Skip to main content


We're creating a new version of this page. See preview

  • Research Article
  • Open Access

Fixed point indices and manifolds with collars

Fixed Point Theory and Applications20062006:87657

  • Received: 7 December 2004
  • Accepted: 24 July 2005
  • Published:


This paper concerns a formula which relates the Lefschetz number for a map to the fixed point index summed with the fixed point index of a derived map on part of the boundary of . Here is a compact manifold and is with a collar attached.


  • Differential Geometry
  • Computational Biology
  • Point Index


Authors’ Affiliations

705 Sugar Hill Drive, West Lafayette, IN 47906, USA
Mathematics Department, Purdue University, West Lafayette, IN 47907, USA


  1. Becker JC, Gottlieb DH: Vector fields and transfers. Manuscripta Mathematica 1991,72(2):111–130.MathSciNetView ArticleMATHGoogle Scholar
  2. Benjamin C-F: Fixed point indices, transfers and path fields, M.S. thesis. Purdue University, Indiana; 1990.Google Scholar
  3. Brown RF: Path fields on manifolds. Transactions of the American Mathematical Society 1965, 118: 180–191.MathSciNetView ArticleMATHGoogle Scholar
  4. Brown RF: The {L}efschetz Fixed Point Theorem. Scott, Foresman, Illinois; 1971:vi+186.Google Scholar
  5. Dold A: Fixed point index and fixed point theorem for {E}uclidean neighborhood retracts. Topology. An International Journal of Mathematics 1965, 4: 1–8. 10.1016/0040-9383(65)90044-3MathSciNetMATHGoogle Scholar
  6. Dold A: Lectures on Algebraic Topology, Die Grundlehren der mathematischen Wissenschaften. Volume 200. Springer, New York; 1972:xi+377.Google Scholar
  7. Dold A: The fixed point transfer of fibre-preserving maps. Mathematische Zeitschrift 1976,148(3):215–244. 10.1007/BF01214520MathSciNetView ArticleMATHGoogle Scholar
  8. Fadell E: Generalized normal bundles for locally-flat imbeddings. Transactions of the American Mathematical Society 1965, 114: 488–513. 10.1090/S0002-9947-1965-0179795-4MathSciNetView ArticleMATHGoogle Scholar
  9. Gottlieb DH: A de {M}oivre like formula for fixed point theory. In Fixed Point Theory and Its Applications (Berkeley, CA, 1986), Contemp. Math.. Volume 72. Edited by: Brown RF. American Mathematical Society, Rhode Island; 1988:99–105.View ArticleGoogle Scholar
  10. Gottlieb DH: A de Moivre formula for fixed point theory. ATAS de 5 Encontro Brasiliero de Topologia 1988, 53: 59–67. Universidade de Sao Paulo, Sao Carlos S.~P., BrasilMathSciNetMATHGoogle Scholar
  11. Gottlieb DH: On the index of pullback vector fields. In Differential Topology (Siegen, 1987), Lecture Notes in Math.. Volume 1350. Edited by: Koschorke U. Springer, Berlin; 1988:167–170.Google Scholar
  12. Gottlieb DH: Zeroes of pullback vector fields and fixed point theory for bodies. In Algebraic Topology (Evanston, IL, 1988), Contemp. Math.. Volume 96. American Mathematical Society, Rhode Island; 1989:163–180.View ArticleGoogle Scholar
  13. Hopf H: Abbildungsklassen -dimensionaler {M}annigfaltigkeiten. Mathematische Annalen 1927,96(1):209–224. 10.1007/BF01209163MathSciNetView ArticleMATHGoogle Scholar
  14. Hu ST: Fibrings of enveloping spaces. Proceedings of the London Mathematical Society. Third Series 1961, 11: 691–707. 10.1112/plms/s3-11.1.691MathSciNetView ArticleMATHGoogle Scholar
  15. Morse M: Singular points of vector fields under general boundary conditions. American Journal of Mathematics 1929,51(2):165–178. 10.2307/2370703MathSciNetView ArticleMATHGoogle Scholar
  16. Nash J: A path space and the {S}tiefel-{W}hitney classes. Proceedings of the National Academy of Sciences of the United States of America 1955, 41: 320–321. 10.1073/pnas.41.5.320MathSciNetView ArticleMATHGoogle Scholar
  17. Pugh CC: A generalized {P}oincaré index formula. Topology. An International Journal of Mathematics 1968, 7: 217–226. 10.1016/0040-9383(68)90002-5MathSciNetMATHGoogle Scholar


© C.-F. Benjamin and D. H. Gottlieb. 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.