# Generalization of fixed point theorems in ordered metric spaces concerning generalized distance

- Elham Graily
^{1}, - Seiyed Mansour Vaezpour
^{2}, - Reza Saadati
^{1}Email author and - Yeol JE Cho
^{3}

**2011**:30

https://doi.org/10.1186/1687-1812-2011-30

© Graily et al; licensee Springer. 2011

**Received: **14 March 2011

**Accepted: **11 August 2011

**Published: **11 August 2011

## Abstract

In this article, we consider ordered metric spaces concerning generalized distance and prove some fixed point theorems in these spaces. Our results generalize, improve, and simplify the proof of the previous results given by some authors.

**Mathematics Subject Classification (2000)**

47H10, 54H25

## Keywords

## 1. Introduction and Preliminary

Recently, Nieto and Rodriguez-Lopez [1, 2], Ran and Reurins [3], Petrusel and Rus [4] presented some new results in partially ordered metric spaces. Their main idea was to combine the ideas of iterative technique in the contractive mapping with these in monotone technique.

Recently, Kada et al. [5, 6] in 1996 introduced the concept of *w*-distance in a metric space and prove some fixed point theorems. For the study of fixed point theorem concerning generalized distance followed in other articles, see [5, 7–15].

The aim of this article is to use the concept of *w*-distance to generalize the fixed point theorems in partially ordered metric spaces. Our results not only generalize some fixed point theorems, but also improve and simplify the previous results.

In the sequel, we state some definitions and a lemma which we will use in our main results.

**Definition 1.1**. ([5, 8, 10]) Let (

*X*,

*d*) be a metric space. Then, a function

*p*:

*X*×

*X*→ [0, ∞) is called a

*w*-distance on X if the following conditions are satisfied:

- (a)
*p*(*x*,*z*) ≤*p*(*x*,*y*) +*p*(*y*,*z*) for any*x*,*y*,*z*∈*X*; - (b)
for any

*x*∈*X*,*p*(*x*, .) :*X*→ [0, ∞) is lower semi-continuous; - (c)
for any

*ε >*0, there exists*δ >*0 such that*p*(*x*,*z*) ≤*δ*and*p*(*z*,*y*) ≤*δ*imply*d*(*x*,*y*) ≤*ε*.

We know that a real-valued function *f* defined in a metric space *X* is said to be lower semi-continuous at a point *x*_{0} ∈ *X* if either
or
, whenever *x*_{
n
} ∈ *X* for each *n* ∈ **N** and *x*_{
n
} → *x*_{0}.

**Lemma 1.2**. ([5, 7])

*Let*(

*X*,

*d*)

*be a metric space and p be a w-distance on X. Let*{

*x*

_{ n }}, {

*y*

_{ n }}

*be sequences in X*, {

*α*

_{ n }}, {

*β*

_{ n }}

*be sequences in*[0, ∞)

*converging to zero and let x*,

*y*,

*z*∈

*X. Then, the following conditions hold:*

- (1)
*If p*(*x*_{ n },*y*) ≤*α*_{ n }*and p*(*x*_{ n },*z*) ≤*β*_{ n }*for any n*∈**N**,*then y*=*z. In particular, if p*(*x.y*) = 0*and p*(*x*,*z*) = 0,*then y*=*z;* - (2)
*If p*(*x*_{ n },*y*_{ n }) ≤*α*_{ n }*and p*(*x*_{ n },*z*) ≤*β*_{ n }*for any n*∈**N**,*then d*(*y*_{ n },*z*) → 0; - (3)
*If p*(*x*_{ n },*x*_{ m }) ≤*α*_{ n }*for any n*,*m*∈**N***with m > n, then*{*x*_{ n }}*is a Cauchy sequence;* - (4)
*If p*(*y*,*x*_{ n }) ≤*α*_{ n }*for any n*∈**N**,*then*{*x*_{ n }}*is a Cauchy sequence*.

*f*:

*X*→

*X*be an operator:

- (1)
*I*(*f*) is the set of all nonempty invariant subsets of*f*, i.e.,*I*(*f*) = {*Y*⊂*X*:*f*(*Y*) ⊂*Y*} and*F*_{ f }= {*x*∈*X*:*x*=*f*(*x*)}. - (2)
The operator

*f*is called Picard operator (briefly, PO) if there exists*x** ∈*X*such that*F*_{ f }= {*x**} and, for all*x*∈*X*, {*f*^{ n }(*x*)} converges to*x**. - (3)
The operator

*f*is called orbitally*U*-continuous for any*U*⊂*X*×*X*if the following condition holds:

*x*,

*y*]

_{≤}= {

*z*∈

*X*:

*x*≤

*z*≤

*y*}, where

*x*,

*y*∈

*X*and

*x*≤

*y*.

- (5)
If

*g*:*Y*→*Y*is an operator, then the Cartesian product of*f*and*g*is the mapping*f*×*g*:*X*×*Y*→*X*×*Y*defined by (*f*×*g*)(*x*,*y*) = (*f*(*x*),*g*(*y*)) for all (*x*,*y*) ∈*X*×*Y*. - (6)
*φ*:*R*_{+}→*R*_{+}is said to be a comparison function if it is increasing and*φ*^{ n }(*t*) → 0 as*n*→ ∞. As a consequence, we also have*φ*(*t*)*< t*for any*t >*0,*φ*(0) = 0, and*φ*is right continuous at 0.

## 2. Main Results

Now, we give the main results of this article.

**Theorem 2.1**.

*Let*(

*X*,

*d*, ≤)

*be an ordered metric space and f*:

*X*→

*X be an operator. Let p be a w-distance on*(

*X*,

*d*)

*and suppose that*

- (a)
*X*_{≤}∈*I*(*f*×*f*)*;* - (b)
*there exists x*_{0}∈*X such that*(*x*_{0},*f*(*x*_{0})) ∈*X*_{≤}*;* - (c)
(

*c*_{1})*f is orbitally continuous or*

*c*

_{2})

*f is orbitally X*

_{≤}

*-continuous and there exists a subsequence*

*of*{

*f*

^{ n }(

*x*

_{0})}

*such that*

*for any k*∈

**N**

*;*

- (d)

*Then F*_{
f
} ≠ ∅.

**Proof**. If *f*(*x*_{0}) = *x*_{0}, then the proof is completed. Let *x*_{0} ∈ *X* be such that (*x*_{0}, *f* (*x*_{0})) ∈ *X*_{≤}. By (a), since (*f* × *f* )(*X*_{≤}) ⊂ *X*_{≤}, we have (*f* × *f* )(*x*_{0}, *f* (*x*_{
o
} )) ∈ *X*_{≤} and so (*f*(*x*_{0}), *f*^{2}(*x*_{
o
} )) ∈ *X*_{≤}.

for any *n* ∈ **N**.

*n*∈

**N**. Let

*p*

_{0}=

*p*(

*x*

_{0},

*f*(

*x*

_{0})) and

*p*

_{ n }=

*p*(

*f*

^{ n }(

*x*

_{0}),

*f*

^{n+1}(

*x*

_{0})) for any

*n*∈

**N**. Then we have

*n*∈

**N**. If max{

*p*

_{n-1},

*p*

_{ n }} =

*p*

_{n-1}, then (3.1) follows. Otherwise, max{

*p*

_{n-1},

*p*

_{ n }} =

*p*

_{ n }Then, by (3.2), we have

*p*

_{ n }≤

*φ*(

*p*

_{ n }) ≤

*p*

_{ n }and so

*p*

_{ n }= 0 and (3.1) follows. By induction, we obtain

as *n* → ∞.

as *n* → ∞ for any *k >* 0. Therefore, {*f*^{
n
} (*x*_{0})} is a Cauchy sequence in *X*. Since *X* is complete, there exists *x** ∈ *X* such that *f*^{
n
} (*x*_{0}) → *x** as *n* → ∞.

*x** is a fixed point. If (

*c*

_{1}) holds, then

*f*

^{n+1}(

*x*

_{0}) →

*f*(

*x**) and, by lower semi-continuity of

*p*(

*f*

^{ n }(

*x*

_{0}), ·), we have

and *α*_{
n
} , *β*_{
n
} → 0 as *n* → ∞. Thus, by (3.3) and Lemma 1.2, we conclude that *f* (*x**) = *x**.

Now, suppose that (*c*_{2}) holds. Since
converges to *x** and *f* is *X*_{≤}-orbitally continuous, it follows that
converges to *f* (*x**). Similarly, by lower semi-continuity of *p*(*f*^{
n
} (*x*_{0}), ·), we conclude that *f* (*x**) = *x**. This completes the proof. □

**Corollary 2.2**. *Let* (*X*, *d*, ≤) *be an ordered metric space and f* : *X* → *X be an operator*.

*Let p be a w-distance on*(

*X*,

*d*)

*and suppose that*

- (a)
*X*_{≤}∈*I*(*f*×*f*)*;* - (b)
*there exists x*_{0}∈*X such that*(*x*_{0},*f*(*x*_{0})) ∈*X*_{≤}*;* - (c)
(

*c*_{1}))*f is orbitally continuous or*

*c*

_{2})

*f is orbitally X*

_{≤}

*-continuous and there exists a subsequence*

*of*{

*f*

^{ n }(

*x*

_{0})}

*such that*

*for any k*∈

**N**

*;*

- (d)

*for any*(

*x*,

*y*) ∈

*X*

_{≤},

*where*

- (e)
*the metric d is complete;* - (f)
*if*(*x*,*y*) ∈*X*_{≤}*and*(*y*,*z*) ∈*X*_{≤}*.vskip 1 mm*

*Then, F*_{
f
} ≠ ∅.

**Theorem 2.3**. *Let* (*X*, *d*, ≤) *be an ordered metric space and f* : *X* → *X be an operator*.

*Let p be a w-distance on*(

*X*,

*d*)

*and suppose that*

- (a)
*X*_{≤}∈*I*(*f*×*f*)*;* - (b)
*There exists x*_{0}∈*X such that*(*x*_{0},*f*(*x*_{0})) ∈*X*_{≤}*;* - (c)
(

*c*_{1})*f is orbitally continuous or*

*c*

_{2})

*f is orbitally X*

_{≤}

*-continuous and there exists a subsequence*

*of*{

*f*

^{ n }(

*x*

_{0})}

*such that*

*for any k*∈

**N**

*;*

- (d)

*for any*(

*x*,

*y*) ∈

*X*

_{≤},

*where*

- (e)
*the metric d is complete;* - (f)
*if x*,*y*∈*X with*(*x*,*y*) ∉*X*_{≤},*then there exists c*(*x*,*y*) ∈*X such that*(*x*,*c*(*x*,*y*)) ∈*X*_{≤}*and*(*y*,*c*(*x*,*y*)) ∈*X*_{≤}^{ . }.

*Then, f is PO*.

**Proof**. According to Theorem 2.1, there exists *x** ∈ *X* such that *f*(*x**) = *x**. Take *x* ∈ *X*.

for any *n* ∈ **N**. Thus, by Lemma 1.2, *f*^{
n
} (*x*) → *x** as *n* → ∞.

*x*,

*x*

_{0}) ∉

*X*

_{≤}, then there exists

*z*∈

*X*such that (

*x*,

*z*) ∈

*X*

_{≤}and (

*x*

_{0},

*z*) ∈

*X*

_{≤}and so

for any *n* ∈ *N*. Thus, by Lemma 1.2, we have *f*^{
n
} (*z*) → *x** as *n* → ∞. Also, since (*x*, *z*) ∈ *X*_{≤}, we have *f* ^{
n
} (*z*) → *x** as *n* → ∞. Consequently, *f* ^{
n
} (*x*) → *x** as *n* → ∞.

and so, by Lemma 2.1, *y* = *x**, i.e., *F*_{
f
} = {*x**}. This completes the proof. □

**Corollary 2.4**. *Let* (*X*, *d*, ≤) *be an ordered metric space and f* : *X* → *X be an operator*.

*Let p be a w-distance on*(

*X*,

*d*)

*and suppose that*

- (a)
*if x*,*y*∈*X with*(*x*,*y*)*X*_{≤}*there exists c*(*x*,*y*) ∈*X such that*(*x*,*c*(*x*,*y*)) ∈*X*_{≤}*and*(*y*,*c*(*x*,*y*)) ∈*X*_{≤}*;* - (b)
*X*_{≤}∈*I*(*f*×*f*)*;* - (c)
*There exists x*_{0}∈*X such that*(*x*_{0},*f*(*x*_{0})) ∈*X*_{≤}*;* - (d)
(

*d*_{1})*f is orbitally continuous or*

*d*

_{2})

*f is orbitally X*

_{≤}

*-continuous and there exists a subsequence*

*of*{

*f*

^{ n }(

*x*

_{0})}

*such that*

*for any k*∈

**N**

*;*

- (e)

*Then, f is PO*.

**Corollary 2.5**. *Let* (*X*, *d*, ≤) *be an ordered metric space and f* : *X* → *X be an operator*.

*Let p be a w-distance on*(

*X*,

*d*)

*and suppose that*

- (a)
*if x*,*y ∈**X with*(*x*,*y*)*X*_{≤},*then there exists c*(*x*,*y*) ∈*X such that*(*x*,*c*(*x*,*y*)) ∈*X*_{≤}*and*(*y*,*c*(*x*,*y*)) ∈*X*_{≤}*;* - (b)
*if*(*x*,*y*) ∈*X*_{≤}*and*(*y*,*z*) ∈*X*_{≤},*then*(*x*,*z*) ∈*X*_{≤}*;* - (c)

*Then, f is PO*.

**Corollary 2.6**. *Let* (*X*, *d*, ≤) *be an ordered metric space and f* : *X* → *X be an operator*.

*Let p be a w-distance on*(

*X*,

*d*)

*and suppose that*

- (a)
*if x*,*y*∈*X with*(*x*,*y*)*X*_{≤},*then there exists c*(*x*,*y*) ∈*X such that*(*x*,*c*(*x*,*y*)) ∈*X*_{≤}*and*(*y*,*c*(*x*,*y*)) ∈*X*_{≤}*;* - (b)
*X*_{≤}∈*I*(*f*×*f*)*;* - (c)
*there exists x*_{0}∈*X such that*(*x*_{0},*f*(*x*_{0})) ∈*X*_{≤}*;* - (d)
*if*(*x*,*y*) ∈*X*_{≤}*and*(*y*,*z*) ∈*X*_{≤},*then*(*x*,*z*) ∈*X*_{≤}*;* - (e)
(

*e*_{1})*f is orbitally continuous or*

*e*

_{2})

*f is orbitally X*

_{≤}

*-continuous and there exists a subsequence*

*of*{

*f*

^{ n }(

*x*

_{0})}

*such that*

*for any k*∈

**N**

*;*

- (f)

*Then, f is PO*.

**Corollary 2.7**. *Let* (*X*, *d*, ≤) *be an ordered metric space and f* : *X* → *X be an operator*.

*Let p be a w-distance on*(

*X*,

*d*)

*and suppose that*

- (a)
*if x*,*y*∈*X with*(*x*,*y*)*X*_{≤},*then there exists c*(*x*,*y*) ∈*X such that*(*x*,*c*(*x*,*y*)) ∈*X*_{≤}*and*(*y*,*c*(*x*,*y*)) ∈*X*_{≤}*;* - (b)
*f is increasing or decreasing;* - (c)
*there exists x*_{0}∈*X such that*(*x*_{0},*f*(*x*_{0})) ∈*X*_{≤}*;* - (d)
(

*d*_{1})*f is orbitally continuous or*

*d*

_{2})

*f is orbitally X*

_{≤}

*-continuous and there exists a subsequence*

*of*{

*f*

^{ n }(

*x*

_{0})}

*such that*

*for any k*∈

**N**

*;*

- (e)

*Then, f is PO*.

## Declarations

### Acknowledgements

The authors would like to thank the referees and area editor Professor Simeon Reich for giving useful suggestions and comments for the improvement of this article. Y. J. Cho was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-C00050).

## Authors’ Affiliations

## References

- Nieto JJ, Rodriguez-Lopez R:
**Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations.***Order*2005,**22:**223–239. 10.1007/s11083-005-9018-5MathSciNetView ArticleGoogle Scholar - Nieto JJ, Rodriguez-Lopez R:
**Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations.***Acta Math Sin Eng*2007,**23:**2205–2212. 10.1007/s10114-005-0769-0MathSciNetView ArticleGoogle Scholar - Ran AC, Breurings MC:
**A fixed point theorems in partially ordered sets and some applications to metric equations.***Proc Am Math Soc*2004,**132:**1435–1443. 10.1090/S0002-9939-03-07220-4View ArticleGoogle Scholar - Petrusel A, Rus IA:
**Fixed point theorems in ordered**L**-spaces.***Proc Amer Math Soc*2006,**134:**411–418.MathSciNetView ArticleGoogle Scholar - Kada O, Suzuki T, Takahashi W:
**Nonconvex minimization theorems and fixed point theorems in complete metric spaces.***Math Jpn*1996,**44:**381–391.MathSciNetGoogle Scholar - Suzuki T:
**Fixed point theorems in complete metric spaces.**In*Nonlinear Analysis and Convex Analysis*.*Volume 939*. Edited by: Takahashi W. RIMS, Kokyurku; 1996:173–182.Google Scholar - Suzuki T:
**Several fixed point theorem in complete metric spaces.***Yokohama Math J*1997,**44:**61–72.MathSciNetGoogle Scholar - Suzuki T:
**Generalized distance and existence theorems in complete metric spaces.***J Math Anal Appl*2001,**253:**440–458. 10.1006/jmaa.2000.7151MathSciNetView ArticleGoogle Scholar - Suzuki T, Takahashi W:
**Fixed point theorems and characterizations of metric completeness.***Topol Methods Nonlinear Anal*1996,**8:**371–382.MathSciNetGoogle Scholar - Saadati R, Vaezpour SM:
**Monotone generalized weak contractions in partially ordered metric spaces.***Fixed Point Theory*2010,**11**(2):375–382.MathSciNetGoogle Scholar - Shioji N, Suzuki T, Takahashi W:
**Contractive mappings, Kannan mappings and metric completeness.***Proc Am Math Soc*1998,**126:**3117–3124. 10.1090/S0002-9939-98-04605-XMathSciNetView ArticleGoogle Scholar - O'Regan D, Petrusel A:
**Fixed point theorems for generalized contractions in ordered metric spaces.***J Math Anal Appl*2008,**341:**1241–1252. 10.1016/j.jmaa.2007.11.026MathSciNetView ArticleGoogle Scholar - Agarwal RP, El-Gebeilly MA, O'Regan D:
**Generalized contractions in partially ordered metric spaces.***Appl Anal*2008,**87:**109–116. 10.1080/00036810701556151MathSciNetView ArticleGoogle Scholar - Wu Y:
**New fixed point theorems and applications of mixed monotone operator.***J Math Anal Appl*2008,**341:**883–893. 10.1016/j.jmaa.2007.10.063MathSciNetView ArticleGoogle Scholar - Gnana Bhaskar T, Lakshmikantham V:
**Fixed point theorems in partially ordered metric spaces and applications.***Nonlinear Anal*2006,**65:**1379–1393. 10.1016/j.na.2005.10.017MathSciNetView ArticleGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.