Skip to main content

Advertisement

You are viewing the new article page. Let us know what you think. Return to old version

Research Article | Open | Published:

Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition

Abstract

We prove the existence of coincidence point and common fixed point for mappings satisfying generalized weak contractive condition. As an application, related results on invariant approximation are derived. Our results generalize various known results in the literature.

[123456789101112131415161718]

References

  1. 1.

    Ahmed MA: Common fixed point theorems for weakly compatible mappings. The Rocky Mountain Journal of Mathematics 2003,33(4):1189–1203. 10.1216/rmjm/1181075457

  2. 2.

    Alber YaI, Guerre-Delabriere S: Principle of weakly contractive maps in Hilbert spaces. In New Results in Operator Theory and Its Applications, Oper. Theory Adv. Appl.. Volume 98. Edited by: Gohberg I, Lyubich Yu. Birkhäuser, Basel; 1997:7–22.

  3. 3.

    Beg I, Abbas M: Fixed points and best approximation in Manger convex metric spaces. Archivum Mathematicum 2005, 41: 389–397.

  4. 4.

    Beg I, Abbas M: Fixed-point theorems for weakly inward multivalued maps on a convex metric space. Demonstratio Mathematica 2006,39(1):149–160.

  5. 5.

    Beg I, Azam A: Common fixed points for commuting and compatible maps. Discussiones Mathematicae, Differential Inclusions 1996,16(2):121–135.

  6. 6.

    Brosowski B: Fixpunktsätze in der Approximationstheorie. Mathematica—Revue d'Analyse Numérique et de Théorie de l'Approximation 1969, 11 (34): 195–220.

  7. 7.

    Hussain N, Khan AR: Common fixed-point results in best approximation theory. Applied Mathematics Letters 2003,16(4):575–580. 10.1016/S0893-9659(03)00039-9

  8. 8.

    Jungck G: Common fixed points for commuting and compatible maps on compacta. Proceedings of the American Mathematical Society 1988,103(3):977–983. 10.1090/S0002-9939-1988-0947693-2

  9. 9.

    Jungck G, Rhoades BE: Fixed points for set valued functions without continuity. Indian Journal of Pure and Applied Mathematics 1998,29(3):227–238.

  10. 10.

    Kamran T: Coincidence and fixed points for hybrid strict contractions. Journal of Mathematical Analysis and Applications 2004,299(1):235–241. 10.1016/j.jmaa.2004.06.047

  11. 11.

    Kaneko H, Sessa S: Fixed point theorems for compatible multi-valued and single-valued mappings. International Journal of Mathematics and Mathematical Sciences 1989,12(2):257–262. 10.1155/S0161171289000293

  12. 12.

    Meinardus G: Invarianz bei linearen Approximationen. Archive for Rational Mechanics and Analysis 1963, 14: 301–303.

  13. 13.

    Pant RP: Common fixed points of noncommuting mappings. Journal of Mathematical Analysis and Applications 1994,188(2):436–440. 10.1006/jmaa.1994.1437

  14. 14.

    Rhoades BE: Some theorems on weakly contractive maps. Nonlinear Analysis 2001,47(4):2683–2693. 10.1016/S0362-546X(01)00388-1

  15. 15.

    Sessa S: On a weak commutativity condition of mappings in fixed point considerations. Institut Mathématique. Publications. Nouvelle Série 1982, 32(46): 149–153.

  16. 16.

    Shahzad N: Invariant approximations and R-subweakly commuting maps. Journal of Mathematical Analysis and Applications 2001,257(1):39–45. 10.1006/jmaa.2000.7274

  17. 17.

    Shahzad N: Generalized I- nonexpansive maps and best approximations in Banach spaces. Demonstratio Mathematica 2004,37(3):597–600.

  18. 18.

    Singh SP: An application of a fixed-point theorem to approximation theory. Journal of Approximation Theory 1979,25(1):89–90. 10.1016/0021-9045(79)90036-4

Download references

Author information

Correspondence to Ismat Beg.

Rights and permissions

Reprints and Permissions

About this article

Keywords

  • Differential Geometry
  • Related Result
  • Contractive Condition
  • Computational Biology
  • Common Fixed Point