Open Access

On rate of convergence of various iterative schemes

  • Nawab Hussain1,
  • Arif Rafiq2Email author,
  • Boško Damjanović3 and
  • Rade Lazović4
Fixed Point Theory and Applications20112011:45

https://doi.org/10.1186/1687-1812-2011-45

Received: 11 February 2011

Accepted: 5 September 2011

Published: 5 September 2011

Abstract

In this note, by taking an counter example, we prove that the iteration process due to Agarwal et al. (J. Nonlinear Convex. Anal. 8 (1), 61-79, 2007) is faster than the Mann and Ishikawa iteration processes for Zamfirescu operators.

Keywords

iteration processesZamfirescu operator

1 Introduction

For a nonempty convex subset C of a normed space E and T : CC, (a) the Mann iteration process [1] is defined by the following sequence{x n }:
x 0 C , x n + 1 = ( 1 - b n ) x n + b n T x n , n 0 , ( M n , )
where {b n } is a sequence in [0, 1].
  1. (b)
    the sequence {x n } defined by
    x 0 C , y n = ( 1 - b n ) x n + b n T x n , x n + 1 = ( 1 - b n ) x n + b n T y n , n 0 , ( I n , )
     
where {b n }, { b n } are sequences in [0, 1] is known as the Ishikawa [2] iteration process.
  1. (c)
    the sequence {x n } defined by
    x 0 C , y n = ( 1 - b n ) x n + b n T x n , x n + 1 = ( 1 - b n ) T x n + b n T y n , n 0 , ( A R S n , )
     

where {b n }, { b n } are sequences in [0, 1] is known as the Agarwal et al. [3] iteration process.

Definition 1. [4] Suppose that {a n } and {b n } are two real convergent sequences with limits a and b, respectively. Then, {a n } is said to converge faster than {b n } if
lim n a n - a b n - b = 0 .

Theorem 2. [5] Let (X, d) be a complete metric space, and T : XX a mapping for which there exist real numbers, a, b, and c satisfying 0 < a < 1, 0 < b, c < 1 2 such that for each pair x, y X, at least one of the following is true:

(z 1) d(Tx, Ty) ≤ ad(x, y),

(z 2) d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)],

(z 3) d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)].

Then, T has a unique fixed point p and the Picard iteration { x n } n = 1 defined by
x n + 1 = T x n , n = 0 , 1 , 2 , ,

converges to p, for any x0 X.

Remark 3. An operator T that satisfies the contraction conditions (z 1) - (z 3) of Theorem 2 will be called a Zamfirescu operator [[4, 6, 7]] and is denoted by Z.

In [6, 7], Berinde introduced a new class of operators on a normed space E satisfying
| | T x - T y | | δ | | x - y | | + L | | T x - x | | ( B )

for any x, y E, 0 ≤ δ < 1 and L ≥ 0. He proved that this class is wider than the class of Zamfiresu operators.

The following results are proved in [6, 7].

Theorem 4. [7] Let C be a nonempty closed convex subset of a normed space E. Let T : CC be an operator satisfying (B). Let {x n } be defined through the iterative process (M n ). If F (T) ≠ Ø and b n = , then {x n } converges strongly to the unique fixed point of T.

Theorem 5. [6] Let C be a nonempty closed convex subset of an arbitrary Banach space E and T : CC be an operator satisfying (B). Let {x n } be defined through the iterative process I n and x0 C, where {b n } and { b n } are sequences of positive numbers in [0, 1] with {b n } satisfying b n = . Then {x n } converges strongly to the fixed point of T.

The following theorem was presented in [8].

Theorem 6. Let C be a closed convex subset of an arbitrary Banach space E. Let the Mann and Ishikawa iteration processes denoted by M n and I n , respectively, with {b n } and { b n } be real sequences satisfying (i) 0 ≤ b n , b n 1 , and (ii) b n = . Then, M n and I n converge strongly to the unique fixed point of a Zamfirescu operator T : CC, and moreover, the Mann iteration process converges faster than the Ishikawa iteration process to the fixed point of T.

Remark 7. In [9], Qing and Rhoades, by taking a counter example, showed that the Ishikawa iteration process is faster than the Mann iteration process for Zamfirescu operators. Thus, Theorem in [8] and the presentation in [9] contradict to each other (see also [10]).

In this note, we establish a general theorem to approximate fixed points of quasi-contractive

operators in a Banach space through the iteration process ARS n , due to Agarwal et al. [3]. Our result generalizes and improves upon, among others, the corresponding results of Babu and Prasad [8] and Berinde [4, 6, 7].

We also prove that the iteration process ARS n is faster than the Mann iteration process M n and the Ishikawa iteration process I n for Zamfirescu operators.

2 Main results

We now prove our main results.

Theorem 8. Let C be a nonempty closed convex subset of an arbitrary Banach space E and T : CC be an operator satisfying (B). Let {x n } be defined through the iterative process ARS n and x0 C, where {b n }, { b n } are sequences in [0, 1] satisfying b n = . Then, {x n } converges strongly to the fixed point of T.

Proof. Assume that F(T) ≠ Ø and w F(T), then using (ARS n ), we have
| | x n + 1 - w | | = | | ( 1 - b n ) T x n + b n T y n - w | | (1) = | | ( 1 - b n ) ( T x n - w ) + b n ( T y n - w ) | | (2) ( 1 - b n ) | | T x n - w | | + b n | | T y n - w | | . (3) (4)
(2.1)
Now using (B) with x = w, y = x n , and then with x = w, y = y n , we obtain the following two inequalities,
| | T x n - w | | δ | | x n - w | | ,
(2.2)
and
| | T y n - w | | δ | | y n - w | | .
(2.3)
By substituting (2.2) and (2.3) in (2.1), we obtain
| | x n + 1 - w | | ( 1 - b n ) δ | | x n - w | | + b n δ | | y n - w | | .
(2.4)
In a similar fashion, again by using (ARS n ), we can get
| | y n - w | | ( 1 - ( 1 - δ ) b n ) | | x n - w | | .
(2.5)
From (2.4) and (2.5), we have
| | x n + 1 - w | | [ 1 - ( 1 - δ ) b n ( 1 + δ b n ) ] | | x n - w | | .
(2.6)
It may be noted that for δ [0, 1) and {η n } [0, 1], the following inequality holds:
1 1 + δ η n 1 + δ .
(2.7)
From (2.6) and (2.7), we get
| | x n + 1 - w | | ( 1 - ( 1 - δ ) b n ) | | x n - w | | .
(2.8)
By (2.8) we inductively obtain
| | x n + 1 - w | | k = 0 n [ 1 - δ ( 1 - δ ) b k ] | | x 0 - w | | , n = 0 , 1 , 2 ,
(2.9)
Using the fact that 0 ≤ δ < 1, 0 ≤ b n ≤ 1, and b n = , it results that
lim n k = 0 n [ 1 - δ ( 1 - δ ) b k ] = 0 ,
which by (2.9) implies
lim n | | x n + 1 - w | | = 0 .

Consequently x n w F and this completes the proof. □

Now by an counter example, we prove that the iteration process ARS n due to Agarwal et al. [3] is faster than the Mann and Ishikawa iteration processes for Zamfirescu operators.

Example 9. [9] Suppose T : [ 0 , 1 ] [ 0 , 1 ] : = 1 2 x , b n = 0 = b n , n = 1, 2,..., 15. b n = 4 n = b n , n ≥ 16.

It is clear that T is a Zamfirescu operator with a unique fixed point 0. Also, it is easy to see that Example 9 satisfies all the conditions of Theorem 8.

Proof. Since b n = 0 = b n , n = 1, 2,..., 15, so M n = x0 = I n = ARS n , n = 1, 2,..., 16. Suppose x0 ≠ 0. For M n , I n and ARS n iteration processes, we have
M n = ( 1 - b n ) x n + b n T x n (1) = 1 - 4 n x n + 4 n 1 2 x n (2) = 1 - 2 n x n (3) = (4) = i = 1 6 n 1 - 2 i x 0 , (5) (6)
I n = ( 1 - b n ) x n + b n T ( ( 1 - b n ) x n + b n T x n ) (1) = 1 - 4 n x n + 4 n 1 2 1 - 2 n x n (2) = 1 - 2 n - 4 n x n (3) = (4) = i = 1 6 n 1 - 2 i - 4 i x 0 , (5) (6)
and
A R S n = ( 1 - b n ) T x n + b n T ( ( 1 - b n ) x n + b n T x n ) (1) = 1 - 4 n x n 2 + 4 n 1 2 1 - 2 n x n (2) = 1 2 - 4 n x n (3) = (4) = i = 1 6 n 1 2 - 4 i x 0 . (5) (6)
Now consider
A R S n - 0 M n - 0 = i = 1 6 n ( 1 2 - 4 i ) x 0 i = 1 6 n ( 1 - 2 i ) x 0 (1) = i = 1 6 n ( 1 2 - 4 i ) i = 1 6 n ( 1 - 2 i ) (2) = i = 1 6 n 1 - 1 2 - 2 i + 4 i ( 1 - 2 i ) (3) = i = 1 6 n 1 - 1 2 i i - 4 i + 8 i - 2 . (4) (5)
It is easy to see that
0 lim n i = 1 6 n 1 - 1 2 i i - 4 i + 8 i - 2 (1) lim n i = 1 6 n 1 - 1 i (2) = lim n 1 5 n (3) = 0 . (4) (5)
Hence
lim n A R S n - 0 M n - 0 = 0 .

Thus, the iteration process due to Agarwal et al. [3] converges faster than the Mann iteration process to the fixed point 0 of T.

Similarly
A R S n - 0 I n - 0 = i = 1 6 n ( 1 2 - 4 i ) x 0 i = 1 6 n ( 1 - 2 i - 4 i ) x 0 (1) = i = 1 6 n ( 1 2 - 4 i ) i = 1 6 n ( 1 - 2 i - 4 i ) (2) = i = 1 6 n 1 - 1 2 - 2 i ( 1 - 2 i - 4 i ) (3) = i = 1 6 n 1 - i 2 i - 4 i - 2 i - 4 , (4) (5)
with
0 lim n i = 1 6 n 1 - i 2 i - 4 i - 2 i - 4 (1) lim n i = 1 6 n 1 - 1 i (2) = lim n 1 5 n (3) = 0 , (4) (5)
implies
lim n A R S n - 0 I n - 0 = 0 .

Thus, the iteration process due to Agarwal et al. [3] converges faster than the Ishikawa iteration process to the fixed point 0 of T. □

Declarations

Acknowledgements

Nawab Hussain gratefully acknowledges the support provided by King Abdulaziz University during this research. Boško Damjanović and Rade Lazović are thankful to the Ministry of Science, Technology and Development, Republic of Serbia.

Authors’ Affiliations

(1)
Department of Mathematics, King Abdulaziz University
(2)
Department of Mathematics, COMSATS Institute of Information Technology
(3)
Faculty of Agriculture
(4)
Faculty of Organizational Science

References

  1. Mann WR: Mean value methods in iteration. Proc Am Math Soc 1953, 4: 506–610. 10.1090/S0002-9939-1953-0054846-3View ArticleGoogle Scholar
  2. Ishikawa S: Fixed point by a new iteration method. Proc Am Math Soc 1974,4(1):147–150.MathSciNetView ArticleGoogle Scholar
  3. Agarwal RP, O'Regan D, Sahu DR: Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J Nonlinear Convex Anal 2007,8(1):61–79.MathSciNetGoogle Scholar
  4. Berind V: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Fixed Point Theory Appl 2004,2004(2):97–105. 10.1155/S1687182004311058View ArticleGoogle Scholar
  5. Zamfirescu T: Fix point theorems in metric spaces. Archiv der Mathematik 1992, 23: 292–298.MathSciNetView ArticleGoogle Scholar
  6. Berinde V: On the convergence of the Ishikawa iteration in the class of quasi contractive operators. Acta Math Univ Comenianae, LXXIII 2004, 1: 119–126.MathSciNetGoogle Scholar
  7. Berinde V: A convergence theorem for some mean value fixed point iteration procedures. Dem Math 2005,38(1):177–184.MathSciNetGoogle Scholar
  8. Babu GVR, Prasad KNVVV: Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators. Fixed Point Theory Appl 2006, 2006: 1–6. Article ID 49615Google Scholar
  9. Qing Y, Rhoades BE: Comments on the rate of convergence between Mann and Ishikawa iterations applied to Zamfirescu operators. Fixed Point Theory Appl 2008, 2008: 1–3. Article ID 387504Google Scholar
  10. Rhoades BE: Comments on two fixed point iteration methods. J Math Anal Appl 1976, 56: 741–750. 10.1016/0022-247X(76)90038-XMathSciNetView ArticleGoogle Scholar

Copyright

© Hussain et al; licensee Springer. 2011

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.