Skip to main content

Merging of degree and index theory

Abstract

The topological approaches to find solutions of a coincidence equation can roughly be divided into degree and index theories. We describe how these methods can be combined. We are led to a concept of an extended degree theory for function triples which turns out to be natural in many respects. In particular, this approach is useful to find solutions of inclusion problems . As a side result, we obtain a necessary condition for a compact AR to be a topological group.

[1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768]

References

  1. Akhmerov RR, Kamenskiĭ MI, Potapov AS, Rodkina AE, Sadovskiĭ BN: Measures of Noncompactness and Condensing Operators, Operator Theory: Advances and Applications. Volume 55. Birkhäuser, Basel; 1992:viii+249.

    Book  Google Scholar 

  2. Anderson RD: Hilbert space is homeomorphic to the countable infinite product of lines. Bulletin of the American Mathematical Society 1966, 72: 515–519. 10.1090/S0002-9904-1966-11524-0

    MathSciNet  Article  MATH  Google Scholar 

  3. Anderson RD, Bing RH: A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines. Bulletin of the American Mathematical Society 1968, 74: 771–792. 10.1090/S0002-9904-1968-12044-0

    MathSciNet  Article  MATH  Google Scholar 

  4. Andres J, Bader R: Asymptotic boundary value problems in Banach spaces. Journal of Mathematical Analysis and Applications 2002,274(1):437–457. 10.1016/S0022-247X(02)00365-7

    MathSciNet  Article  MATH  Google Scholar 

  5. Andres J, Górniewicz L: Topological Fixed Point Principles for Boundary Value Problems, Topological Fixed Point Theory and Its Applications. Volume 1. Kluwer Academic, Dordrecht; 2003:xvi+761.

    Book  MATH  Google Scholar 

  6. Andres J, Väth M: Coincidence index for noncompact mappings in nonconvex sets. Nonlinear Functional Analysis and Applications 2002,7(4):619–658.

    MathSciNet  MATH  Google Scholar 

  7. Arens RF, Eells J Jr.: On embedding uniform and topological spaces. Pacific Journal of Mathematics 1956, 6: 397–403.

    MathSciNet  Article  MATH  Google Scholar 

  8. Bader R, Kryszewski W: Fixed-point index for compositions of set-valued maps with proximally -connected values on arbitrary ANR's. Set-Valued Analysis 1994,2(3):459–480. 10.1007/BF01026835

    MathSciNet  Article  MATH  Google Scholar 

  9. Beneveri P, Furi M: A degree for locally compact perturbations of Fredholm maps in Banach spaces. Abstract and Applied Analysis 2006, 2006: 20 pages.

    MathSciNet  Google Scholar 

  10. Bessaga C, Pełczyński A: Some remarks on homeomorphisms of -spaces. Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 1962, 10: 265–270.

    MathSciNet  MATH  Google Scholar 

  11. Bessaga C, Pełczyński A: Selected Topics in Infinite-Dimensional Topology. PWN—Polish Scientific, Warsaw; 1975:353.

    MATH  Google Scholar 

  12. Borisovich YuG, Gel'man BD, Myshkis AD, Obukhovskiĭ VV: Topological methods in the theory of fixed points of multivalued mappings. Uspekhi Matematicheskikh Nauk 1980,35(1(211)):59–126, 255. Engl. transl.: Russian Mathematical Surveys 35 (1980), no. 1, 65–143

    MathSciNet  Google Scholar 

  13. Borisovich YuG, Gel'man BD, Myshkis AD, Obukhovskiĭ VV: Multivalued mappings. In Mathematical Analysis, Vol. 19. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow; 1982:127–230, 232. Engl. transl.: Journal of Soviet Mathematics 24 (1984), 719–791

    Google Scholar 

  14. Borisovich YuG, Gel'man BD, Myshkis AD, Obukhovskiĭ VV: Multivalued analysis and operator inclusions. In Current Problems in Mathematics. Newest Results, Vol. 29 (Russian), Itogi Nauki i Tekhniki. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow; 1986:151–211, 215. Engl. transl.: Journal of Soviet Mathematics 39 (1987), 2772–2811

    Google Scholar 

  15. Borsuk K: Theory of Retracts. Polish Scientific, Warszawa; 1967.

    MATH  Google Scholar 

  16. Bredon GE: Topology and Geometry, Graduate Texts in Mathematics. Volume 139. Springer, New York; 1993:xiv+557.

    MATH  Google Scholar 

  17. Deimling K: Nonlinear Functional Analysis. Springer, Berlin; 1985:xiv+450.

    Book  MATH  Google Scholar 

  18. Dugundji J: An extension of Tietze's theorem. Pacific Journal of Mathematics 1951, 1: 353–367.

    MathSciNet  Article  MATH  Google Scholar 

  19. Dydak J, Kozlowski G: A generalization of the Vietoris-Begle theorem. Proceedings of the American Mathematical Society 1988,102(1):209–212. 10.1090/S0002-9939-1988-0915746-0

    MathSciNet  Article  MATH  Google Scholar 

  20. Dydak J, Kozlowski G: Vietoris-Begle theorem and spectra. Proceedings of the American Mathematical Society 1991,113(2):587–592. 10.1090/S0002-9939-1991-1046999-9

    MathSciNet  Article  MATH  Google Scholar 

  21. Dydak J, Segal J: Shape Theory. An Introduction, Lecture Notes in Mathematics. Volume 688. Springer, Berlin; 1978:vi+150.

    Google Scholar 

  22. Dzedzej Z: Fixed point index theory for a class of nonacyclic multivalued maps. Dissertationes Mathematicae. Rozprawy Matematyczne 1985, 253: 53.

    MathSciNet  MATH  Google Scholar 

  23. Eisner J, Kučera M, Väth M: Degree and global bifurcation for elliptic equations with multivalued unilateral conditions. Nonlinear Analysis 2006,64(8):1710–1736. 10.1016/j.na.2005.07.021

    MathSciNet  Article  MATH  Google Scholar 

  24. Fournier G, Violette D: A fixed point index for compositions of acyclic multivalued maps in Banach spaces. In Operator Equations and Fixed Point Theorems. Volume 1. Edited by: Singh SP, Sehgal VM, Burry JHW. The MSRI-Korea, Seoul; 1986:203–224.

    Google Scholar 

  25. Furi M, Martelli M, Vignoli A: On the solvability of nonlinear operator equations in normed spaces. Annali di Matematica Pura ed Applicata 1980, 124: 321–343. 10.1007/BF01795399

    MathSciNet  Article  MATH  Google Scholar 

  26. Gabor D: The coincidence index for fundamentally contractible multivalued maps with nonconvex values. Annales Polonici Mathematici 2000,75(2):143–166.

    MathSciNet  MATH  Google Scholar 

  27. Gabor D, Kryszewski W: A coincidence theory involving Fredholm operators of nonnegative index. Topological Methods in Nonlinear Analysis 2000,15(1):43–59.

    MathSciNet  MATH  Google Scholar 

  28. Gaines RE, Mawhin JL: Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics. Volume 568. Springer, Berlin; 1977:i+262.

    Google Scholar 

  29. Gęba K, Massabò I, Vignoli A: Generalized topological degree and bifurcation. In Nonlinear Functional Analysis and Its Applications (Maratea, 1985), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.. Volume 173. Edited by: Singh SP. D. Reidel, Dordrecht; 1986:55–73.

    Chapter  Google Scholar 

  30. Giorgieri E, Väth M: A characterization of -epi maps with a degree. Journal of Functional Analysis 2001,187(1):183–199. 10.1006/jfan.2001.3821

    MathSciNet  Article  MATH  Google Scholar 

  31. Girolo J: Approximating compact sets in normed linear spaces. Pacific Journal of Mathematics 1982,98(1):81–89.

    MathSciNet  Article  MATH  Google Scholar 

  32. Górniewicz L: Topological Fixed Point Theory of Multivalued Mappings, Mathematics and Its Applications. Volume 495. Kluwer Academic, Dordrecht; 1999:x+399.

    Book  MATH  Google Scholar 

  33. Górniewicz L, Granas A, Kryszewski W: On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts. Journal of Mathematical Analysis and Applications 1991,161(2):457–473. 10.1016/0022-247X(91)90345-Z

    MathSciNet  Article  MATH  Google Scholar 

  34. Granas A: Continuation method for contractive maps. Topological Methods in Nonlinear Analysis 1994,3(2):375–379.

    MathSciNet  MATH  Google Scholar 

  35. Hadžić O: Fixed Point Theory in Topological Vector Spaces. University of Novi Sad, Institute of Mathematics, Novi Sad; 1984.

    MATH  Google Scholar 

  36. Hu S-T: Theory of Retracts. Wayne State University Press, Detroit; 1965:234.

    Google Scholar 

  37. Hyers DH, Isac G, Rassias TM: Topics in Nonlinear Analysis & Applications. World Scientific, New Jersey; 1997:xiv+699.

    Book  MATH  Google Scholar 

  38. Kadec MI: Topological equivalence of all separable Banach spaces. Doklady Akademii Nauk SSSR 1966, 167: 23–25. Engl. transl.: Soviet Mathematics Doklady 7 (1966), 319–322

    MathSciNet  Google Scholar 

  39. Kadec MI: Proof of the topological equivalence of all separable infinite-dimensional Banach spaces. Functional Analysis and Its applications 1967,1(1):53–62. 10.1007/BF01075865

    MathSciNet  Article  Google Scholar 

  40. Kamenskiĭ MI, Obukhovskiĭ VV, Zecca P: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin; 2001.

    Book  MATH  Google Scholar 

  41. Kryszewski W: The fixed-point index for the class of compositions of acyclic set-valued maps on ANR-s. Bulletin des Sciences Mathématiques 1996,120(2):129–151.

    MathSciNet  MATH  Google Scholar 

  42. Kryszewski W: Homotopy Properties of Set-Valued Mappings. Nicolaus Copernicus University Press, Toruń; 1997.

    MATH  Google Scholar 

  43. Kucharski Z: A coincidence index. Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 1976,24(4):245–252.

    MathSciNet  MATH  Google Scholar 

  44. Leray J, Schauder J: Topologie et équations fonctionnelles. Annales Scientifiques de l'École Normale Supérieure 1934, 51: 45–78.

    MathSciNet  MATH  Google Scholar 

  45. Mawhin J: Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. Journal of Differential Equations 1972,12(3):610–636. 10.1016/0022-0396(72)90028-9

    MathSciNet  Article  MATH  Google Scholar 

  46. Mawhin J: Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conference Series in Mathematics. Volume 40. American Mathematical Society, Rhode Island; 1979:v+122.

    Book  Google Scholar 

  47. Mawhin J: Topological degree and boundary value problems for nonlinear differential equations. In Topological Methods for Ordinary Differential Equations (Montecatini Terme, 1991), Lecture Notes in Math.. Volume 1537. Edited by: Furi M, Zecca P. Springer, Berlin; 1993:74–142. 10.1007/BFb0085076

    Chapter  Google Scholar 

  48. Nirenberg L: An application of generalized degree to a class of nonlinear problems. In Troisième Colloque sur l'Analyse Fonctionnelle (Liège, 1970). Edited by: Zarantonello EH. Vander, Louvain; 1971:57–74.

    Google Scholar 

  49. Nirenberg L: Generalized degree and nonlinear problems. In Contributions to Nonlinear Functional Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971). Academic Press, New York; 1971:1–9.

    Google Scholar 

  50. Nussbaum RD: The fixed point index for local condensing maps. Annali di Matematica Pura ed Applicata 1971,89(1):217–258. 10.1007/BF02414948

    MathSciNet  Article  MATH  Google Scholar 

  51. Nussbaum RD: Degree theory for local condensing maps. Journal of Mathematical Analysis and Applications 1972,37(3):741–766. 10.1016/0022-247X(72)90253-3

    MathSciNet  Article  MATH  Google Scholar 

  52. Obukhovskiĭ VV: Topological degree for a class of noncompact multivalued mappings. In Functional Analysis, no. 23. Ul' yanovsk. Gos. Ped. Inst., Ul' yanovsk; 1984:82–93.

    Google Scholar 

  53. Pejsachowicz J, Vignoli A: On the topological coincidence degree for perturbations of Fredholm operators. Unione Matematica Italiana. Bollettino. B. Serie V 1980,17(3):1457–1466.

    MathSciNet  MATH  Google Scholar 

  54. Sadovskiĭ BN: Limit-compact and condensing operators. Uspekhi Matematicheskikh Nauk 1972,27(1(163)):81–146. Engl. transl.: Russian Mathematical Surveys 27 (1972), no. 1, 85–155

    MathSciNet  Google Scholar 

  55. Siegberg HW, Skordev G: Fixed point index and chain approximations. Pacific Journal of Mathematics 1982,102(2):455–486.

    MathSciNet  Article  MATH  Google Scholar 

  56. Sklyarenko EG: Theorem on dimension-lowering maps. Bulletin L'Académie Polonaise des Science, Série des Sciences Mathématiques 1962, 10: 423–432.

    MATH  Google Scholar 

  57. Skrypnik IV: Nonlinear Elliptic Boundary Value Problems, Teubner Texts in Mathematics. Volume 91. BSB B. G. Teubner Verlagsgesellschaft, Leipzig; 1986:232.

    Google Scholar 

  58. Tarafdar EU, Thompson HB: On the solvability of nonlinear noncompact operator equations. Australian Mathematical Society. Journal. Series A. 1987,43(1):103–126. 10.1017/S1446788700029025

    MathSciNet  Article  MATH  Google Scholar 

  59. Väth M: Fixed point theorems and fixed point index for countably condensing maps. Topological Methods in Nonlinear Analysis 1999,13(2):341–363.

    MathSciNet  MATH  Google Scholar 

  60. Väth M: An axiomatic approach to a coincidence index for noncompact function pairs. Topological Methods in Nonlinear Analysis 2000,16(2):307–338.

    MathSciNet  MATH  Google Scholar 

  61. Väth M: Coincidence points of function pairs based on compactness properties. Glasgow Mathematical Journal 2002,44(2):209–230.

    MathSciNet  Article  MATH  Google Scholar 

  62. Väth M: Coepi maps and generalizations of the Hopf extension theorem. Topology and Its Applications 2003,131(1):79–99. 10.1016/S0166-8641(02)00285-7

    MathSciNet  Article  MATH  Google Scholar 

  63. Väth M: A general degree for function triples. in preparation

  64. Väth M: Degree and index theories for noncompact function triples. submitted

  65. Violette D, Fournier G: Un indice de point fixe pour les composées de fonctions multivoques acycliques dans des espaces de Banach. Annales des Sciences Mathématiques du Québec 1998,22(2):225–244.

    MathSciNet  Google Scholar 

  66. Walsh JJ: Dimension, cohomological dimension, and cell-like mappings. In Shape Theory and Geometric Topology (Dubrovnik, 1981), Lecture Notes in Math.. Volume 870. Edited by: Mardešić S, Segal J. Springer, Berlin; 1981:105–118.

    Chapter  Google Scholar 

  67. Zelikova VV: On a topological degree for Vietoris type multimaps in locally convex spaces. Sborink Stateĭ Aspirantov i Studentov Matematizeskogo Fakulteta Vgu, Voronezh 1999, 45–51.

    Google Scholar 

  68. Zvyagin VG, Ratiner NM: Oriented degree of Fredholm maps of nonnegative index and its application to global bifurcation of solutions. In Global Analysis—Studies and Applications, V, Lecture Notes in Math.. Volume 1520. Edited by: Borisovich YuG, Gliklikh YuE. Springer, Berlin; 1992:111–137. 10.1007/BFb0084718

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Väth.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Väth, M. Merging of degree and index theory. Fixed Point Theory Appl 2006, 36361 (2006). https://doi.org/10.1155/FPTA/2006/36361

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/FPTA/2006/36361

Keywords

  • Differential Geometry
  • Computational Biology
  • Index Theory