Skip to content

Advertisement

  • Research Article
  • Open Access

Merging of degree and index theory

Fixed Point Theory and Applications20062006:36361

https://doi.org/10.1155/FPTA/2006/36361

  • Received: 14 January 2006
  • Accepted: 24 April 2006
  • Published:

Abstract

The topological approaches to find solutions of a coincidence equation can roughly be divided into degree and index theories. We describe how these methods can be combined. We are led to a concept of an extended degree theory for function triples which turns out to be natural in many respects. In particular, this approach is useful to find solutions of inclusion problems . As a side result, we obtain a necessary condition for a compact AR to be a topological group.

Keywords

  • Differential Geometry
  • Computational Biology
  • Index Theory

[1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768]

Authors’ Affiliations

(1)
Institute of Mathematics, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
(2)
Department of Mathematics and Computer Science (WE1), Free University of Berlin, Arnimallee 2-6, Berlin, 14195, Germany

References

  1. Akhmerov RR, Kamenskiĭ MI, Potapov AS, Rodkina AE, Sadovskiĭ BN: Measures of Noncompactness and Condensing Operators, Operator Theory: Advances and Applications. Volume 55. Birkhäuser, Basel; 1992:viii+249.View ArticleGoogle Scholar
  2. Anderson RD: Hilbert space is homeomorphic to the countable infinite product of lines. Bulletin of the American Mathematical Society 1966, 72: 515–519. 10.1090/S0002-9904-1966-11524-0MathSciNetView ArticleMATHGoogle Scholar
  3. Anderson RD, Bing RH: A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines. Bulletin of the American Mathematical Society 1968, 74: 771–792. 10.1090/S0002-9904-1968-12044-0MathSciNetView ArticleMATHGoogle Scholar
  4. Andres J, Bader R: Asymptotic boundary value problems in Banach spaces. Journal of Mathematical Analysis and Applications 2002,274(1):437–457. 10.1016/S0022-247X(02)00365-7MathSciNetView ArticleMATHGoogle Scholar
  5. Andres J, Górniewicz L: Topological Fixed Point Principles for Boundary Value Problems, Topological Fixed Point Theory and Its Applications. Volume 1. Kluwer Academic, Dordrecht; 2003:xvi+761.View ArticleMATHGoogle Scholar
  6. Andres J, Väth M: Coincidence index for noncompact mappings in nonconvex sets. Nonlinear Functional Analysis and Applications 2002,7(4):619–658.MathSciNetMATHGoogle Scholar
  7. Arens RF, Eells J Jr.: On embedding uniform and topological spaces. Pacific Journal of Mathematics 1956, 6: 397–403.MathSciNetView ArticleMATHGoogle Scholar
  8. Bader R, Kryszewski W: Fixed-point index for compositions of set-valued maps with proximally -connected values on arbitrary ANR's. Set-Valued Analysis 1994,2(3):459–480. 10.1007/BF01026835MathSciNetView ArticleMATHGoogle Scholar
  9. Beneveri P, Furi M: A degree for locally compact perturbations of Fredholm maps in Banach spaces. Abstract and Applied Analysis 2006, 2006: 20 pages.MathSciNetGoogle Scholar
  10. Bessaga C, Pełczyński A: Some remarks on homeomorphisms of -spaces. Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 1962, 10: 265–270.MathSciNetMATHGoogle Scholar
  11. Bessaga C, Pełczyński A: Selected Topics in Infinite-Dimensional Topology. PWN—Polish Scientific, Warsaw; 1975:353.MATHGoogle Scholar
  12. Borisovich YuG, Gel'man BD, Myshkis AD, Obukhovskiĭ VV: Topological methods in the theory of fixed points of multivalued mappings. Uspekhi Matematicheskikh Nauk 1980,35(1(211)):59–126, 255. Engl. transl.: Russian Mathematical Surveys 35 (1980), no. 1, 65–143MathSciNetGoogle Scholar
  13. Borisovich YuG, Gel'man BD, Myshkis AD, Obukhovskiĭ VV: Multivalued mappings. In Mathematical Analysis, Vol. 19. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow; 1982:127–230, 232. Engl. transl.: Journal of Soviet Mathematics 24 (1984), 719–791Google Scholar
  14. Borisovich YuG, Gel'man BD, Myshkis AD, Obukhovskiĭ VV: Multivalued analysis and operator inclusions. In Current Problems in Mathematics. Newest Results, Vol. 29 (Russian), Itogi Nauki i Tekhniki. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow; 1986:151–211, 215. Engl. transl.: Journal of Soviet Mathematics 39 (1987), 2772–2811Google Scholar
  15. Borsuk K: Theory of Retracts. Polish Scientific, Warszawa; 1967.MATHGoogle Scholar
  16. Bredon GE: Topology and Geometry, Graduate Texts in Mathematics. Volume 139. Springer, New York; 1993:xiv+557.MATHGoogle Scholar
  17. Deimling K: Nonlinear Functional Analysis. Springer, Berlin; 1985:xiv+450.View ArticleMATHGoogle Scholar
  18. Dugundji J: An extension of Tietze's theorem. Pacific Journal of Mathematics 1951, 1: 353–367.MathSciNetView ArticleMATHGoogle Scholar
  19. Dydak J, Kozlowski G: A generalization of the Vietoris-Begle theorem. Proceedings of the American Mathematical Society 1988,102(1):209–212. 10.1090/S0002-9939-1988-0915746-0MathSciNetView ArticleMATHGoogle Scholar
  20. Dydak J, Kozlowski G: Vietoris-Begle theorem and spectra. Proceedings of the American Mathematical Society 1991,113(2):587–592. 10.1090/S0002-9939-1991-1046999-9MathSciNetView ArticleMATHGoogle Scholar
  21. Dydak J, Segal J: Shape Theory. An Introduction, Lecture Notes in Mathematics. Volume 688. Springer, Berlin; 1978:vi+150.Google Scholar
  22. Dzedzej Z: Fixed point index theory for a class of nonacyclic multivalued maps. Dissertationes Mathematicae. Rozprawy Matematyczne 1985, 253: 53.MathSciNetMATHGoogle Scholar
  23. Eisner J, Kučera M, Väth M: Degree and global bifurcation for elliptic equations with multivalued unilateral conditions. Nonlinear Analysis 2006,64(8):1710–1736. 10.1016/j.na.2005.07.021MathSciNetView ArticleMATHGoogle Scholar
  24. Fournier G, Violette D: A fixed point index for compositions of acyclic multivalued maps in Banach spaces. In Operator Equations and Fixed Point Theorems. Volume 1. Edited by: Singh SP, Sehgal VM, Burry JHW. The MSRI-Korea, Seoul; 1986:203–224.Google Scholar
  25. Furi M, Martelli M, Vignoli A: On the solvability of nonlinear operator equations in normed spaces. Annali di Matematica Pura ed Applicata 1980, 124: 321–343. 10.1007/BF01795399MathSciNetView ArticleMATHGoogle Scholar
  26. Gabor D: The coincidence index for fundamentally contractible multivalued maps with nonconvex values. Annales Polonici Mathematici 2000,75(2):143–166.MathSciNetMATHGoogle Scholar
  27. Gabor D, Kryszewski W: A coincidence theory involving Fredholm operators of nonnegative index. Topological Methods in Nonlinear Analysis 2000,15(1):43–59.MathSciNetMATHGoogle Scholar
  28. Gaines RE, Mawhin JL: Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics. Volume 568. Springer, Berlin; 1977:i+262.Google Scholar
  29. Gęba K, Massabò I, Vignoli A: Generalized topological degree and bifurcation. In Nonlinear Functional Analysis and Its Applications (Maratea, 1985), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.. Volume 173. Edited by: Singh SP. D. Reidel, Dordrecht; 1986:55–73.View ArticleGoogle Scholar
  30. Giorgieri E, Väth M: A characterization of -epi maps with a degree. Journal of Functional Analysis 2001,187(1):183–199. 10.1006/jfan.2001.3821MathSciNetView ArticleMATHGoogle Scholar
  31. Girolo J: Approximating compact sets in normed linear spaces. Pacific Journal of Mathematics 1982,98(1):81–89.MathSciNetView ArticleMATHGoogle Scholar
  32. Górniewicz L: Topological Fixed Point Theory of Multivalued Mappings, Mathematics and Its Applications. Volume 495. Kluwer Academic, Dordrecht; 1999:x+399.View ArticleMATHGoogle Scholar
  33. Górniewicz L, Granas A, Kryszewski W: On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts. Journal of Mathematical Analysis and Applications 1991,161(2):457–473. 10.1016/0022-247X(91)90345-ZMathSciNetView ArticleMATHGoogle Scholar
  34. Granas A: Continuation method for contractive maps. Topological Methods in Nonlinear Analysis 1994,3(2):375–379.MathSciNetMATHGoogle Scholar
  35. Hadžić O: Fixed Point Theory in Topological Vector Spaces. University of Novi Sad, Institute of Mathematics, Novi Sad; 1984.MATHGoogle Scholar
  36. Hu S-T: Theory of Retracts. Wayne State University Press, Detroit; 1965:234.Google Scholar
  37. Hyers DH, Isac G, Rassias TM: Topics in Nonlinear Analysis & Applications. World Scientific, New Jersey; 1997:xiv+699.View ArticleMATHGoogle Scholar
  38. Kadec MI: Topological equivalence of all separable Banach spaces. Doklady Akademii Nauk SSSR 1966, 167: 23–25. Engl. transl.: Soviet Mathematics Doklady 7 (1966), 319–322MathSciNetGoogle Scholar
  39. Kadec MI: Proof of the topological equivalence of all separable infinite-dimensional Banach spaces. Functional Analysis and Its applications 1967,1(1):53–62. 10.1007/BF01075865MathSciNetView ArticleGoogle Scholar
  40. Kamenskiĭ MI, Obukhovskiĭ VV, Zecca P: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin; 2001.View ArticleMATHGoogle Scholar
  41. Kryszewski W: The fixed-point index for the class of compositions of acyclic set-valued maps on ANR-s. Bulletin des Sciences Mathématiques 1996,120(2):129–151.MathSciNetMATHGoogle Scholar
  42. Kryszewski W: Homotopy Properties of Set-Valued Mappings. Nicolaus Copernicus University Press, Toruń; 1997.MATHGoogle Scholar
  43. Kucharski Z: A coincidence index. Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 1976,24(4):245–252.MathSciNetMATHGoogle Scholar
  44. Leray J, Schauder J: Topologie et équations fonctionnelles. Annales Scientifiques de l'École Normale Supérieure 1934, 51: 45–78.MathSciNetMATHGoogle Scholar
  45. Mawhin J: Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. Journal of Differential Equations 1972,12(3):610–636. 10.1016/0022-0396(72)90028-9MathSciNetView ArticleMATHGoogle Scholar
  46. Mawhin J: Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conference Series in Mathematics. Volume 40. American Mathematical Society, Rhode Island; 1979:v+122.View ArticleGoogle Scholar
  47. Mawhin J: Topological degree and boundary value problems for nonlinear differential equations. In Topological Methods for Ordinary Differential Equations (Montecatini Terme, 1991), Lecture Notes in Math.. Volume 1537. Edited by: Furi M, Zecca P. Springer, Berlin; 1993:74–142. 10.1007/BFb0085076View ArticleGoogle Scholar
  48. Nirenberg L: An application of generalized degree to a class of nonlinear problems. In Troisième Colloque sur l'Analyse Fonctionnelle (Liège, 1970). Edited by: Zarantonello EH. Vander, Louvain; 1971:57–74.Google Scholar
  49. Nirenberg L: Generalized degree and nonlinear problems. In Contributions to Nonlinear Functional Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971). Academic Press, New York; 1971:1–9.Google Scholar
  50. Nussbaum RD: The fixed point index for local condensing maps. Annali di Matematica Pura ed Applicata 1971,89(1):217–258. 10.1007/BF02414948MathSciNetView ArticleMATHGoogle Scholar
  51. Nussbaum RD: Degree theory for local condensing maps. Journal of Mathematical Analysis and Applications 1972,37(3):741–766. 10.1016/0022-247X(72)90253-3MathSciNetView ArticleMATHGoogle Scholar
  52. Obukhovskiĭ VV: Topological degree for a class of noncompact multivalued mappings. In Functional Analysis, no. 23. Ul' yanovsk. Gos. Ped. Inst., Ul' yanovsk; 1984:82–93.Google Scholar
  53. Pejsachowicz J, Vignoli A: On the topological coincidence degree for perturbations of Fredholm operators. Unione Matematica Italiana. Bollettino. B. Serie V 1980,17(3):1457–1466.MathSciNetMATHGoogle Scholar
  54. Sadovskiĭ BN: Limit-compact and condensing operators. Uspekhi Matematicheskikh Nauk 1972,27(1(163)):81–146. Engl. transl.: Russian Mathematical Surveys 27 (1972), no. 1, 85–155MathSciNetGoogle Scholar
  55. Siegberg HW, Skordev G: Fixed point index and chain approximations. Pacific Journal of Mathematics 1982,102(2):455–486.MathSciNetView ArticleMATHGoogle Scholar
  56. Sklyarenko EG: Theorem on dimension-lowering maps. Bulletin L'Académie Polonaise des Science, Série des Sciences Mathématiques 1962, 10: 423–432.MATHGoogle Scholar
  57. Skrypnik IV: Nonlinear Elliptic Boundary Value Problems, Teubner Texts in Mathematics. Volume 91. BSB B. G. Teubner Verlagsgesellschaft, Leipzig; 1986:232.Google Scholar
  58. Tarafdar EU, Thompson HB: On the solvability of nonlinear noncompact operator equations. Australian Mathematical Society. Journal. Series A. 1987,43(1):103–126. 10.1017/S1446788700029025MathSciNetView ArticleMATHGoogle Scholar
  59. Väth M: Fixed point theorems and fixed point index for countably condensing maps. Topological Methods in Nonlinear Analysis 1999,13(2):341–363.MathSciNetMATHGoogle Scholar
  60. Väth M: An axiomatic approach to a coincidence index for noncompact function pairs. Topological Methods in Nonlinear Analysis 2000,16(2):307–338.MathSciNetMATHGoogle Scholar
  61. Väth M: Coincidence points of function pairs based on compactness properties. Glasgow Mathematical Journal 2002,44(2):209–230.MathSciNetView ArticleMATHGoogle Scholar
  62. Väth M: Coepi maps and generalizations of the Hopf extension theorem. Topology and Its Applications 2003,131(1):79–99. 10.1016/S0166-8641(02)00285-7MathSciNetView ArticleMATHGoogle Scholar
  63. Väth M: A general degree for function triples. in preparationGoogle Scholar
  64. Väth M: Degree and index theories for noncompact function triples. submittedGoogle Scholar
  65. Violette D, Fournier G: Un indice de point fixe pour les composées de fonctions multivoques acycliques dans des espaces de Banach. Annales des Sciences Mathématiques du Québec 1998,22(2):225–244.MathSciNetGoogle Scholar
  66. Walsh JJ: Dimension, cohomological dimension, and cell-like mappings. In Shape Theory and Geometric Topology (Dubrovnik, 1981), Lecture Notes in Math.. Volume 870. Edited by: Mardešić S, Segal J. Springer, Berlin; 1981:105–118.View ArticleGoogle Scholar
  67. Zelikova VV: On a topological degree for Vietoris type multimaps in locally convex spaces. Sborink Stateĭ Aspirantov i Studentov Matematizeskogo Fakulteta Vgu, Voronezh 1999, 45–51.Google Scholar
  68. Zvyagin VG, Ratiner NM: Oriented degree of Fredholm maps of nonnegative index and its application to global bifurcation of solutions. In Global Analysis—Studies and Applications, V, Lecture Notes in Math.. Volume 1520. Edited by: Borisovich YuG, Gliklikh YuE. Springer, Berlin; 1992:111–137. 10.1007/BFb0084718View ArticleGoogle Scholar

Copyright

Advertisement