+1}\succcurlyeq \cdots \phantom{\rule{0.3em}{0ex}}.$
(3.12)
Define α n (t): = μ(x n - xn+1, t) * μ(y n - yn+1, t). Then, using (3.2) and (3.3), we have
$\begin{array}{ll}\hfill \mu \left({x}_{n}-{x}_{n+1},kt\right)& =\mu \left(F\left({x}_{n-1},{y}_{n-1}\right)-F\left({x}_{n},{y}_{n}\right),kt\right)\phantom{\rule{2em}{0ex}}\\ \ge \mu \left({x}_{n-1}-{x}_{n},t\right)*\mu \left({y}_{n-1}-{y}_{n},t\right)\phantom{\rule{2em}{0ex}}\\ ={\alpha }_{n-1}\left(t\right)\phantom{\rule{2em}{0ex}}\end{array}$
(3.13)
and
$\begin{array}{ll}\hfill \mu \left({y}_{n}-{y}_{n+1},kt\right)& =\mu \left({y}_{n+1}-{y}_{n},kt\right)\phantom{\rule{2em}{0ex}}\\ =\mu \left(F\left({y}_{n},{x}_{n}\right)-F\left({y}_{n-1},{x}_{n-1}\right),kt\right)\phantom{\rule{2em}{0ex}}\\ \ge \mu \left({y}_{n}-{y}_{n-1},t\right)*\mu \left({x}_{n}-{x}_{n-1},t\right)\phantom{\rule{2em}{0ex}}\\ =\mu \left({y}_{n-1}-{y}_{n},t\right)*\mu \left({x}_{n-1}-{x}_{n},t\right)\phantom{\rule{2em}{0ex}}\\ ={\alpha }_{n-1}\left(t\right).\phantom{\rule{2em}{0ex}}\end{array}$
(3.14)
From the t-norm property, (3.13) and (3.14), it follows that
${\alpha }_{n}\left(kt\right)\ge {\alpha }_{n-1}\left(t\right)*{\alpha }_{n-1}\left(t\right).$
(3.15)
From (3.1), we have
${\alpha }_{n-1}\left(t\right)*{\alpha }_{n-1}\left(t\right)\ge {\left[{\alpha }_{n-1}\left(t\right)\right]}^{2}.$
(3.16)
By (3.15) and (3.16), we get α n (kt) ≥ [αn-1(t)]2 for all n ≥ 1. Repeating this process, we have
${\alpha }_{n}\left(t\right)\ge {\left[{\alpha }_{n-1}\left(\frac{t}{k}\right)\right]}^{2}\ge \cdots \ge {\left[{\alpha }_{0}\left(\frac{t}{{k}^{n}}\right)\right]}^{2n},$
(3.17)
which implies that
$\mu \left({x}_{n}-{x}_{n+1},kt\right)*\mu \left({y}_{n}-{y}_{n+1},kt\right)\ge {\left[\mu \left({x}_{0}-{x}_{1},\frac{t}{{k}^{n}}\right)\right]}^{2n}*{\left[\mu \left({y}_{0}-{y}_{1},\frac{t}{{k}^{n}}\right)\right]}^{2n}.$
(3.18)
On the other hand, we have
$t\left(1-k\right)\left(1+k+\cdots +{k}^{m-n-1}\right)n,\phantom{\rule{2.77695pt}{0ex}}0
By property of t-norm, we get
$\begin{array}{c}\phantom{\rule{1em}{0ex}}\mu \left({x}_{n}-{x}_{m},t\right)*\mu \left({y}_{n}-{y}_{m},t\right)\\ \ge \mu \left({x}_{n}-{x}_{m},t\left(1-k\right)\left(1+k+\cdots +{k}^{m-n-1}\right)\right)\\ \phantom{\rule{1em}{0ex}}*\mu \left({y}_{n}-{y}_{m},t\left(1-k\right)\left(1+k+\cdots +{k}^{m-n-1}\right)\right)\\ \ge \mu \left({x}_{n}-{x}_{n+1},t\left(1-k\right)\right)*\mu \left({y}_{n}-{y}_{n+1},t\left(1-k\right)\right)\\ \phantom{\rule{1em}{0ex}}*\mu \left({x}_{n+1}-{x}_{n+2},t\left(t-k\right)k\right)*\mu \left({y}_{n+1}-{y}_{n+2},t\left(1-k\right)k\right)\\ \phantom{\rule{1em}{0ex}}*\cdots \\ \phantom{\rule{1em}{0ex}}*\mu \left({x}_{m-1}-{x}_{m},t\left(1-k\right){k}^{m-n-1}\right)*\mu \left({y}_{m-1}-{y}_{m},t\left(t-k\right){k}^{m-n-1}\right)\\ \ge \mu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)*\mu \left({y}_{0}-{y}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\\ \phantom{\rule{1em}{0ex}}*\cdots \\ \phantom{\rule{1em}{0ex}}*\mu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)*\mu \left({y}_{0}-{y}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\\ \ge {\left[\mu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{m-n}*{\left[\mu \left({y}_{0}-{y}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{m-n}\\ \ge {\left[\mu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{m}*{\left[\mu \left({y}_{0}-{y}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{m}\\ \ge {\left[\mu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{np}*{\left[\mu \left({y}_{0}-{y}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{np},\end{array}$
(3.19)
where p > 0 such that m <n p . Sine (μ, ν) has the n-property, we have
$\underset{n\to \mathrm{\infty }}{lim}{\left[\mu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{np}=1$
and so
$\underset{n\to \mathrm{\infty }}{lim}\mu \left({x}_{n}-{x}_{m}\right)*\mu \left({y}_{n}-{y}_{m}\right)=1.$
(3.20)
Next, we claim that
$\underset{n\to \mathrm{\infty }}{lim}\nu \left({x}_{n}-{x}_{m}\right)◊\nu \left({y}_{n}-{y}_{m}\right)=0.$
Define β n (t) := ν(x n - xn+1, t) ν(y n - yn+1, t). It follows from (3.2) and (3.3) that
$\begin{array}{ll}\hfill \nu \left({x}_{n}-{x}_{n+1},kt\right)& =\nu \left(F\left({x}_{n-1},{y}_{n-1}\right)-F\left({x}_{n},{y}_{n}\right),kt\right)\phantom{\rule{2em}{0ex}}\\ \le \nu \left({x}_{n-1}-{x}_{n},t\right)◊\nu \left({y}_{n-1}-{y}_{n},t\right)\phantom{\rule{2em}{0ex}}\\ ={\beta }_{n-1}\left(t\right)\phantom{\rule{2em}{0ex}}\end{array}$
(3.21)
and
$\begin{array}{ll}\hfill \nu \left({y}_{n}-{y}_{n+1},kt\right)& =\nu \left({y}_{n+1}-{y}_{n},kt\right)\phantom{\rule{2em}{0ex}}\\ =\nu \left(F\left({y}_{n},{x}_{n}\right)-F\left({y}_{n-1},{x}_{n-1}\right),kt\right)\phantom{\rule{2em}{0ex}}\\ \le \nu \left({y}_{n}-{y}_{n-1},t\right)◊\nu \left({x}_{n}-{x}_{n-1},t\right)\phantom{\rule{2em}{0ex}}\\ =\nu \left({y}_{n-1}-{y}_{n},t\right)◊\nu \left({x}_{n-1}-{x}_{n},t\right)\phantom{\rule{2em}{0ex}}\\ ={\beta }_{n-1}\left(t\right).\phantom{\rule{2em}{0ex}}\end{array}$
(3.22)
Thus, it follows from the notion of t-conorm, (3.21) and (3.22) that
${\beta }_{n}\left(kt\right)\le {\beta }_{n-1}\left(t\right)◊{\beta }_{n-1}\left(t\right).$
(3.23)
From (3.1), we have
${\beta }_{n-1}\left(t\right)◊{\beta }_{n-1}\left(t\right)\le {\left[{\beta }_{n-1}\left(t\right)\right]}^{2}.$
(3.24)
Thus, by (3.23) and (3.24), we get β n (kt) ≤ [βn-1(t)]2 for all n ≥ 1. Repeating this process again, we have
${\beta }_{n}\left(t\right)\le {\left[{\beta }_{n-1}\left(\frac{t}{k}\right)\right]}^{2}\le \cdots \le {\left[{\beta }_{0}\left(\frac{t}{{k}^{n}}\right)\right]}^{2n},$
(3.25)
that is,
$\nu \left({x}_{n}-{x}_{n+1},kt\right)◊\nu \left({y}_{n}-{y}_{n+1},kt\right)\le \left[\nu \left({x}_{0}-{x}_{1},\frac{t}{{k}^{n}}\right)\right]◊{\left[\nu \left({y}_{0}-{y}_{1},\frac{t}{{k}^{n}}\right)\right]}^{2n}.$
(3.26)
Since we have
$t\left(1-k\right)\left(1+k+\cdots +{k}^{m-n-1}\right)n,\phantom{\rule{2.77695pt}{0ex}}0
by the t-conorm property, we get
$\begin{array}{l}\nu \left({x}_{n}-{x}_{m},t\right)◊\nu \left({y}_{n}-{y}_{m},t\right)\\ \le \nu \left({x}_{n}-{x}_{m},t\left(1-k\right)\left(1+k+\cdots +{k}^{m-n-1}\right)\right)\\ ◊\nu \left({y}_{n}-{y}_{m},t\left(1-k\right)\left(1+k+\cdots +{k}^{m-n-1}\right)\right)\\ \le \nu \left({x}_{n}-{x}_{n+1},t\left(1-k\right)\right)◊\nu \left({y}_{n}-{y}_{n+1},t\left(1-k\right)\\ ◊\nu \left({x}_{n+1}-{x}_{n+2},t\left(1-k\right)k\right)◊\nu \left({y}_{n+1}-{y}_{n+2},t\left(1-k\right)k\right)\\ ◊\cdots \\ ◊\nu \left({x}_{m-1}-{x}_{m,}t\left(1-k\right){k}^{m-n-1}\right)◊\nu \left({y}_{m-1}-{y}_{m,}t\left(1-k\right){k}^{m-n-1}\right)\\ \le \nu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)◊\left({y}_{0}-{y}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\\ ◊\cdots \\ ◊\nu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)◊\nu \left({y}_{0}-{y}_{1}\left(1-k\right)\frac{t}{{k}^{n}}\right)\\ \le {\left[\nu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{m-n}◊{\left[\nu \left({y}_{0}-{y}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{m-n}\\ \le {\left[\nu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{m}◊{\left[\nu \left({y}_{0}-{y}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{m}\\ \le {\left[\nu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{{n}^{p}}◊{\left[\nu \left({y}_{0}-{y}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{{n}^{p}},\end{array}$
(3.27)
where p > 0 such that m <n p . Sine (μ, ν) has the n-property, we have
$\underset{n\to \mathrm{\infty }}{lim}{\left[\nu \left({x}_{0}-{x}_{1},\left(1-k\right)\frac{t}{{k}^{n}}\right)\right]}^{{n}^{p}}=0$
and so
$\underset{n\to \mathrm{\infty }}{lim}\nu \left({x}_{n}-{x}_{m}\right)◊\nu \left({y}_{n}-{y}_{m}\right)=0.$
(3.28)
From (3.20) and (3.28), we know that the sequences {x n } and {y n } are Cauchy sequences in X. Since X complete, there exist x, y X such that
$\underset{n\to \mathrm{\infty }}{lim}{x}_{n}=x,\phantom{\rule{1em}{0ex}}\underset{n\to \mathrm{\infty }}{lim}{y}_{n}=y.$
(3.29)
Next, we show that x = F(x, y) and y = F(y, x). If the assumption (1) holds, then we have
$x=\underset{n\to \mathrm{\infty }}{lim}{{x}_{n}}_{+1}=\underset{n\to \mathrm{\infty }}{lim}F\left({x}_{n},{y}_{n}\right)=F\left(\underset{n\to \mathrm{\infty }}{lim}{x}_{n},\underset{n\to \mathrm{\infty }}{lim}{y}_{n}\right)=F\left(x,y\right)$
(3.30)
and
$y=\underset{n\to \mathrm{\infty }}{lim}{{y}_{n}}_{+1}=\underset{n\to \mathrm{\infty }}{lim}F\left({y}_{n},{x}_{n}\right)=F\left(\underset{n\to \mathrm{\infty }}{lim}{y}_{n},\underset{n\to \mathrm{\infty }}{lim}{x}_{n}\right)=F\left(y,x\right).$
(3.31)

Therefore, x = F(x, y) and y = F(y, x), that is, F has a coupled fixed point.

Suppose that the assumption (2) holds. Since {x n } is non-decreasing and x n x, it follows from (a) that x n x for all n . Similarly, we can conclude that y n y for all n . Then, by (3.2), we get
$\begin{array}{ll}\hfill \mu \left({x}_{n+1}-F\left(x,y\right),kt\right)& =\mu \left(F\left({x}_{n},{y}_{n}\right)-F\left(x,y\right),kt\right)\phantom{\rule{2em}{0ex}}\\ \ge \mu \left({x}_{n}-x,t\right)*\mu \left({y}_{n}-y,t\right).\phantom{\rule{2em}{0ex}}\end{array}$
(3.32)
Taking the limit as n → ∞, we have μ(x - F(x, y), kt) = 1 and so x = F(x, y). Using (3.2) again, we have
$\begin{array}{ll}\hfill \nu \left({y}_{n+1}-F\left(y,x\right),kt\right)& =\nu \left(F\left(y,x\right)-{y}_{n+1},kt\right)\phantom{\rule{2em}{0ex}}\\ =\nu \left(F\left(y,x\right)-F\left({y}_{n},{x}_{n}\right),kt\right)\phantom{\rule{2em}{0ex}}\\ \le \nu \left(y-{y}_{n},t\right)◊\nu \left(x-{x}_{n},t\right)\phantom{\rule{2em}{0ex}}\\ =\nu \left({y}_{n}-y,t\right)◊\nu \left({x}_{n}-x,t\right).\phantom{\rule{2em}{0ex}}\end{array}$
(3.33)

Taking the limit as n → ∞ in both sides of (3.33), we have ν(y - F(y, x), kt) = 0 and then y = F(y, x). Therefore, F has a coupled fixed point at (x, y). This completes the proof. □

Next, we prove the existence of coupled coincidence point theorem, where we do not require that F and g are commuting.

Theorem 3.2. Let (X, ) be a partially ordered set and (X, μ, ν, *,) a IFNS such that (μ, ν) has n-property and
$a\phantom{\rule{0.3em}{0ex}}◊\phantom{\rule{0.3em}{0ex}}b\le ab\phantom{\rule{0.3em}{0ex}}\le a*b,\phantom{\rule{1em}{0ex}}\forall a,b\in \left[0,1\right].$
(3.34)
Let F : X × XX and g : XX be two mappings such that F has the mixed g-monotone property and
$\begin{array}{cc}\hfill \mu \left(F\left(x,y\right)-F\left(u,v\right),kt\right)\ge \mu \left(gx-gu,t\right)*\mu \left(gy-gv,t\right),\hfill & \hfill \forall x,y,u,v\in X,\hfill \\ \hfill \nu \left(F\left(x,y\right)-F\left(u,v\right),kt\right)\le \nu \left(gx-gu,t\right)◊\nu \left(gy-gv,t\right),\hfill & \hfill \forall x,y,u,v\in X,\hfill \end{array}$
(3.35)
for which gx gu and gy gv, where 0 <k < 1, F(X × X) g(X) and g is continuous, g(X) is complete. Suppose that either
1. (1)

F is continuous or

2. (2)

X has the following property:

3. (a)

if {x n } is a non-decreasing sequence with {x n } → x, then x n x for all n ,

4. (b)

if {y n } is a non-increasing sequence with {y n } → y, then y y n for all n .

If there exist x0, y0 X such that
$g\left({x}_{0}\right)\preccurlyeq F\left({x}_{0},{y}_{0}\right),\phantom{\rule{1em}{0ex}}g\left({y}_{0}\right)\succcurlyeq F\left({y}_{0},{x}_{0}\right),$

then F and g have a coupled coincidence point in X × X.

Proof. Using Lemma 2.13, there exists E X such that g(E) = g(X) and g : EX is one-to-one. We define a mapping $\mathcal{A}:g\left(E\right)×g\left(E\right)\to X$ by
$\mathcal{A}\left(gx,gy\right)=F\left(x,y\right),\phantom{\rule{1em}{0ex}}\forall gx,gy\in g\left(E\right).$
(3.36)
As g is one to one on g(E), so A is well-defined. Thus, it follows from (3.35) and (3.36) that
$\mu \left(\mathcal{A}\left(gx,gy\right)-\mathcal{A}\left(gu,gv\right),kt\right)\ge \mu \left(gx-gu,t\right)*\left(gy-gv,t\right)$
(3.37)
and
$\nu \left(\mathcal{A}\left(gx,gy\right)-\mathcal{A}\left(gx,gy\right),kt\right)\le \nu \left(gx-gu,t\right)◊\nu \left(gy-gv,t\right)$
(3.38)
for all gx, gy, gu, gv g(E) with gx gy and gy gv. Since F has the mixed g-monotone property, for all x, y X, we have
${x}_{1},{x}_{2}\in X,g{x}_{1}\preccurlyeq g{x}_{2}⇒F\left({x}_{1},y\right)\preccurlyeq F\left({x}_{2},y\right)$
(3.39)
and
${y}_{1},{y}_{2}\in X,g{y}_{1}\succcurlyeq g{y}_{2}⇒F\left(x,{y}_{1}\right)\preccurlyeq F\left(x,{y}_{2}\right).$
(3.40)
Thus, it follows from (3.36), (3.39) and (3.40) that, for all gx, gy g(E),
$g{x}_{1},g{x}_{2}\in g\left(E\right),g{x}_{1}\preccurlyeq g{x}_{2}⇒\mathcal{A}\left(g{x}_{1},gy\right)\preccurlyeq \mathcal{A}\left(g{x}_{2},gy\right)$
(3.41)
and
$g{y}_{1},g{y}_{2}\in g\left(E\right),g{y}_{1}\succcurlyeq g{y}_{2}⇒\mathcal{A}\left(gx,g{y}_{1}\right)\preccurlyeq \mathcal{A}\left(gx,g{y}_{2}\right),$
(3.42)

which implies that $\mathcal{A}$ has the mixed monotone property.

Suppose that the assumption (1) holds. Since F is continuous, $\mathcal{A}$ is also continuous. Using Theorem 3.1 with the mapping $\mathcal{A}$, it follows that $\mathcal{A}$ has a coupled fixed point (u, v) g(X) × g(X).

Suppose that the assumption (2) holds. We can conclude similarly in the proof of Theorem 3.1 that the mapping $\mathcal{A}$ has a coupled fixed point (u, v) g(X) × g(X).

Finally, we prove that F and g have a coupled coincidence point in X. Since (u, v) is a coupled fixed point of $\mathcal{A}$, we get
$u=\mathcal{A}\left(u,v\right),\phantom{\rule{1em}{0ex}}v=\mathcal{A}\left(v,u\right).$
(3.43)
Since (u, v) g(X) × g(X), there exists a point $\left(\stackrel{^}{u},\stackrel{^}{v}\right)\in X×X$ such that
$u=g\stackrel{^}{u},\phantom{\rule{1em}{0ex}}v=g\stackrel{^}{v}.$
(3.44)
Thus, it follows from (3.43) and (3.44) that
$g\stackrel{^}{u}=\mathcal{A}\left(g\stackrel{^}{u},g\stackrel{^}{v}\right),\phantom{\rule{1em}{0ex}}g\stackrel{^}{v}=\mathcal{A}\left(g\stackrel{^}{v},g\stackrel{^}{u}\right).$
(3.45)
Also, from (3.36) and (3.45), we get
$g\stackrel{^}{u}=F\left(\stackrel{^}{u},\stackrel{^}{v}\right),\phantom{\rule{1em}{0ex}}g\stackrel{^}{v}=F\left(\stackrel{^}{v},\stackrel{^}{u}\right).$
(3.46)

Therefore, $\left(\stackrel{^}{u},\stackrel{^}{v}\right)$ is a coupled coincidence point of F and g. This completes the proof. □

Next, we give example to validate Theorem 3.2.

Example 3.3. Let X = , a * b = aba b for all a, b [0,1] and $\theta \left(t\right)={e}^{-\frac{1}{t}}$. Then, (X, μ, ν, *,) is a complete fuzzy normed space, where
$\mu \left(x,t\right)={\left[\theta \left(t\right)\right]}^{|x|},\phantom{\rule{1em}{0ex}}\nu \left(x,t\right)=1-{\left[\theta \left(t\right)\right]}^{|x|},\phantom{\rule{1em}{0ex}}\forall x\in X,$
that (μ, ν) satisfies the n-property on X × (0, ∞). If X is endowed with the usual order as x y y - x [0, ∞), then (X, ) is a partially ordered set. Define mappings F : X × XX and g : XX by
$F\left(x,y\right)=1,\phantom{\rule{1em}{0ex}}\forall \left(x,y\right)\in X×X$
and
$g\left(x\right)=x-1,\phantom{\rule{1em}{0ex}}\forall x\in X.$
Since
$g\left(F\left(x,y\right)\right)=g\left(1\right)=0\ne 1=F\left(gx,gy\right)$
for all x, y X, the mappings F and g do not satisfy the commutative condition. Hence, Theorem 2.5 of Gordji et al. [41] cannot be applied to this example. But, by simple calculation, we see that F(X × X) g(X), g and F are continuous and F has the mixed g-monotone property. Moreover, there exist x0 = 1 and y0 = 3 with
$g\left(1\right)=0\preccurlyeq 1=F\left(1,3\right)$
and
$g\left(3\right)=2\succcurlyeq 1=F\left(3,1\right).$
Now, for any x, y, u, v X with gx gu and gy gv, we get
$\begin{array}{ll}\hfill \mu \left(F\left(x,y\right)-F\left(u,v\right),kt\right)& =\mu \left(0,kt\right)\phantom{\rule{2em}{0ex}}\\ =1\phantom{\rule{2em}{0ex}}\\ \ge \mu \left(gx-gu,t\right)*\mu \left(gy-gv,t\right)\phantom{\rule{2em}{0ex}}\end{array}$
(3.47)
and
$\begin{array}{ll}\hfill \nu \left(F\left(x,y\right)-F\left(u,v\right),kt\right)& =\nu \left(0,kt\right)\phantom{\rule{2em}{0ex}}\\ =0\phantom{\rule{2em}{0ex}}\\ \le \nu \left(gx-gu,t\right)◊\nu \left(gy-gv,t\right),\phantom{\rule{2em}{0ex}}\end{array}$
(3.48)

where 0 <k < 1. Therefore, all the conditions of Theorem 3.2 hold and so F and g have a coupled coincidence point in X × X. In fact, a point (2,2) is a coupled coincidence point of F and g.

Remark 3.4. Although Theorem 2.5 of Gordji et al. [41] is essential tool in the partially ordered fuzzy normed spaces to claim the existence of coupled coincidence points of two mappings. However, some mappings do not have the commutative property as in the above example. Therefore, it is very interesting to use Theorem 3.2 as another auxiliary tool to claim the existence of a coupled coincidence point.

## Declarations

### Acknowledgements

The first author would like to thank the Research Professional Development Project under the Science Achievement Scholarship of Thailand (SAST) and the third author would like to thank the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (under the Project NRU-CSEC No. 54000267) for financial support during the preparation of this manuscript. This project was partially completed while the first and third authors visit Department of Mathematics Education, Gyeongsang National University, Korea. Also, the second author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2011-0021821).

## Authors’ Affiliations

(1)
Department of Mathematics, King Mongkut's University of Technology Thonburi, Bang-Mod, Bangkok, 10140, Thailand
(2)
Department of Mathematics Education and the Rins, Gyeongsang National University, Chinju, 660-701, Korea

## References

1. Banach S: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund Math 1922, 3: 133–181.Google Scholar
2. Agarwal RP, Meehan M, O'Regan D: Fixed Point Theory and Applications. Cambridge University Press, Cambridge; 2001.
3. Agarwal RP, El-Gebeily MA, O'Regan D: Generalized contractions in partially ordered metric spaces. Appl Anal 2008, 87: 1–8. 10.1080/00036810701714164
4. Aleomraninejad SMA, Rezapour Sh, Shahzad N: On fixed point generalizations of Suzuki's method. Appl Math Lett 2011, 24: 1037–1040. 10.1016/j.aml.2010.12.025
5. Chang SS, Cho YJ, Kang SM, Fan JX: Common fixed point theorems for multi-valued mappings in Menger PM-spaces . Math Japon 1994, 40: 289–293.
6. Chang SS, Lee BS, Cho YJ, Chen YQ, Kang SM, Jung JS: Generalized contraction mapping principle and differential equations in probabilistic metric spaces. Proc Amer Math Soc 1996, 124: 2367–2376. 10.1090/S0002-9939-96-03289-3
7. Chang SS, Cho YJ, Lee BS, Lee GM: Fixed degree and fixed point theorems for fuzzy mappings in probabilistic metric spaces. Fuzzy Sets Syst 1997, 87: 325–334. 10.1016/0165-0114(95)00373-8
8. Cho YJ, Ha KS, Chang SS: Common fixed point theorems for compatible mappings of type (A) in non-Archimedean Menger PM-spaces. Math Japon 1997, 46: 169–179.
9. Rezaiyan R, Cho YJ, Saadati R: A common fixed point theorem in Menger probabilistic quasi-metric spaces. Chaos Solitons Fractals 2008, 37: 1153–1157. 10.1016/j.chaos.2006.10.007
10. Sintunavarat W, Cho YJ, Kumam P: Common fixed point theorems for c-distance in ordered cone metric spaces. Comput Math Appl 2011, 62: 1969–1978. 10.1016/j.camwa.2011.06.040
11. Chang SS, Cho YJ, Kang SM: Nonlinear Operator Theory in Probabilistic Metric Spaces. Nova Science Publishers, Inc., New York; 2001.Google Scholar
12. Chang SS, Cho YJ, Wu X: New version of KKM theorem in probabilistic metric spaces with applications. Appl Math Mech 1996, 17: 1009–1019. 10.1007/BF00119948
13. Cho YJ, Chang SS, Jung JS, Kang SM, Wu X: Minimax theorems in probabilistic metric spaces. Bull Austral Math Soc 1995, 51: 103–119. 10.1017/S0004972700013939
14. Grabiec M, Cho YJ, Radu V: On Nonsymmetric Topological and Probabilistic Structures. Nova Science Publishers, Inc., New York; 2006.Google Scholar
15. Ha KS, Cho YJ, Shin KY: Accretive operators in probabilistic normed spaces. Bull Korean Math Soc 1994, 31: 45–54.
16. Zadeh LA: Fuzzy sets. Inf Control 1965, 8: 338–353. 10.1016/S0019-9958(65)90241-X
17. Atanassov K: Intuitionistic fuzzy sets. In VII ITKR's Session, Sofia (June 1983 Central Science and Technical Library, Bulgarian Academy of Sciences, 1984) Edited by: Sgurev V.Google Scholar
18. Saadati R, Park JH: On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27: 331–344. 10.1016/j.chaos.2005.03.019
19. Saadati R, Sedghi S, Shobe N: Modified intuitionistic fuzzy metric spaces and some fixed point theorems. Chaos Solitons Fractals 2008, 38: 36–47. 10.1016/j.chaos.2006.11.008
20. Elnaschie MS: On the verifications of heterotic strings theory and ε (∞) theory. Chaos Solitons Fractals 2000, 11: 397–407.Google Scholar
21. Hong L, Sun JQ: Bifurcations of fuzzy nonlinear dynamical systems. Commun Nonlinear Sci Numer Simul 2006, 1: 1–12.
22. Barros LC, Bassanezi RC, Tonelli PA: Fuzzy modelling in population dynamics. Ecol Model 2000, 128: 27–33. 10.1016/S0304-3800(99)00223-9
23. Giles R: A computer program for fuzzy reasoning. Fuzzy Sets Syst 1980, 4: 221–234. 10.1016/0165-0114(80)90012-3
24. Chang SS, Cho YJ, Kim JK: Ekeland's variational principle and Caristi's coincidence theorem for set-valued mappings in probabilistic metric spaces. Periodica Math Hungarica 1996, 33: 83–92. 10.1007/BF02093505
25. Rezapour Sh: Common fixed point of self-maps in intuitionistic fuzzy metric spaces. Math Vesniki 2008, 60: 261–268.
26. Saadati R, Vaezpour SM, Cho YJ: Quicksort algorithm: application of a fixed point theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words. J Comput Appl Math 2009, 228: 219–225. 10.1016/j.cam.2008.09.013
27. Sintunavarat W, Kumam P: Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces. J Appl Math 2011, 2011: 14. Article ID 637958
28. Miheţ D: The fixed point method for fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst 2009, 160: 1663–1667. 10.1016/j.fss.2008.06.014
29. Mohiuddine SA: Stability of Jensen functional equation in intuitionistic fuzzy normed space. Chaos Solitons Fractals 2009, 42: 2989–2996. 10.1016/j.chaos.2009.04.040
30. Mohiuddinea SA, Cancanb M, Şevli H: Intuitionistic fuzzy stability of a Jensen functional equation via fixed point technique. Math Comput Model 2011, 54: 2403–2409. 10.1016/j.mcm.2011.05.049
31. Mohiuddine SA, Lohani QMD: On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos Solitons and Fractals 2009, 42: 1731–1737. 10.1016/j.chaos.2009.03.086
32. Mursaleen M, Mohiuddine SA: Statistical convergence of double sequences in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals 2009, 41: 2414–2421. 10.1016/j.chaos.2008.09.018
33. Mursaleen M, Mohiuddine SA, Edely OHH: On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces. Comput Math Appl 2010, 59: 603–611. 10.1016/j.camwa.2009.11.002
34. Mursaleen M, Mohiuddine SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J Comput Appl Math 2009,233(2):142–149. 10.1016/j.cam.2009.07.005
35. Mohiuddinea SA, Şevli H: Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space. J Comput Appl Math 2011, 235: 2137–2146. 10.1016/j.cam.2010.10.010
36. Mursaleen M, Karakaya V, Mohiuddinea SA: Schauder basis, separability and approximation property in intuitionistic fuzzy normed space. Abstr Appl Anal 2010, 2010: 14. Article ID 131868
37. Cho YJ, Huang NJ, Kang SM: Nonlinear equations for fuzzy mappings in probabilistic metric spaces. Fuzzy Sets Syst 2000, 110: 115–122. 10.1016/S0165-0114(98)00009-8
38. Cho YJ, Lan HY, Huang NJ: A system of nonlinear operator equations for a mixed family of fuzzy and crisp operators in probabilistic normed spaces. J Inequal Appl 2010, 16. 2010, Article ID 152978Google Scholar
39. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially orderedmetric spaces and applications. Nonlinear Anal 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017
40. Lakshmikantham V, Cirić L: Coupled fixed point theorems for nonlinear contractions in partially orderedmetric spaces. Nonlinear Anal 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020
41. Gordji ME, Baghani H, Cho YJ: Coupled fixed point theorems for contractions in intuitionistic fuzzy normed spaces. Math Comput Model 2011, 54: 1897–1906. 10.1016/j.mcm.2011.04.014
42. Schweize B, Sklar A: Statistical metric spaces. Pacific J Math 1960, 10: 314–334.Google Scholar
43. Mursaleen M, Mohiuddine SA: Nonlinear operators between intuitionistic fuzzy normed spaces and Fréhet differentiation. Chaos Solitons Fractals 2009, 42: 1010–1015. 10.1016/j.chaos.2009.02.041
44. Mursaleen M, Mohiuddine SA: On stability of a cubic functional equation in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals 2009, 42: 2997–3005. 10.1016/j.chaos.2009.04.041
45. Haghi RH, Rezapour Sh, Shahzad N: Some fixed point generalizations are not real generalizations. Nonlinear Anal 2011, 74: 1799–1803. 10.1016/j.na.2010.10.052