Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

A base-point-free definition of the Lefschetz invariant


In classical Lefschetz-Nielsen theory, one defines the Lefschetz invariant of an endomorphism of a manifold . The definition depends on the fundamental group of , and hence on choosing a base point and a base path from to . At times, it is inconvenient or impossible to make these choices. In this paper, we use the fundamental groupoid to define a base-point-free version of the Lefschetz invariant.



  1. 1.

    Bass H: Euler characteristics and characters of discrete groups. Inventiones Mathematicae 1976,35(1):155–196. 10.1007/BF01390137

  2. 2.

    Bass H: Traces and Euler characteristics. In Homological Group Theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser.. Volume 36. Cambridge University Press, Cambridge; 1979:1–26.

  3. 3.

    Brown RF: The Lefschetz Fixed Point Theorem. Scott, Foresman, Illinois; 1971.

  4. 4.

    Geoghegan R: Nielsen fixed point theory. In Handbook of Geometric Topology. North-Holland, Amsterdam; 2002:499–521.

  5. 5.

    Hatcher A: Algebraic Topology. Cambridge University Press, Cambridge; 2002.

  6. 6.

    Jiang BJ: Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics. Volume 14. American Mathematical Society, Rhode Island; 1983.

  7. 7.

    Lück W: Transformation Groups and Algebraic K-Theory, Lecture Notes in Mathematics. Volume 1408. Mathematica Gottingensis, Springer, Berlin; 1989.

  8. 8.

    Lück W: The universal functorial Lefschetz invariant. Fundamenta Mathematicae 1999,161(1–2):167–215.

  9. 9.

    Stallings J: Centerless groups—an algebraic formulation of Gottlieb's theorem. Topology. An International Journal of Mathematics 1965,4(2):129–134. 10.1016/0040-9383(65)90060-1

Download references

Author information



Corresponding author

Correspondence to Vesta Coufal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coufal, V. A base-point-free definition of the Lefschetz invariant. Fixed Point Theory Appl 2006, 34143 (2006).

Download citation


  • Differential Geometry
  • Computational Biology