 Research Article
 Open Access
 Published:
Robustness of Mann Type Algorithm with Perturbed Mapping for Nonexpansive Mappings in Banach Spaces
Fixed Point Theory and Applications volume 2010, Article number: 734181 (2010)
Abstract
The purpose of this paper is to study the robustness of Mann type algorithm in the sense that approximately perturbed mapping does not alter the convergence of Mann type algorithm. It is proven that Mann type algorithm with perturbed mapping remains convergent in a Banach space setting where , a nonexpansive mapping, , , errors and a strongly accretive and strictly pseudocontractive mapping.
1. Introduction
Let be a nonempty closed convex subset of a real Banach space , and a nonexpansive mapping (i.e., for all ). We use to denote the set of fixed points of ; that is, . Throughout this paper it is assumed that . Construction of fixed points of nonlinear mappings is an important and active research area. In particular, iterative methods for finding fixed points of nonexpansive mappings have received vast investigation since these methods find applications in a variety of applied areas of variational inequality problems, equilibrium problems, inverse problems, partial differential equations, image recovery, and signal processing (see, e.g., [1–17]).
In 1953, Mann [18] introduced an iterative algorithm which is now referred to as Mann's algorithm. Most of the literature deals with the special case of the general Mann's algorithm; that is, for an arbitrary initial guess , the sequence is generated by the recursive manner
where is a convex subset of a Banach space is a mapping and is a sequence in the interval . It is well known that Mann's algorithm can be employed to approximate fixed points of nonexpansive mappings and zeros of (strongly) accretive mappings in Hilbert spaces and Banach spaces. Many convergence theorems have been announced and published by a large number of authors. A typical convergence result in connection with the Mann's algorithm is the following theorem proved by Ishikawa [19].
Theorem IS (see [19])
Let be a nonempty subset of a Banach space and let be a nonexpansive mapping. Let be a real sequence satisfying the following control conditions:
(a);
(b).
Let be defined by (1.1) such that for all . If is bounded then as .
The interest and importance of Theorem IS lie in the fact that strong or weak convergence of the sequence can be achieved under certain appropriate assumptions imposed on the mapping , the domain or the space . In an infinitedimensional space , Mann's algorithm has only weak convergence, in general. In fact, it is known that if the sequence is such that , then Mann's algorithm converges weakly to a fixed point of provided that the underlying space is a Hilbert space or more general, a uniformly convex Banach space which has a Fréchet differentiable norm or satisfies Opial's property. See, for example, [20, 21].
The study of the robustness of Mann's algorithm is initiated by Combettes [22] where he considered a parallel projection method algorithm in signal synthesis (design and recovery) problems in a real Hilbert space as follows:
where for each , is the (nearest point) projection of a signal onto a closed convex subset of [23] ( is interpreted as the th constraint set of the signals), is a sequence of relaxation parameters in are strictly positive weights such that , and stands for the error made in computing the projection onto at iteration . Then he proved the following robustness result of algorithm (1.2).
Theorem 1.1 (see [22]).
Assume . Assume also
(i)
(ii).
Then the sequence generated by (1.2) converges weakly to a point in .
Define a mapping by
and put
Since is a projection, the mapping is nonexpansive. Thus and algorithm (1.2) can be rewritten as
where is given by (1.3). Note that can be written as and thus is nonexpansive. Note also that . Furthermore, conditions (i) and (ii) in Theorem 1.1 can be stated as
.
Very early, some authors had considered Mann iterations in the setting of uniformly convex Banach spaces and established strong and weak convergence results for Mann iterations; see, e.g., [24, 25]. Recently, Kim and Xu [26] studied the robustness of Mann's algorithm for nonexpansive mappings in Banach spaces and extended Combettes' robustness result (Theorem 1.1 above) for projections from Hilbert spaces to the setting of uniformly convex Banach spaces.
Theorem 1.2 (see [26, Theorem 3.3]).
Assume that is a uniformly convex Banach space. Assume, in addition, that either has the KK property or satisfies Opial's property. Let be a nonexpansive mapping such that . Given an initial guess . Let be generated by the following perturbed Mann's algorithm:
where and satisfy the following properties:
(i),
(ii).
Then the sequence converges weakly to a fixed point of .
Further, Kim and Xu [26] also extended the robustness to nonexpansive mappings which are defined on subsets of a Hilbert space and to accretive operators.
Theorem 1.3 (see [26, Theorem 4.1]).
Let be a nonempty closed convex subset of a Hilbert space and a nonexpansive mapping with . Let be generated from an arbitrary via one of the following algorithms (1.7) and (1.7):
where the sequences and are such that
(i),
(ii).
Then converges weakly to a fixed point of .
Theorem 1.4 (see [26, Theorem 5.1]).
Let be a uniformly convex Banach space. Assume in addition that either has the KK property or satisfies Opial's property. Let be an accretive operator in such that . Moreover, assume that and satisfy the following properties:
(i);
(ii);
(iii), where and are two constants;
(iv).
Then the sequence generated from an arbitrary by
converges weakly to a point of .
Let be a real reflexive Banach space. Let be a nonexpansive mapping with . Assume that is strongly accretive and strictly pseudocontractive with where . In this paper, inspired by Combettes' robustness result (Theorem 1.1 above) and Kim and Xu's robustness result (Theorem 1.2 above) we will consider the robustness of Mann type algorithm with perturbed mapping, which generates, from an arbitrary initial guess , a sequence by the recursive manner
where and are sequences in and in , respectively, such that
(i);
(ii);
(iii).
More precisely, we will prove under conditions (i)–(iii) the weak convergence of the algorithm (1.9) in a uniformly convex Banach space which either has the KK property or satisfies Opial's property. This theorem extends Kim and Xu's robustness result (Theorem 1.2 above) from Mann's algorithm (1.6) with errors to Mann type algorithm (1.9) with perturbed mapping . On the other hand, we also extend Kim and Xu's robustness results (Theorems 1.3 and 1.4 above) for nonexpansive mappings which are defined on subsets of a Hilbert space and accretive operators in a uniformly convex Banach space from Mann's algorithm with errors to Mann type algorithm with perturbed mapping.
Throughout this paper, we use the following notations:
(i)stands for weak convergence and for strong convergence,
(ii) denotes the weak limit set of .
2. Preliminaries
Let be a real Banach space. Recall that the norm of is said to be Fréchet differentiable if, for each , the unit sphere of , the limit
exists and is attained uniformly in . In this case, we have
for all , where is the normalized duality map from to defined by
is the duality pairing between and , and is a function defined on such that . Examples of Banach spaces which have a Fréchet differentiable norm include and for (these spaces are actually uniformly smooth).
It is known that a Banach space is Fréchet differentiable if and only if the duality map is singlevalued and normtonorm continuous.
We need the concept of the KKproperty. A Banach space is said to have the KKproperty (the KadecKlee property) if, for any sequence in , the conditions and imply that . It is known [27, Remark 3.2] that the dual space of a reflexive Banach space with a Fréchet differentiable norm has the KKproperty.
Recall now that satisfies Opial's property [28] provided that, for each sequence in , the condition implies
It is known [28] that each enjoys this property, while does not unless . It is known [29] that any separable Banach space can be equivalently renormed so that it satisfies Opial's property.
Recall that a Banach space is said to be uniformly convex if, for each , the modulus of convexity of defined by
is positive.
We need an inequality characterization of uniform convexity.
Lemma 2.1 (see [30]).
Given a number . A real Banach space is uniformly convex if and only if there exists a continuous strictly increasing function , such that
for all and such that and .
A mapping with domain and range in is called strongly accretive if for each ,
for some . is called strictly pseudocontractive if for each ,
for some . It is easy to see that (2.8) can be rewritten as
The following proposition will be used frequently throughout this paper. For the sake of completeness, we include its proof.
Proposition 2.2.
Let be a real Banach space and a mapping.
(i)If is a strictly pseudocontractive, then is Lipschitz continuous with constant
(ii)If is strongly accretive and strictly pseudocontractive with , then for each fixed , the mapping has the following property:
Proof.

(i)
From (2.9), we derive
(2.11)
which implies that
Thus
and so is Lipschitz continuous with constant .

(ii)
From (2.8) and (2.9), we obtain
Since , we have
Consequently, for each fixed , we have
This shows that inequality (2.10) holds.
Proposition 2.3.
Let be a uniformly convex Banach space and a nonempty closed convex subset of .
(i)Reference [31] (demiclosedness principle). If is a nonexpansive mapping and if is a sequence in such that and , then .
(ii)Reference [32]. If is also bounded, then there exists a continuous, strictly increasing, and convex function (depending only on the diameter of ) with and such that
for all , and nonexpansive mappings .
We also use the following elementary lemma.
Lemma 2.4 (see [33]).
Let and be sequences of nonnegative real numbers such that and for all . Then exists.
3. Robustness of Mann Type Algorithm with Perturbed Mapping
Let be a real reflexive Banach space. Let be a nonexpansive mapping with . Assume that is strongly accretive and strictly pseudocontractive with . We now discuss the robustness of Mann type algorithm with perturbed mapping, which generates, from an initial guess , a sequence as follows:
where and are sequences in and in , respectively, such that
(i);
(ii);
(iii).
We remark that Mann type algorithm with perturbed mapping is based on Mann iteration method and steepestdescent method. Indeed, in algorithm (3.1), one iteration step "" is taken from Mann iteration method, and another iteration step "" is taken from steepestdescent method.
We first discuss some properties of algorithm (3.1).
Lemma 3.1.
Let be generated by algorithm (3.1) and let Then exists.
Proof.
We have
The conclusion of the lemma is a consequence of Lemma 2.4.
Proposition 3.2.
Let be a uniformly convex Banach space.
(i)For all and , exists.
(ii)If, in addition, the dual space of has the property, then the weak limit set of , , is a singleton.
Proof.

(i)
For integers , define the mappings and as follows:
and . It is easy to see that . First, let us show that and are nonexpansive. Indeed, for all , using Proposition 2.2 no. (ii) we have
Thus is nonexpansive (due to ) and so is .
Second, let us show that for each ,
Indeed, whenever , we have
This implies that inequality (3.5) holds for . Assume that inequality (3.5) holds for some . Consider the case of . Observe that
This shows that inequality (3.5) holds for the case of . Thus, by induction, we know that inequality (3.5) holds for all .
Now set
By Proposition 2.3 no. (ii) and noticing inequality (3.5) we deduce that
Therefore,
Since exists and and are convergent, we conclude from (3.10) that
Also, since, for all ,
it follows from (3.11) and (3.12) that exists.

(ii)
This is Lemma 3.2 of [27].
Now we can state and prove the main result of this section.
Theorem 3.3.
Assume that is a uniformly convex Banach space. Assume, in addition, that either has the property or satisfies Opial's property. Let be a nonexpansive mapping such that and strongly accretive and strictly pseudocontractive with . Given an initial guess . Let be generated by the following Mann type algorithm with perturbed mapping
where and satisfy the following properties:
(i);
(ii);
(iii).
Then the sequence converges weakly to a fixed point of .
Proof.
Fix and select a number large enough so that for all . Let satisfy for all . By Lemma 2.1, we have
It follows that
This implies that
In particular, . Due to condition (i), we must have that . Hence
However, since
we have
and, by Lemma 2.4, exists and hence, by (3.17),
Notice that, by the demiclosedness principle of , we obtain
Hence to prove that converges weakly to a fixed point of , it suffices to show that is a singleton. We distinguish two cases. First assume that has the KKproperty. Then that is a singleton is guaranteed by Proposition 3.2 no. (ii).
Next assume that satisfies Opial's property. Take and let and be subsequences of such that and , respectively. If , we reach the following contradiction:
This shows that is a singleton. The proof is therefore complete.
4. The Case Where Mappings Are Defined on Subsets
We observe that if the domain is a proper closed convex subset of , then the vectors and may not belong to . In this case the next iterate may not be well defined by (3.13). In order to consider this situation, we will use the nearest projection and for the projection to be nonexpansive, we have to restrict our spaces to be Hilbert spaces.
Let be a real Hilbert space with inner product and norm . Given a closed convex subset of . Recall that the (nearest point) projection from onto assigns each point with its (unique) nearest point in which is denoted by . Namely, is the unique point in with the property
Note that is nonexpansive.
Let be a nonexpansive mapping with and strongly monotone and strictly pseudocontractive with . Starting with and after in is defined, we have two ways to define the next iterate : either applying the projection to the vectors and and defining as the convex combination of and , or projecting a convex combination of and onto to define . More precisely, we define as follows:
or
Theorem 4.1.
Let be a nonempty closed convex subset of a Hilbert space . Let be a nonexpansive mapping with and strongly monotone and strictly pseudocontractive with . Let be generated by either (4.2) or (4.3) where the sequences and are such that
(i);
(ii);
(iii).
Then converges weakly to a fixed point of .
Proof.
Given . Assume that is generated by (4.2). Then
Hence exists; in particular, is bounded. Let be a constant such that for all .
We compute
That is,
This implies that
In particular (noticing assumption (i)),
We also have
Moreover, noticing
we have
Similarly, if is generated by algorithm (4.3), then relations (4.4)–(4.11) still hold.
It is now readily seen that (4.11) together with Lemma 2.4 implies that exists, which together with (4.8) further implies that
Equation (4.12) implies that , due to the demiclosedness principle. Finally, repeating the last part of the proof of Theorem 3.3 in the case of Opial's property, we see that converges weakly to a fixed point of . The proof is therefore complete.
Finally in this section, we consider the case of accretive operators. Recall that a multivalued operator with domain and range in a Banach space is said to be accretive if, for each and , there is such that
where is the duality map from to the dual space . An accretive operator is accretive if for all .
Denote by the zero set of ; that is,
Throughout the rest of this paper it is always assumed that is accretive and is nonempty.
Denote by the resolvent of for :
It is known that is a nonexpansive mapping from to which will be assumed convex (this is so if is uniformly convex). It is also known that for .
Now consider the problem of finding a zero of an accretive operator in a Banach space ,
We will study the convergence of the following algorithm:
where is a perturbed mapping, the initial guess is arbitrary, and are two sequences in is a sequence of positive numbers, and is an error sequence in .
Theorem 4.2.
Let be a uniformly convex Banach space. Assume in addition that either has the property or satisfies Opial's property. Let be an accretive operator in such that and let be strongly accretive and strictly pseudocontractive with . Moreover, assume that and satisfy the following properties:
(i);
(ii);
(iii);
(iv), where and are two constants;
(v).
Then the sequence generated by algorithm (4.17) converges weakly to a point of .
Proof.
The proof is a refinement of that of Theorem 3.3 given in Section 3 and [34, Theorem 3.3] together with Proposition 3.2. So we only sketch it.
Let . By (4.17), we have
By Lemma 2.4, we see that exists.
With slight modifications of the proof of Theorem 3.3 (replacing by ), we can obtain that
Now noticing
and letting for all , we deduce that
By mimicking the proof of Theorem 3.3 in [34], we can show that, in the case of ,
and in the case of ,
where is such that for all . In either case we conclude from (4.22) and (4.23) that satisfies
where fulfills . By Lemma 2.4, (4.24) implies that () exists. This together with the assumption (iv) and (4.19) implies that . So, by Lemma 3.3 in [34], we have
By the demiclosedness principle, (4.25) ensures that . Repeating the last part of the proof of Theorem 3.3, we conclude that converges weakly to a point of .
References
Browder FE, Petryshyn WV: Construction of fixed points of nonlinear mappings in Hilbert space. Journal of Mathematical Analysis and Applications 1967, 20: 197–228. 10.1016/0022247X(67)900856
Byrne C: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 2004,20(1):103–120. 10.1088/02665611/20/1/006
Engl HW, Leitão A: A Mann iterative regularization method for elliptic Cauchy problems. Numerical Functional Analysis and Optimization 2001,22(7–8):861–884. 10.1081/NFA100108313
Engl HW, Scherzer O: Convergence rates results for iterative methods for solving nonlinear illposed problems. In Surveys on Solution Methods for Inverse Problems. Springer, Vienna, Austria; 2000:7–34.
Magnanti TL, Perakis G: Solving variational inequality and fixed point problems by line searches and potential optimization. Mathematical Programming, Series A 2004,101(3):435–461. 10.1007/s1010700304765
Podilchuk CI, Mammone RJ: Image recovery by convex projections using a leastsquares constraint. Journal of the Optical Society of America A 1990, 7: 517–521.
Sezan MI, Stark H: Applications of convex projection theory to image recovery in tomography and related areas. In Image Recovery: Theory and Application. Edited by: Stark H. Academic Press, Orlando, Fla, USA; 1987:415–462.
Tan KK, Xu HK: Fixed point iteration processes for asymptotically nonexpansive mappings. Proceedings of the American Mathematical Society 1994,122(3):733–739. 10.1090/S00029939199412039935
Yamada I, Ogura N: Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions. Numerical Functional Analysis and Optimization 2004,25(7–8):593–617.
Yamada I, Ogura N: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasinonexpansive mappings. Numerical Functional Analysis and Optimization 2004,25(7–8):619–655.
Youla D: Mathematical theory of image restoration by the method of convex projections. In Image Recovery: Theory and Application. Edited by: Stark H. Academic Press, Orlando, Fla, USA; 1987:29–77.
Youla D: On deterministic convergence of iterations of related projection operators. Journal of Visual Communication and Image Representation 1990, 1: 12–20. 10.1016/10473203(90)90013L
Ceng LC, Ansari QH, Yao JC: Manntype steepestdescent and modified hybrid steepestdescent methods for variational inequalities in Banach spaces. Numerical Functional Analysis and Optimization 2008,29(9–10):987–1033. 10.1080/01630560802418391
Zeng LC, Yao JC: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwanese Journal of Mathematics 2006,10(5):1293–1303.
Ceng LC, Yao JC: Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. Applied Mathematics and Computation 2008,198(2):729–741. 10.1016/j.amc.2007.09.011
Ceng LC, Yao JC: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. Journal of Computational and Applied Mathematics 2008,214(1):186–201. 10.1016/j.cam.2007.02.022
Ceng LC, Schaible S, Yao JC: Implicit iteration scheme with perturbed mapping for equilibrium problems and fixed point problems of finitely many nonexpansive mappings. Journal of Optimization Theory and Applications 2008,139(2):403–418. 10.1007/s109570089361y
Mann WR: Mean value methods in iteration. Proceedings of the American Mathematical Society 1953, 4: 506–510. 10.1090/S00029939195300548463
Ishikawa S: Fixed points and iteration of a nonexpansive mapping in a Banach space. Proceedings of the American Mathematical Society 1976,59(1):65–71. 10.1090/S0002993919760412909X
Reich S: Weak convergence theorems for nonexpansive mappings in Banach spaces. Journal of Mathematical Analysis and Applications 1979,67(2):274–276. 10.1016/0022247X(79)900246
Nevanlinna O, Reich S: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Israel Journal of Mathematics 1979,32(1):44–58. 10.1007/BF02761184
Combettes PL: On the numerical robustness of the parallel projection method in signal synthesis. IEEE Signal Processing Letters 2001,8(2):45–47. 10.1109/97.895371
Combettes PL: The convex feasibility problem in image recovery. In Advances in Imaging and Electron Physics. Volume 95. Edited by: Hawkes P. New York Academic, New York, NY, USA; 1996:155–270.
Reich S: Weak convergence theorems for nonexpansive mappings in Banach spaces. Journal of Mathematical Analysis and Applications 1979, 67: 274–276. 10.1016/0022247X(79)900246
Nevanlinna O, Reich S: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Israel Journal of Mathematics 1979, 32: 44–58. 10.1007/BF02761184
Kim TH, Xu HK: Robustness of Mann's algorithm for nonexpansive mappings. Journal of Mathematical Analysis and Applications 2007,327(2):1105–1115. 10.1016/j.jmaa.2006.05.009
García Falset J, Kaczor W, Kuczumow T, Reich S: Weak convergence theorems for asymptotically nonexpansive mappings and semigroups. Nonlinear Analysis: Theory, Methods & Applications 2001,43(3):377–401. 10.1016/S0362546X(99)00200X
Opial Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bulletin of the American Mathematical Society 1967, 73: 591–597. 10.1090/S000299041967117610
van Dulst D: Equivalent norms and the fixed point property for nonexpansive mappings. The Journal of the London Mathematical Society. Second Series 1982,25(1):139–144. 10.1112/jlms/s225.1.139
Xu HK: Inequalities in Banach spaces with applications. Nonlinear Analysis: Theory, Methods & Applications 1991,16(12):1127–1138. 10.1016/0362546X(91)90200K
Browder FE: Convergence theorems for sequences of nonlinear operators in Banach spaces. Mathematische Zeitschrift 1967, 100: 201–225. 10.1007/BF01109805
Bruck RE: A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces. Israel Journal of Mathematics 1979,32(2–3):107–116. 10.1007/BF02764907
Tan KK, Xu HK: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. Journal of Mathematical Analysis and Applications 1993,178(2):301–308. 10.1006/jmaa.1993.1309
Marino G, Xu HK: Convergence of generalized proximal point algorithms. Communications on Pure and Applied Analysis 2004,3(4):791–808.
Acknowledgments
This research was partially supported by Grant no. NSC 982923E110003MY3 and was also partially supported by the Leading Academic Discipline Project of Shanghai Normal University (DZL707), Innovation Program of Shanghai Municipal Education Commission Grant (09ZZ133), National Science Foundation of China (10771141), Ph.D. Program Foundation of Ministry of Education of China (20070270004), Science and Technology Commission of Shanghai Municipality Grant (075105118), and Shanghai Leading Academic Discipline Project (S30405).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Ceng, L., Liou, Y. & Yao, J. Robustness of Mann Type Algorithm with Perturbed Mapping for Nonexpansive Mappings in Banach Spaces. Fixed Point Theory Appl 2010, 734181 (2010). https://doi.org/10.1155/2010/734181
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/734181
Keywords
 Hilbert Space
 Banach Space
 Nonexpansive Mapping
 Real Banach Space
 Nonempty Closed Convex Subset