Skip to main content

Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces

Abstract

In this article, a new concept of mixed monotone-generalized contraction in partially ordered probabilistic metric spaces is introduced, and some coupled coincidence and coupled fixed point theorems are proved. The theorems Presented are an extension of many existing results in the literature and include several recent developments.

Mathematics Subject Classification: Primary 54H25; Secondary 47H10.

1 Introduction

The Banach contraction principle [1] is one of the most celebrated fixed point theorem. Many generalizations of this famous theorem and other important fixed point theorems exist in the literature (cf. [237]).

Ran and Reurings [3] proved the Banach contraction principle in partially ordered metric spaces. Recently Agarwal et al. [2] presented some new fixed point results for monotone and generalized contractive type mappings in partially ordered metric spaces. Bhaskar and Lakshmikantham [4] initiated and proved some new coupled fixed point results for mixed monotone and contraction mappings in partially ordered metric spaces. The main idea in [211] involve combining the ideas of iterative technique in the contraction mapping principle with those in the monotone technique.

In [3], Ran and Reurings proved the following Banach type principle in partially ordered metric spaces.

Theorem 1 (Ran and Reurings [3]). Let (X, ≤) be a partially ordered set such that every pair x, y X has a lower and an upper bound. Let d be a metric on X such that the metric space (X, d) is complete. Let f : XX be a continuous and monotone (that is, either decreasing or increasing) operator. Suppose that the following two assertions hold:

(1) there exists k (0, 1) such that d(f (x), f (y)) ≤ k d(x, y), for each x, y X with xy,

(2) there exists x0 X such that x0f (x0) or x0f (x0).

Then f has a unique fixed point x* X, i.e. f(x*) = x*, and for each x X, the sequence {fn(x)} of successive approximations of f starting from x converges to x* X.

The results of Ran and Reurings [3] have motivated many authors to undertake further investigation of fixed points in the field of ordered metric spaces: Agarwal et al. [2], Bhaskar and Lakshmikantham [4], Bhaskar et al. [5], Ćirić and Lakshmikantham [7], Ćirić et al. [8, 9], Lakshmikantham and Ćirić [10], Nieto and López [6, 11], Samet [1214], and others.

Fixed point theory in probabilistic metric spaces can be considered as a part of probabilistic analysis, which is a very dynamic area of mathematical research. The theory of probabilistic metric spaces was introduced in 1942 by Menger [15]. These are generalizations of metric spaces in which the distances between points are described by probability distributions rather than by numbers. Schweizer and Sklar [16, 17] studied this concept and gave some fundamental results on these spaces. In 1972, Sehgal and Bharucha-Reid [18] initiated the study of contraction mappings on probabilistic metric spaces. Since then, several results have been obtained by various authors in this direction. For more details, we refer the reader to [1927].

In [8], Ćirić et al. introduced the concept of monotone generalized contraction in partially ordered probabilistic metric spaces and proved some fixed and common fixed point theorems on such spaces.

In this article, we introduce a new concept of mixed monotone generalized contraction in partially ordered probabilistic metric spaces and we prove some coupled coincidence and coupled fixed point theorems on such spaces. Presented theorems extend many existing results in the literature, in particular, the results obtained by Bhaskar and Lakshmikantham [4], Lakshmikantham and Ćirić [10], and include several recent developments.

Throughout this article, the space of all probability distribution functions is denoted by Δ+ = {F : {-∞, +∞} → [0,1]: F is left-continuous and non-decreasing on , F(0) = 0 and F(+∞) = 1} and the subset D+ Δ+ is the set D+ = {F Δ+ : limt→+∞F(t) = 1}. The space Δ+ is partially ordered by the usual point-wise ordering of functions, i.e., FG if and only if F(t) ≤ G(t) for all t in . The maximal element for Δ+ in this order is the distribution function given by

ε 0 ( t ) = 0 , if t 0 , 1 , if t > 0 .

We refer the reader to [22] for the terminology concerning probabilistic metric spaces (also called Menger spaces).

2 Main results

We start by recalling some definitions introduced by Bhaskar and Lakshmikantham [4] and Lakshmikantham and Ćirić [10].

Definition 2 (Bhaskar and Lakshmikantham [4]). Let X be a non-empty set and A : X × XX be a given mapping. An element (x, y) X × X is said to be a coupled fixed point of A if

A ( x , y ) = x a n d A ( y , x ) = y .

Definition 3 (Lakshmikantham and Ćirić [10]). Let X be a non-empty set, A : X × XX and h : XX are given mappings.

(1) An element (x, y) X × X is said to be a coupled coincidence point of A and h if

A ( x , y ) = h ( x ) a n d A ( y , x ) = h ( y ) .

(2) An element (x, y) X × X is said to be a coupled common fixed point of A and h if

A ( x , y ) = h ( x ) = x a n d A ( y , x ) = h ( y ) = y .

(3) We say that A and h commute at (x, y) X × X if

h ( A ( x , y ) ) = A ( h ( x ) , h ( y ) ) a n d h ( A ( y , x ) ) = A ( h ( y ) , h ( x ) ) .

(4) A and h commute if

h ( A ( x , y ) ) = A ( h ( x ) , h ( y ) ) , f o r a l l ( x , y ) X × X .

Definition 4 (Lakshmikantham and Ćirić [10]). Let (X, ≤) be a partially ordered set, A : X × X → X and h : X → X are given mappings. We say that A has the mixed h-monotone property if for all x, y X, we have

x 1 , x 2 X , h ( x 1 ) h ( x 2 ) A ( x 1 , y ) A ( x 2 , y ) , y 1 , y 2 X , h ( y 1 ) h ( y 2 ) A ( x , y 1 ) A ( x , y 2 ) .

If h is the identity mapping on X, then A satisfies the mixed monotone property.

We need the following lemmas to prove our main results.

Lemma 5. Let n ≥ 1. If F D+, G1, G2, , G n : → [0,1] are non-decreasing functions and, for some k (0, 1),

F ( k t ) m i n { G 1 ( t ) , G 2 ( t ) , , G n ( t ) , F ( t ) } , t > 0 ,
(1)

then F(kt) ≥ min{G1(t), G2(t), , G n (t)} for all t > 0.

Proof. The proof is a simple adaptation of that of Lemma 3.3 in [8]. □

Lemma 6. Let (X, F, Δ) be a Menger PM-space and k (0, 1). If

min { F p , q ( k t ) , F s , v ( k t ) } = min { F p , q ( t ) , F s , v ( t ) } , f o r a l l t > 0 ,
(2)

then p = q and s = v.

Proof. From (2) it is easy to show by induction that

min { F p , q ( k n t ) , F s , v ( k n t ) } = min { F p , q ( t ) , F s , v ( t ) } , for all n 1 .
(3)

Now we shall show that min{F pq (t), F s,v (t)} = 1 for all t > 0. Suppose, to the contrary, that there exists some t0 > 0 such that min{F pq (t0), F s,v (t0)} < 1. Since (X, F) is a Menger PM space, then min{F pq (t), F s,v (t)} → 1 as t → ∞. Therefore, there exists t1 > t0 such that

min { F p q ( t 1 ) , F s , v ( t 1 ) } > min { F p q ( t 0 ) , F s , v ( t 0 ) } .
(4)

Since t0 > 0 and k (0, 1), there exists a positive integer n > 1 such that knt1 < t0. Then by the monotony of F pq (·) and Fs,v(·), it follows that min{F pq (knt1), F s,v (knt1)} ≤ min{F pq (t0), F s,v (t0)}. Hence and from (3) with t = t1, we have

min { F p q ( t 1 ) , F s , v ( t 1 ) } = min { F p q ( k n t 1 ) , F s , v ( k n t 1 ) } min { F p q ( t 0 ) , F s , v ( t 0 } ,

a contradiction with (4). Therefore min{F pq (t), F s,v (t)} = 1 for all t > 0, which implies that F pq (t) = 1 and F s,v (t) = 1 for all t > 0. Hence p = q and s = v. □

Now, we state and prove our first result.

Theorem 7. Let (X, ≤) be a partially ordered set and (X, F, Δ) be a complete Menger PM-space under a T-norm Δ of H-type (Hadžić-type). Suppose A : X × X → X and h : X → X are two mappings such that A has the h-mixed monotone property on X and, for some k (0, 1),

F A ( x , y ) , A ( u , v ) ( k t ) min { F h ( x ) , h ( u ) ( t ) , F h ( y ) , h ( v ) ( t ) , F h ( x ) , A ( x , y ) ( t ) , F h ( u ) , A ( u , v ) ( t ) , F h ( y ) , A ( y , x ) ( t ) , F h ( v ) , A ( v , u ) ( t ) }
(5)

for all x, y X for which h(x) ≤ h(u) and h(y) ≥ h(v) and all t > 0. Suppose also that A(X × X) h(X), h(X) is closed and

i f { h ( x n ) } X i s a n o n d e c r e a s i n g s e q u e n c e w i t h h ( x n ) h ( z ) i n h ( X ) t h e n h ( x n ) h ( z ) f o r a l l n h o l d ,
(6)
i f { h ( x n ) } X i s a n o n  -  d e c r e a s i n g s e q u e n c e w i t h h ( x n ) h ( z ) i n h ( X ) t h e n h ( z ) h ( x n ) f o r a l l n h o l d .
(7)

If there exist x0, y0 X such that

h ( x 0 ) A ( x 0 , y 0 ) a n d h ( y 0 ) A ( y 0 , x 0 ) ,

then A and h have a coupled coincidence point, that is, there exist p, q X such that A(p, q) = h(p) and A(q, p) = h(q).

Proof. By hypothesis, there exist (x0, y0) X × X such that h(x0) ≤ A(x0, y0) and h(y0) ≥ A(y0, x0). Since A(X × X) h(X), we can choose x1, y1 X such that h(x1) = A(x0, y0) and h(y1) = A(y0, x0). Now A(x1, y1) and A(y1, x1) are well defined. Again, from A(X × X) h(X), we can choose x2, y2 X such that h(x2) = A(x1, y1) and h(y2) = A(y1, x1). Continuing this process, we can construct sequences {x n } and {y n } in X such that

h ( x n + 1 ) = A ( x n , y n ) and h ( y n + 1 ) = A ( y n , x n ) , for all n .
(8)

We shall show that

h ( x n ) h ( x n + 1 ) , for all n
(9)

and

h ( y n ) h ( y n + 1 ) , for all n .
(10)

We shall use the mathematical induction. Let n = 0. Since h(x0) ≤ A(x0, y0) and h(y0) ≥ A(y0, x0), and as h(x1) = A(x0, y0) and h(y1) = A(y0, x0), we have h(x0) ≤ h(x1) and h(y0) ≥ h(y1). Thus (9) and (10) hold for n = 0. Suppose now that (9) and (10) hold for some fixed n . Then, since h(x n ) ≤ h(xn+1) and h(yn+1) ≤ h(y n ), and as A has the h-mixed monotone property, from (8),

h ( x n + 1 ) = A ( x n , y n ) A ( x n + 1 , y n ) and A ( y n + 1 , x n ) A ( y n , x n ) = h ( y n + 1 ) ,
(11)

and from (8),

h ( x n + 2 ) = A ( x n + 1 , y n + 1 ) A ( x n + 1 , y n ) and A ( y n + 1 , x n ) A ( y n + 1 , x n + 1 ) = h ( y n + 2 ) .
(12)

Now from (11) and (12), we get

h ( x n + 1 ) h ( x n + 2 )

and

h ( y n + 1 ) h ( y n + 2 ) .

Thus by the mathematical induction we conclude that (9) and (10) hold for all n . Therefore,

h ( x 0 ) h ( x 1 ) h ( x 2 ) h ( x 3 ) h ( x n ) h ( x n + 1 )
(13)

and

h ( y 0 ) h ( y 1 ) h ( y 2 ) h ( y 3 ) h ( y n ) h ( y n + 1 ) .
(14)

Now, from (13) and (14), we can apply (5) for (x, y) = (x n , y n ) and (u, v) = (xn+1, yn+1). Thus, for all t > 0, we have

F A ( x n , y n ) , A ( x n + 1 , y n + 1 ) ( k t ) min { F h ( x n ) , h ( x n + 1 ) ( t ) , F h ( y n ) , h ( y n + 1 ) ( t ) , F h ( x n ) , A ( x n , y n ) ( t ) , F h ( x n + 1 ) , A ( x n + 1 , y n + 1 ) ( t ) , F h ( y n ) , A ( y n , x n ) ( t ) , F h ( y n + 1 ) , A ( y n + 1 , x n + 1 ) ( t ) } .

Using (8), we obtain

F h ( x n + 1 ) , h ( x n + 2 ) ( k t ) min { F h ( x n ) , h ( x n + 1 ) ( t ) , F h ( y n ) , h ( y n + 1 ) ( t ) , F h ( x n + 1 ) , h ( x n + 2 ) ( t ) , F h ( y n + 1 ) , h ( y n + 2 ) ( t ) } .
(15)

Similarly, from (13) and (14), we can apply (5) for (x, y) = (yn+1, xn+1) and (u, v) = (y n , x n ). Thus, by using (8), for all t > 0 we get

F h ( y n + 2 ) , h ( y n + 1 ) ( k t ) min { F h ( y n + 1 ) , h ( y n ) ( t ) , F h ( x n + 1 ) , h ( x n ) ( t ) , F h ( y n + 1 ) , h ( y n + 2 ) ( t ) , F h ( x n + 1 ) , h ( x n + 2 ) ( t ) } .
(16)

From (15) and (16), we have

min { F h ( x n + 1 ) , h ( x n + 2 ) ( k t ) , F h ( y n + 1 ) , h ( y n + 2 ) ( k t ) } min { F h ( x n ) , h ( x n + 1 ) ( t ) , F h ( y n ) , h ( y n + 1 ) ( t ) , F h ( x n + 1 ) , h ( x n + 2 ) ( t ) , F h ( y n + 1 ) , h ( y n + 2 ) ( t ) } = min { F h ( x n ) , h ( x n + 1 ) ( t ) , F h ( y n ) , h ( y n + 1 ) ( t ) , min { F h ( x n + 1 ) , h ( x n + 2 ) ( t ) , F h ( y n + 1 ) , h ( y n + 2 ) ( t ) } } .

Now, from Lemma 5, we have

min { F h ( x n + 1 ) , h ( x n + 2 ) ( k t ) , F h ( y n + 1 ) , h ( y n + 2 ) ( k t ) } min { F h ( x n ) , h ( x n + 1 ) ( t ) , F h ( y n ) , h ( y n + 1 ) ( t ) }
(17)

for all t > 0. From (17) it follows that

min { F h ( x n + 1 ) , h ( x n + 2 ) ( t ) , F h ( y n + 1 ) , h ( y n + 2 ) ( t ) } min { F h ( x n ) , h ( x n + 1 ) ( t k ) , F h ( y n ) , h ( y n + 1 ) ( t k ) }
(18)

for all t > 0. Repeating the inequality (18), for all t > 0 we get

min { F h ( x n + 1 ) , h ( x n + 2 ) ( t ) , F h ( y n + 1 ) , h ( y n + 2 ) ( t ) } min { F h ( x n ) , h ( x n + 1 ) ( t k ) , F h ( y n ) , h ( y n + 1 ) ( t k ) } min { F h ( x n - 1 ) , h ( x n ) ( t k 2 ) , F h ( y n - 1 ) , h ( y n ) ( t k 2 ) } min { F h ( x 0 ) , h ( x 1 ) ( t k n + 1 ) , F h ( y 0 ) , h ( y 1 ) ( t k n + 1 ) } .

Thus

min { F h ( x n + 1 ) , h ( x n + 2 ) ( t ) , F h ( y n + 1 ) , h ( y n + 2 ) ( t ) } min { F h ( x 0 ) , h ( x 1 ) ( t k n + 1 ) , F h ( y 0 ) , h ( y 1 ) ( t k n + 1 ) } ,
(19)

for all t > 0 and n . Letting n → +∞ in (19), we obtain

lim n F h ( x n ) , h ( x n + 1 ) ( t ) = 1 , for all  t > 0 ,
(20)

and

lim n F h ( y n ) , h ( y n + 1 ) ( t ) = 1 , for all  t > 0 .
(21)

We now prove that {h(x n )} and {h(y n )} are Cauchy sequences in X. We need to show that for each δ > 0 and 0 < ε < 1, there exists a positive integer n0 = n0(δ, ε) such that

F h ( x n ) , h ( x m ) ( δ ) > 1 - ε , for all  m > n n 0 ( δ , ε )

and

F h ( y n ) , h ( y m ) ( δ ) > 1 - ε , for all  m > n n 0 ( δ , ε ) ,

that is,

min { F h ( x n ) , h ( x m ) ( δ ) , F h ( y n ) , h ( y m ) ( δ ) } > 1 - ε , for all  m > n n 0 ( δ , ε ) .
(22)

Now we shall prove that for each ρ > 0,

min { F h ( x n ) , h ( x m ) ( ρ ) , F h ( y n ) , h ( y m ) ( ρ ) } Δ m - n ( min { F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) } )
(23)

for all mn + 1. We prove (23) by the mathematical induction. Let m = n + 1. Then from monotony of F, for m = n +1 we have

F h ( x n ) , h ( x n + 1 ) ( ρ ) F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) = Δ ( F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , 1 ) Δ ( F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) ) = Δ 1 ( F h ( x n ) , h ( x n + 1 ) ( ρ - k δ ) ) Δ 1 ( min { F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) } ) .

Similarly,

F h ( y n ) , h ( y n + 1 ) ( ρ ) F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) = Δ ( F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) , 1 ) Δ ( F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) ) = Δ 1 ( F h ( y n ) , h ( y n + 1 ) ( ρ - k δ ) ) Δ 1 ( min { F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) } ) .

Then

min { F h ( x n ) , h ( x n + 1 ) ( ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ ) } Δ 1 ( min { F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) } ) ,

and (23) holds for m = n + 1.

Suppose now that (23) holds for some mn + 1. Since ρ - > 0, from the probabilistic triangle inequality, we have

F h ( x n ) , h ( x m + 1 ) ( ρ ) = F h ( x n ) , h ( x m + 1 ) ( ( ρ - k ρ ) + k ρ ) Δ ( F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( x n + 1 ) , h ( x m + 1 ) ( k ρ ) ) .
(24)

Similarly,

F h ( y n ) , h ( y m + 1 ) ( ρ ) Δ ( F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) , F h ( y n + 1 ) , h ( y m + 1 ) ( k ρ ) ) .
(25)

From (24) and (25), we get

min { F h ( x n ) , h ( x m + 1 ) ( ρ ) , F h ( y n ) , h ( y m + 1 ) ( ρ ) } Δ ( min { F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) } , min { F h ( x n + 1 ) , h ( x m + 1 ) ( k ρ ) , F h ( y n + 1 ) , h ( y m + 1 ) ( k ρ ) } ) .
(26)

Now we shall consider min { F h ( x n + 1 ) , h ( x m + 1 ) ( k ρ ) , F h ( y n + 1 ) , h ( y m + 1 ) ( k ρ ) } . From (5) and the hypothesis (23), we have

min { F h ( x n + 1 ) , h ( x m + 1 ) ( k ρ ) , F h ( y n + 1 ) , h ( y m + 1 ) ( k ρ ) } = min { F A ( x n , y n ) , A ( x m , y m ) ( k ρ ) , F A ( y n , x n ) , A ( y m , x m ) ( k ρ ) } min { F h ( x n ) , h ( x m ) ( ρ ) , F h ( y n ) , h ( y m ) ( ρ ) , F h ( x n ) , h ( x n + 1 ) ( ρ ) , F h ( x m ) , h ( x m + 1 ) ( ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ ) , F h ( y m ) , h ( y m + 1 ) ( ρ ) } = min { min { F h ( x n ) , h ( x m ) ( ρ ) , F h ( y n ) , h ( y m ) ( ρ ) } , F h ( x n ) , h ( x n + 1 ) ( ρ ) , F h ( x m ) , h ( x m + 1 ) ( ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ ) , F h ( y m ) , h ( y m + 1 ) ( ρ ) } min { Δ m n ( min { F h ( x n ) , h ( x n + 1 ) ( ρ k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ k ρ ) } ) , F h ( x n ) , h ( x n + 1 ) ( ρ ) , F h ( x m ) , h ( x m + 1 ) ( ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ ) , F h ( y m ) , h ( y m + 1 ) ( ρ ) } .
(27)

Note that from (18), for every positive integer mn, we have

min { F h ( x m ) , h ( x m + 1 ) ( ρ ) , F h ( y m ) , h ( y m + 1 ) ( ρ ) } min { F h ( x n ) , h ( x n + 1 ) ( ρ k m - n ) , F h ( y n ) , h ( y n + 1 ) ( ρ k m - n ) } min { F h ( x n ) , h ( x n + 1 ) ( ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ ) } for all  n .
(28)

Therefore, from (27) and (28), we get

min { F h ( x n + 1 ) , h ( x m + 1 ) ( k ρ ) , F h ( y n + 1 ) , h ( y m + 1 ) ( k ρ ) } min { Δ m n ( min { F h ( x n ) , h ( x n + 1 ) ( ρ k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ k ρ ) } ) , min { F h ( x n ) , h ( x n + 1 ) ( ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ ) } } .

Since ρρ - , using the monotony of F, we have

min { F h ( x n ) , h ( x n + 1 ) ( ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ ) } min { F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) } .

Then, we have

min { F h ( x n + 1 ) , h ( x m + 1 ) ( k ρ ) , F h ( y n + 1 ) , h ( y m + 1 ) ( k ρ ) } min { Δ m n ( min { F h ( x n ) , h ( x n + 1 ) ( ρ k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ k ρ ) } ) , min { F h ( x n ) , h ( x n + 1 ) ( ρ k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ k ρ ) } } .

Since {Δi(t)}i≥0is a decreasing sequence for all t > 0, we have

min { F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) } Δ m - n ( min { F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) } ) .

Then, we get

min { F h ( x n + 1 ) , h ( x m + 1 ) ( k ρ ) , F h ( y n + 1 ) , h ( y m + 1 ) ( k ρ ) } Δ m - n ( min { F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) } ) .
(29)

Now, from (26) and (29), we obtain

min { F h ( x n ) , h ( x m + 1 ) ( ρ ) , F h ( y n ) , h ( y m + 1 ) ( ρ ) } Δ ( Δ m n ( min { F h ( x n ) , h ( x n + 1 ) ( ρ k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ k ρ ) } ) , min { F h ( x n ) , h ( x n + 1 ) ( ρ k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ k ρ ) } ) = Δ m n + 1 ( min { F h ( x n ) , h ( x n + 1 ) ( ρ k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ k ρ ) } ) .

Hence and by the induction we conclude that (23) holds for all mn + 1.

Now we show that {h(x n )} and {h(y n )} are Cauchy sequences, that is, for each δ > 0 and 0 < ε < 1, there exists a positive integer n0 = n0(δ, ε) such that (22) holds. Since Δ is of H-type, then {Δn : n } is equicontinuous at 1, that is,

ε ( 0 , 1 ) r ( 0 , 1 ) s > 1 - r Δ n ( s ) > 1 - ε ( for all  n ) .

Since δ - > 0, from (20) and (21) it follows that for any 0 < r < 1 there exists a positive integer n1 = n1((δ - ), r) such that

F h ( x n ) , h ( x n + 1 ) ( δ - k δ ) > 1 - r and F h ( y n ) , h ( y n + 1 ) ( δ - k δ ) > 1 - r , for all n n 1 .

Then by (23), with min { F h ( x n ) , h ( x n + 1 ) ( ρ - k ρ ) , F h ( y n ) , h ( y n + 1 ) ( ρ - k ρ ) } =s, we conclude that (22) holds for n0(δ, ε) = n1((δ - ), r). Thus we proved that {h(x n )} and {h(y n )} are Cauchy sequences in X.

Since h(X) is complete, there is some p, q X such that

lim n h ( x n ) = h ( p ) and lim n h ( y n ) = h ( q ) ,

that is, for all t > 0,

lim n F h ( x n ) , h ( p ) ( t ) = 1 and lim n F h ( y n ) , h ( q ) ( t ) = 1 .
(30)

Now we show that (p, q) is a coupled coincidence point of A and h.

Since {h(x n )} is a non-decreasing sequence, from (30) and (6), we have

h ( x n ) h ( p ) .
(31)

Since {h(y n )} is a non-increasing sequence, from (30) and (7), we have

h ( q ) h ( y n ) .
(32)

For all t > 0 and α (0, 1), we have

F h ( p ) , A ( p , q ) ( k t ) Δ ( F h ( p ) , h ( x n + 1 ) ( k t - α k t ) , F h ( x n + 1 ) , A ( p , q ) ( k α t ) )

and

F h ( q ) , A ( q , p ) ( k t ) Δ ( F h ( q ) , h ( y n + 1 ) ( k t - α k t ) , F h ( y n + 1 ) , A ( q , p ) ( k α t ) ) .

Then

min { F h ( p ) , A ( p , q ) ( k t ) , F h ( q ) , A ( q , p ) ( k t ) } Δ ( A n , min { F h ( x n + 1 ) , A ( p , q ) ( k α t ) , F h ( y n + 1 ) , A ( q , p ) ( k α t ) } ) ,
(33)

where

A n = min { F h ( p ) , h ( x n + 1 ) ( k t - α k t ) , F h ( q ) , h ( y n + 1 ) ( k t - α k t ) } .
(34)

Now, using (31), (32) and (5), we have

F h ( x n + 1 ) , A ( p , q ) ( k α t ) = F A ( x n , y n ) , A ( p , q ) ( k α t ) min { F h ( x n ) , h ( p ) ( α t ) , F h ( y n ) , h ( q ) ( α t ) , F h ( x n ) , h ( x n + 1 ) ( α t ) , F h ( p ) , A ( p , q ) ( α t ) , F h ( y n ) , h ( y n + 1 ) ( α t ) , F h ( q ) , A ( q , p ) ( α t ) } : = B n ( α t ) = B n .
(35)

Similarly, we get

F h ( y n + 1 ) , A ( q , p ) ( k α t ) B n .
(36)

Combining (35) and (36), we obtain

min { F h ( x n + 1 ) , A ( p , q ) ( k α t ) , F h ( y n + 1 ) , A ( q , p ) ( k α t ) } B n .
(37)

Therefore, from (37) and (33), we have

min { F h ( p ) , A ( p , q ) ( k t ) , F h ( q ) , A ( q , p ) ( k t ) } Δ ( A n , B n ) .
(38)

Now, letting n → +∞ in (38), using the continuity of the T-norm Δ, (30), (20), (21) and the property Δ(1, a) = a for all a [0, 1], we get

min { F h ( p ) , A ( p , q ) ( k t ) , F h ( q ) , A ( q , p ) ( k t ) } min { F h ( p ) , A ( p , q ) ( α t ) , F h ( q ) , A ( q , p ) ( α t ) } .

Now, letting α → 1- in the above inequality, using the left-continuity of F and the monotony of F, we get

min { F h ( p ) , A ( p , q ) ( t ) , F h ( q ) , A ( q , p ) ( t ) } min { F h ( p ) , A ( p , q ) ( k t ) , F h ( q ) , A ( q , p ) ( k t ) } min { F h ( p ) , A ( p , q ) ( t ) , F h ( q ) , A ( q , p ) ( t ) } .

Hence, for all t > 0, we have

min { F h ( p ) , A ( p , q ) ( t ) , F h ( q ) , A ( q , p ) ( t ) } = min { F h ( p ) , A ( p , q ) ( k t ) , F h ( q ) , A ( q , p ) ( k t ) } .

Now, applying Lemma 6, we get

A ( p , q ) = h ( p ) and A ( q , p ) = h ( q ) ,

that is, (p, q) is a coupled coincidence point of A and h. This makes end to the proof. □

The following result is an immediate consequence of Theorem 7.

Corollary 8. Let (X, ≤) be a partially ordered set and (X, F, Δ) be a complete Menger PM-space under a T-norm Δ of H-type. Let A : X × XX be mapping satisfying the mixed monotone property, for which there exists k (0, 1) such that

F A ( x , y ) , A ( u , v ) ( k t ) min { F x , u ( t ) , F y , v ( t ) , F x , A ( x , y ) ( t ) , F u , A ( u , v ) ( t ) , F y , A ( y , x ) ( t ) , F v , A ( v , u ) ( t ) }

for all x, y X for which xu and yv and all t > 0. Suppose also that

i f { x n } X i s a n o n  -  d e c r e a s i n g s e q u e n c e w i t h x n z i n X t h e n x n z f o r a l l n h o l d , i f { x n } X i s a n o n  -  i n c r e a s i n g s e q u e n c e w i t h x n z i n X t h e n z x n f o r a l l n h o l d .

If there exist x0, y0 X such that

x 0 A ( x 0 , y 0 ) a n d y 0 A ( y 0 , x 0 ) ,

then A has a coupled fixed point, that is, there exist p, q X such that A(p, q) = p and A(q, p) = q.

Now, we prove the following result.

Theorem 9. Let (X, ≤) be a partially ordered set and (X, F, Δ) be a complete Menger PM-space under a T-norm Δ of H-type. Suppose A : X × XX and h : XX are two continuous mappings such that A(X × X) h(X), A has the h-mixed monotone property on X and h commutes with A. Suppose that for some k (0, 1),

F A ( x , y ) , A ( u , v ) ( k t ) min { F h ( x ) , h ( u ) ( t ) , F h ( y ) , h ( v ) ( t ) , F h ( x ) , A ( x , y ) ( t ) , F h ( u ) , A ( u , v ) ( t ) , F h ( y ) , A ( y , x ) ( t ) , F h ( v ) , A ( v , u ) ( t ) }

for all x, y X for which h(x) ≤ h(u) and h(y) ≥ h(v) and all t > 0. If there exist x0, y0 X such that

h ( x 0 ) A ( x 0 , y 0 ) a n d h ( y 0 ) A ( y 0 , x 0 ) ,

then A and h have a coupled coincidence point.

Proof. Following the proof of Theorem 7, {h(x n )} and {h(y n )} are Cauchy sequences in the complete Menger PM-space (X, F, Δ). Then, there is some p, q X such that

lim n h ( x n ) = p and lim n h ( y n ) = q .
(39)

Since h is continuous, we have

lim n h ( h ( x n ) ) = h ( p ) and lim n h ( h ( y n ) ) = h ( q ) .
(40)

From (8) and the commutativity of A and h, we have

h ( h ( x n + 1 ) ) = h ( A ( x n , y n ) ) = A ( h ( x n ) , h ( y n ) )
(41)

and

h ( h ( y n + 1 ) ) = h ( A ( y n , x n ) ) = A ( h ( y n ) , h ( x n ) ) .
(42)

We now show that h(p) = A(p, q) and h(q) = A(q, p). Taking the limit as n → +∞ in (41) and (42), by (39), (40) and the continuity of A, we get

h ( p ) = lim n h ( h ( x n + 1 ) ) = lim n A ( h ( x n ) , h ( y n ) ) = A ( lim n h ( x n ) , lim n h ( y n ) ) = A ( p , q )

and

h ( q ) = lim n h ( h ( y n + 1 ) ) = lim n A ( h ( y n ) , h ( x n ) ) = A ( lim n h ( y n ) , lim n h ( x n ) ) = A ( q , p ) .

Thus we proved that h(p) = A(p, q) and h(q) = A(q, p), that is, (p, q) is a coupled coincidence point of A and h. This makes end to the proof. □

The following result is an immediate consequence of Theorem 9.

Corollary 10. Let (X, ≤) be a partially ordered set and (X, F, Δ) be a complete Menger PM-space under a T-norm Δ of H-type. Let A : X × XX be a continuous mapping having the mixed monontone property, for which there exists k (0, 1) such that

F A ( x , y ) , A ( u , v ) ( k t ) min { F x , u ( t ) , F y , v ( t ) , F x , A ( x , y ) ( t ) , F u , A ( u , v ) ( t ) , F y , A ( y , x ) ( t ) , F v , A ( v , u ) ( t ) }

for all x, y X for which xu and yv and all t > 0. If there exist x0, y0 X such that

x 0 A ( x 0 , y 0 ) a n d y 0 A ( y 0 , x 0 ) ,

then A has a coupled fixed point.

Now, we end the article with two examples to illustrate our obtained results.

Example 11. Let (X, d) be a metric space defined by d(x, y) = |x - y|, where X = [0, 1] and (X, F, Δ) be the induced Menger space with F x , y ( t ) = t t + d ( x , y ) for all t > 0 and x, y X. We endow X with the natural ordering of real numbers. Let h : XX be defined as

h ( x ) = x 4 , f o r a l l x X .

Let A : X × XX be defined as

A ( x , y ) = x 4 - y 4 4 , i f x y 0 , i f x < y .

At first we shall show that the mapping A satisfies the h-mixed monotone property:

Consider x1, x2 X such that h(x1) ≤ h(x2). Since h is a non-decreasing mapping, this implies that x1x2. Now, let y X be an arbitrary point. If x1 < y, then A(x1, y) = 0 ≤ A(x2, y). If yx1, then x 1 2 - y 2 4 x 2 2 - y 2 4 , that is, A(x1, y) ≤ A(x2, y). Similarly, one can show that if y1, y2 X are such that h(y1) ≥ h(y2), then A(x, y1) ≤ A(x, y2) for all x X. Then, the mapping A satisfies the h-mixed monotone property.

Now we shall show that the mappings A and h satisfy the inequality (5). Let x, y X such that h(x) ≤ h(u) and h(y) ≥ h(v) that is, x4u4 and y4v4.

We have consider the following four cases:

Case-1: xy.

Since xu and yv, then uv. Moreover, for all t > 0, we have

F A ( x , y ) , A ( u , v ) ( t 2 ) = t 2 t 2 + d ( A ( x , y ) , A ( u , v ) ) = t 2 t 2 + x 4 - y 4 4 - u 4 - v 4 4 = 2 t 2 t + ( x 4 - u 4 ) - ( y 4 - v 4 ) 2 t 2 t + x 4 - u 4 + y 4 - v 4 min t t + x 4 - u 4 , t t + y 4 - v 4 = min { F h ( x ) , h ( u ) ( t ) , F h ( y ) , h ( v ) ( t ) } min { F h ( x ) , h ( u ) ( t ) , F h ( y ) , h ( v ) ( t ) , F h ( x ) , A ( x , y ) ( t ) , F h ( u ) , A ( u , v ) ( t ) , F h ( y ) , A ( y , x ) ( t ) , F h ( v ) , A ( v , u ) ( t ) } .

Case-2: x < y and uv.

In this case, for all t > 0, we have

F A ( x , y ) , A ( u , v ) ( t 2 ) = t 2 t 2 + d ( A ( x , y ) , A ( u , v ) ) = t 2 t 2 + 0 - u 4 - v 4 4 = 2 t 2 t + ( x 4 - v 4 ) + ( u 4 - x 4 ) 2 t 2 t + ( y 4 - v 4 ) + ( u 4 - x 4 ) = 2 t 2 t + ( u 4 - x 4 ) + ( y 4 - v 4 ) min t t + ( u 4 - x 4 ) , t t + ( y 4 - v 4 ) = min { F h ( x ) , h ( u ) ( t ) , F h ( y ) , h ( v ) ( t ) } . min { F h ( x ) , h ( u ) ( t ) , F h ( y ) , h ( v ) ( t ) , F h ( x ) , A ( x , y ) ( t ) , F h ( u ) , A ( u , v ) ( t ) , F h ( y ) , A ( y , x ) ( t ) , F h ( v ) , A ( v , u ) ( t ) } .

Case-3: x < y and u < v.

In this case, for all t > 0, we have

F A ( x , y ) , A ( u , v ) ( t 2 ) = t 2 t 2 + d ( A ( x , y ) , A ( u , v ) ) = 1 min { F h ( x ) , h ( u ) ( t ) , F h ( y ) , h ( v ) ( t ) } .

Therefore, the mappings A and h satisfy the inequality (5), as well as all the required hypotheses by Theorem 7, and (0, 0) is the coupled coincidence point of A and h.

Example 12. Consider X = [0, +∞) with

F p , q ( t ) = t t + max { p , q } i f p q 1 i f p = q

for all t > 0 and p, q X. Then, (X, F, Δ M ) is a complete Menger PM-space, where Δ M (a, b) = min(a, b) for all a, b [0, 1]. We endow X with the natural ordering of real numbers. Define the continuous mapping A: X × XX by

A ( x , y ) = x 2 ( 1 + y ) , f o r a l l x , y X .

Clearly A satisfies the mixed monotone property.

Now we shall show that the mappings A and h satisfy the inequality (5) with h(x) = x for all x X. Let (x, y), (u, v) X × X such that xu, yv and A(x, y) ≠ A(u, v). For all t > 0, we have

F A ( x , y ) , A ( u , v ) ( t 2 ) = t t + max x 1 + y , u 1 + v = t t + u 1 + v t t + u t t + max u , u 2 ( 1 + v ) = F u , A ( u , v ) ( t ) min { F x , u ( t ) , F y , v ( t ) , F x , A ( x , y ) ( t ) , F u , A ( u , v ) ( t ) , F y , A ( y , x ) ( t ) , F v , A ( v , u ) ( t ) } .

Therefore, the mappings A and h satisfy the inequality (5), as well as all the required hypotheses by Theorem 9, and (0, 0) is the coupled coincidence point of A and h, that is, 0 = A(0, 0).

Now, we endow X with the standard metric d given by d(x, y) = |x - y| for all x, y X. We have

d ( A ( 1 2 , 2 ) , A ( 1 2 , 1 ) ) = 1 a n d d ( 1 2 , 1 2 ) + d ( 2 , 1 ) 2 = 1 2 .

Then, we cannot find k [0, 1) such that

d ( A ( 1 2 , 2 ) , A ( 1 2 , 1 ) ) k 2 [ d ( 1 2 , 1 2 ) + d ( 2 , 1 ) ] .

Then, Theorem 2.1 and Theorem 2.2 of Bhaskar and Lakshmikantham [4] are not applicable in this case. Similarly, we cannot find a function φ : [0, +∞) → [0, +∞) with φ(t) < t for all t > 0 such that

d ( A ( 1 2 , 2 ) , A ( 1 2 , 1 ) ) φ d ( 1 2 , 1 2 ) + d ( 2 , 1 ) 2 .

Then, Theorem 2.1 of Lakshmikantham and Ćirić [10] is also not applicable in this case.

References

  1. Banach S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund Math 2008, 3: 133–181.

    Google Scholar 

  2. Agarwal RP, El-Gebeily MA, O'Regan D: Generalized contractions in partially ordered metric spaces. Appl Anal 2008, 87: 1–8. 10.1080/00036810701714164

    Article  MathSciNet  Google Scholar 

  3. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc Am Math Soc 2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4

    Article  MathSciNet  Google Scholar 

  4. Gnana Bhaskar T, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  Google Scholar 

  5. Gnana Bhaskar T, Lakshmikantham V, Vasundhara Devi J: Monotone iterative technique for functional differential equations with retardation and anticipation. Nonlinear Anal 2007,66(10):2237–2242. 10.1016/j.na.2006.03.013

    Article  MathSciNet  Google Scholar 

  6. Nieto JJ, López RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22: 223–239. 10.1007/s11083-005-9018-5

    Article  MathSciNet  Google Scholar 

  7. Ćirić LB, Lakshmikantham V: Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces. Stoch Anal Appl 2009,27(6):1246–1259. 10.1080/07362990903259967

    Article  MathSciNet  Google Scholar 

  8. Ćirić LB, Miheţ D, Saadati R: Monotone generalized contractions in partially ordered probabilistic metric spaces. Topol Appl 2009,156(17):2838–2844. 10.1016/j.topol.2009.08.029

    Article  Google Scholar 

  9. Ćirić LB, Cakić N, Rajović M, Ume JS: Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl 2008, Article ID 131294.

    Google Scholar 

  10. Lakshmikantham V, Ćirić LB: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal 2009,70(12):4341–4349. 10.1016/j.na.2008.09.020

    Article  MathSciNet  Google Scholar 

  11. Nieto JJ, López RR: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math Sinica, English Series 2007, 23: 2205–2212. 10.1007/s10114-005-0769-0

    Article  Google Scholar 

  12. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal 2010,72(12):4508–4517. 10.1016/j.na.2010.02.026

    Article  MathSciNet  Google Scholar 

  13. Samet B, Vetro C: Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces. Nonlinear Anal 2011, 74: 4260–4268. 10.1016/j.na.2011.04.007

    Article  MathSciNet  Google Scholar 

  14. Samet B, Yazidi H: Coupled Fixed point theorems in partially ordered ε -chainable metric spaces. J Math Comput Sci 2010,1(3):142–151.

    Google Scholar 

  15. Menger K: Statistical metric. Proc Natl Acad USA 1942, 28: 535–537. 10.1073/pnas.28.12.535

    Article  MathSciNet  Google Scholar 

  16. Schweizer B, Sklar A: Statistical metric spaces. Pacific J Math 1960, 10: 313–334.

    Article  MathSciNet  Google Scholar 

  17. Schweizer B, Sklar A: Probabilistic Metric Spaces. Elsevier North Holand, New York; 1983.

    Google Scholar 

  18. Sehgal VM, Bharucha-Reid AT: Fixed points of contraction mappings on probabilistic metric spaces. Math Syst Theory 1972, 6: 97–102. 10.1007/BF01706080

    Article  MathSciNet  Google Scholar 

  19. Ćirić LB: Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces. Chaos Solitons Fractals 2009, 42: 146–154. 10.1016/j.chaos.2008.11.010

    Article  MathSciNet  Google Scholar 

  20. Ćirić LB, Ješić SN, Ume JS: The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2008,37(3):781–791. 10.1016/j.chaos.2006.09.093

    Article  MathSciNet  Google Scholar 

  21. Fang JX, Gao Y: Common fixed point theorems under strict contractive conditions in Menger spaces. Nonlinear Anal 2009, 70: 184–193. 10.1016/j.na.2007.11.045

    Article  MathSciNet  Google Scholar 

  22. Hadžić O, Pap E: Fixed Point Theory in PM Spaces. Kluwer, Boston; 2001.

    Google Scholar 

  23. Khamsi MA, Kreinovich VY: Fixed point theorems for dissipative mappings in complete probabilistic metric spaces. Math Jap 1996, 44: 513–520.

    MathSciNet  Google Scholar 

  24. Miheţ D: A generalization of a contraction principle in probabilistic metric spaces (II). Int J Math Math Sci 2005, 5: 729–736.

    Google Scholar 

  25. Miheţ D: Fixed point theorems in probabilistic metric spaces. Chaos Solitons Fractals 2009,41(2):1014–1019. 10.1016/j.chaos.2008.04.030

    Article  MathSciNet  Google Scholar 

  26. Miheţ D: Altering distances in probabilistic Menger spaces. Nonlinear Anal 2009, 71: 2734–2738. 10.1016/j.na.2009.01.107

    Article  Google Scholar 

  27. O'Regan D, Saadati R: Nonlinear contraction theorems in probabilistic spaces. Appl Math Comput 2008, 195: 86–93. 10.1016/j.amc.2007.04.070

    Article  MathSciNet  Google Scholar 

  28. Ćirić LB: A generalization of Banach's contraction principle. Proc Am Math Soc 1974, 45: 267–273.

    Google Scholar 

  29. Ćirić LB: Coincidence and fixed points for maps on topological spaces. Topol Appl 2007, 154: 3100–3106. 10.1016/j.topol.2007.08.004

    Article  Google Scholar 

  30. Hussain N: Common fixed points in best approximation for Banach operator pairs with Ćirić Type I -contractions. J Math Anal Appl 2008, 338: 1351–1363. 10.1016/j.jmaa.2007.06.008

    Article  MathSciNet  Google Scholar 

  31. Liu Z, Guo Z, Kang SM, Lee SK: On Ćirić type mappings with nonunique fixed and periodic points. Int J Pure Appl Math 2006,26(3):399–408.

    MathSciNet  Google Scholar 

  32. Lakshmikantham V, Mohapatra RN: Theory of Fuzzy Differential Equations and Inclusions. Taylor&Francis, London 2003.

    Google Scholar 

  33. Lakshmikantham V, Koksal S: Monotone flows and rapid convergence for nonlinear partial differential equations. Taylor&Francis 2003.

    Google Scholar 

  34. Lakshmikantham V, Vatsala AS: General uniqueness and monotone iterative technique for fractional differential equations. Appl Math Lett 2008,21(8):828–834. 10.1016/j.aml.2007.09.006

    Article  MathSciNet  Google Scholar 

  35. Nashine HK, Samet B: Fixed point results for mappings satisfying ( ψ , φ ) weakly contractive condition in partially ordered metric spaces. Nonlinear Anal 2011, 74: 2201–2209. 10.1016/j.na.2010.11.024

    Article  MathSciNet  Google Scholar 

  36. Samet B: Ćirić's fixed point theorem in a cone metric space. J Nonlinear Sci Appl 2010,3(4):302–308.

    MathSciNet  Google Scholar 

  37. Singh SL, Mishra SN: On a Ljubomir Ćirić's fixed point theorem for nonexpansive type maps with applications. Indian J Pure Appl Math 2002, 33: 531–542.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is thankful to the Ministry of Science and Technological Development of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P Agarwal.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Ćirić, L., Agarwal, R.P. & Samet, B. Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces. Fixed Point Theory Appl 2011, 56 (2011). https://doi.org/10.1186/1687-1812-2011-56

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2011-56

Keywords