Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Coincidence classes in nonorientable manifolds

Abstract

We study Nielsen coincidence theory for maps between manifolds of same dimension regardless of orientation. We use the definition of semi-index of a class, review the definition of defective classes, and study the occurrence of defective root classes. We prove a semi-index product formula for lifting maps and give conditions for the defective coincidence classes to be the only essential classes.

[12345678]

References

  1. 1.

    Brown RF, Schirmer H: Nielsen root theory and Hopf degree theory. Pacific Journal of Mathematics 2001,198(1):49–80. 10.2140/pjm.2001.198.49

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Dobreńko R, Jezierski J: The coincidence Nielsen number on nonorientable manifolds. The Rocky Mountain Journal of Mathematics 1993,23(1):67–85. 10.1216/rmjm/1181072611

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Gonçalves DL, Wong PN-S: Homogeneous spaces in coincidence theory. Matemática Contemporânea 1997, 13: 143–158. 10th Brazilian Topology Meeting (São Carlos, 1996), (P. Schweitzer, ed.), Sociedade Brasileira de Matemática

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Gonçalves DL, Wong PN-S: Nilmanifolds are {J}iang-type spaces for coincidences. Forum Mathematicum 2001,13(1):133–141. 10.1515/form.2001.002

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Jezierski J: The semi-index product formula. Polska Akademia Nauk. Fundamenta Mathematicae 1992,140(2):99–120.

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Jezierski J: The Nielsen coincidence theory on topological manifolds. Fundamenta Mathematicae 1993,143(2):167–178.

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Olum P: Mappings of manifolds and the notion of degree. Annals of Mathematics. Second Series 1953, 58: 458–480. 10.2307/1969748

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Skora R: The degree of a map between surfaces. Mathematische Annalen 1987,276(3):415–423. 10.1007/BF01450838

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Vendrúscolo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vendrúscolo, D. Coincidence classes in nonorientable manifolds. Fixed Point Theory Appl 2006, 68513 (2006). https://doi.org/10.1155/FPTA/2006/68513

Download citation

Keywords

  • Differential Geometry
  • Computational Biology
  • Product Formula
  • Root Classis
  • Coincidence Theory