Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Geometric and homotopy theoretic methods in Nielsen coincidence theory

Abstract

In classical fixed point and coincidence theory, the notion of Nielsen numbers has proved to be extremely fruitful. Here we extend it to pairs of maps between manifolds of arbitrary dimensions. This leads to estimates of the minimum numbers MCC (and MC , resp.) of path components (and of points, resp.) in the coincidence sets of those pairs of maps which are . Furthermore we deduce finiteness conditions for MC . As an application, we compute both minimum numbers explicitly in four concrete geometric sample situations. The Nielsen decomposition of a coincidence set is induced by the decomposition of a certain path space into path components. Its higher-dimensional topology captures further crucial geometric coincidence data. An analoguous approach can be used to define also Nielsen numbers of certain link maps.

[1234567891011121314]

References

  1. 1.

    Bogatyĭ SA, Gonçalves DL, Zieschang H: Coincidence theory: the minimization problem. Proceedings of the Steklov Institute of Mathematics 1999,225(2):45–77.

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Brooks RBS: On removing coincidences of two maps when only one, rather than both, of them may be deformed by a homotopy. Pacific Journal of Mathematics 1972,40(1):45–52.

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Brown RF: Wecken properties for manifolds. In Nielsen Theory and Dynamical Systems (Mass, 1992), Contemp. Math.. Volume 152. American Mathematical Society, Rhode Island; 1993:9–21.

    Google Scholar 

  4. 4.

    Conner PE, Floyd EE: Differentiable Periodic Maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F.. Volume 33. Academic Press, New York; Springer, Berlin; 1964.

    Google Scholar 

  5. 5.

    Cornea O, Lupton G, Oprea J, Tanré D: Lusternik-Schnirelmann Category, Mathematical Surveys and Monographs. Volume 103. American Mathematical Society, Rhode Island; 2003.

    Google Scholar 

  6. 6.

    Dax J-P: Étude homotopique des espaces de plongements. Annales Scientifiques de l'École Normale Supérieure. Quatrième Série (4) 1972, 5: 303–377.

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Dold A, Gonçalves DL: Self-coincidence of fibre maps. Osaka Journal of Mathematics 2005,42(2):291–307.

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Gonçalves DL, Jezierski J, Wong P: Obstruction theory and coincidences in positive codimension. Bates College, preprint, 2002

  9. 9.

    Koschorke U: Vector Fields and Other Vector Bundle Morphisms—a Singularity Approach, Lecture Notes in Mathematics. Volume 847. Springer, Berlin; 1981.

    Google Scholar 

  10. 10.

    Koschorke U: Linking and coincidence invariants. Fundamenta Mathematicae 2004, 184: 187–203.

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Koschorke U: Selfcoincidences in higher codimensions. Journal für die Reine und Angewandte Mathematik 2004, 576: 1–10.

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Koschorke U: Nielsen coincidence theory in arbitrary codimensions. to appear in to appear in Journal für die Reine und Angewandte Mathematik, 2003, http://www.math.uni-siegen.de/topology/publications.html

  13. 13.

    Koschorke U: Nonstabilized Nielsen coincidence invariants and Hopf-Ganea homomorphisms. preprint, 2005, http://www.math.uni-siegen.de/topology/publications.html

  14. 14.

    Toda H: Composition Methods in Homotopy Groups of Spheres, Annals of Mathematics Studies, no. 49. Princeton University Press, New Jersey; 1962.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ulrich Koschorke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koschorke, U. Geometric and homotopy theoretic methods in Nielsen coincidence theory. Fixed Point Theory Appl 2006, 84093 (2006). https://doi.org/10.1155/FPTA/2006/84093

Download citation

Keywords

  • Differential Geometry
  • Theoretic Method
  • Computational Biology
  • Coincidence Theory
  • Nielsen Coincidence