- Research Article
- Open Access

# An Order on Subsets of Cone Metric Spaces and Fixed Points of Set-Valued Contractions

- M. Asadi
^{1}, - H. Soleimani
^{1}and - S. M. Vaezpour
^{2, 3}Email author

**2009**:723203

https://doi.org/10.1155/2009/723203

© M. Asadi et al. 2009

**Received:**16 April 2009**Accepted:**22 September 2009**Published:**11 October 2009

## Abstract

In this paper at first we introduce a new order on the subsets of cone metric spaces then, using this definition, we simplify the proof of fixed point theorems for contractive set-valued maps, omit the assumption of normality, and obtain some generalization of results.

## Keywords

- Banach Space
- Real Number
- Point Theorem
- Differential Geometry
- Fixed Point Theorem

## 1. Introduction and Preliminary

Cone metric spaces were introduced by Huang and Zhang [1]. They replaced the set of real numbers by an ordered Banach space and obtained some fixed point theorems for mapping satisfying different contractions [1]. The study of fixed point theorems in such spaces followed by some other mathematicians, see [2–8]. Recently Wardowski [9] was introduced the concept of set-valued contractions in cone metric spaces and established some end point and fixed point theorems for such contractions. In this paper at first we will introduce a new order on the subsets of cone metric spaces then, using this definition, we simplify the proof of fixed point theorems for contractive set-valued maps, omit the assumption of normality, and obtain some generalization of results.

Let be a real Banach space. A nonempty convex closed subset is called a cone in if it satisfies.

(i) is closed, nonempty, and ,

The space can be partially ordered by the cone ; that is, if and only if . Also we write if , where denotes the interior of .

A cone is called normal if there exists a constant such that implies .

In the following we always suppose that is a real Banach space, is a cone in and is the partial ordering with respect to .

Definition 1.1 (see [1]).

Let be a nonempty set. Assume that the mapping satisfies

Then is called a cone metric on , and is called a cone metric space.

In the following we have some necessary definitions.

(1)Let
be a cone metric space. A set
is called *closed* if for any sequence
convergent to
, we have

(2)A set
is called *sequentially compact* if for any sequence
, there exists a subsequence
of
is convergent to an element of

(3)Denote a collection of all nonempty subsets of , a collection of all nonempty closed subsets of and a collection of all nonempty sequentially compact subsets of

(4)An element
is said to be an *endpoint* of a set-valued map
if
We denote a set of all endpoints of
by

(5)An element
is said to be a *fixed point* of a set-valued map
if
Denote

(6)A map
is called *lower semi-continuous,* if for any sequence
in
and
such that
as
, we have

(7)A map
is called *have lower semi-continuous property,* and denoted by *lsc property* if for any sequence
in
and
such that
as
, then there exists
that
for all

(8)
called *minihedral* cone if
exists for all
, and *strongly minihedral* if every subset of
which is bounded from above has a supremum [10]. Let
a cone metric space, cone
is strongly minihedral and hence, every subset of
has infimum, so for
, we define

Example 1.2.

Let with . The cone is normal, minihedral and strongly minihedral with .

Example 1.3.

Let be a compact set, and . The cone is normal and minihedral but is not strongly minihedral and .

Example 1.4.

Let be a finite measure space, countably generated, , and . The cone is normal, minihedral and strongly minihedral with .

For more details about above examples, see [11].

Example 1.5.

Let with norm and that is not normal cone by [12] and not minihedral by [10].

Example 1.6.

Let and . This is strongly minihedral but not minihedral by [10].

Throughout, we will suppose that is strongly minihedral cone in with nonempty interior and be a partial ordering with respect to

## 2. Main Results

Let be a cone metric space and . For Let

At first we prove the closedness of without the assumption of normality.

Lemma 2.1.

Let be a complete cone metric space and . If the function for is lower semi-continuous, then is closed.

Proof.

So is a Cauchy sequence in complete metric space, hence there exist such that . Since is closed, thus Now by uniqueness of limit we conclude that

Definition 2.2.

Let and are subsets of , we write if and only if there exist such that for all , Also for , we write if and only if and similarly if and only if

Note that , for every scaler and subsets of .

The following lemma is easily proved.

Lemma 2.3.

The order " " is not antisymmetric, thus this order is not partially order.

Example 2.4.

Theorem 2.5.

Proof.

Therefore, for every , Let and be given. Choose such that where Also, choose a such that for all Then for all Thus for all Namely, is Cauchy sequence in complete cone metric space, therefore for some Now we show that

Let hence there exists such that for all Now as so for all there exists such that for all

So for all Namely, thus for some and by the closedness of we have

We notice that implies that for all there exists such that for all but the inverse is not true.

Example 2.6.

Let with norm and that is not normal cone by [12]. Consider and so and , (see [10]) Define cone metric with , for . Since namely, but . Indeed in but in Even for and in particular but .

Example 2.7.

Let
with norm
and
that is not normal cone. Define cone metric
with
, for
and set-valued mapping
by
. In this space every Cauchy sequence converges to zero. The function
have *lsc property*. Also we have
and
. Now for
and for all
take
. Therefore, it satisfies in all of the hypothesis of Theorem 2.5. So
has a fixed point
For sample take
and

Theorem 2.8.

Let be a complete cone metric space, , a set-valued map, and a function defined by , with lsc property. The following conditions hold:

Corollary 2.9.

To have Theorems??3.1 and ??3.2 in [9], as the corollaries of our theorems we need the following lemma and remarks.

Lemma 2.10.

Proof.

For the inverse, let for all . Then for all

Since , for every that there exists such that so for all Thus

Remark 2.11.

By Proposition ?1.7.59, page 117 in [11], if is an ordered Banach space with positive cone , then is a normal cone if and only if there exists an equivalent norm on which is monotone. So by renorming the we can suppose is a normal cone with constant one.

Remark 2.12.

Let
be a cone metric space,
a normal cone with constant one,
, a set-valued map, the function
defined by
,
with *lsc property*, and
with
. Then
is lower semi-continuous.

Now the Theorems ?3.1 and ?3.2 in [9] is stated as the following corollaries without the assumption of normality, and by Lemma ?2.10 and Remarks ?2.11, ?2.12 we have the same theorems.

Corollary 2.13 (see [9, Theorem ?3.1]).

Let be a complete cone metric space, , a set-valued map and the function defined by , with lsc property. If there exist real numbers , such that for all there exists one has and then

Corollary 2.14 (see [9, Theorem ?3.2]).

Let be a complete cone metric space, , a set-valued map and the function defined by , with lsc property. The following hold:

(i)if there exist real numbers , such that for all there exists one has and then

(ii)if there exist real numbers , such that for all and every one has and then

Definition 2.15.

The following theorem is a reform of Theorem 2.5.

Theorem 2.16.

Proof.

For every , then there exist and such that , for all . Let , there exist and such that since . Thus The remaining is same as the proof of Theorem 2.5.

## Authors’ Affiliations

## References

- Huang L-G, Zhang X:
**Cone metric spaces and fixed point theorems of contractive mappings.***Journal of Mathematical Analysis and Applications*2007,**332**(2):1468–1476. 10.1016/j.jmaa.2005.03.087MathSciNetView ArticleMATHGoogle Scholar - Abbas M, Rhoades BE:
**Fixed and periodic point results in cone metric spaces.***Applied Mathematics Letters*2009,**22**(4):511–515. 10.1016/j.aml.2008.07.001MathSciNetView ArticleMATHGoogle Scholar - Arshad M, Azam A, Vetro P:
**Some common fixed point results in cone metric spaces.***Fixed Point Theory and Applications*2009,**2009:**-11.Google Scholar - Ilic D, Rakocevic V:
**Common fixed points for maps on cone metric space.***Journal of Mathematical Analysis and Applications*2008,**341**(2):876–882. 10.1016/j.jmaa.2007.10.065MathSciNetView ArticleMATHGoogle Scholar - Ilic D, Rakocevic V:
**Quasi-contraction on a cone metric space.***Applied Mathematics Letters*2009,**22**(5):728–731. 10.1016/j.aml.2008.08.011MathSciNetView ArticleMATHGoogle Scholar - Jankovic S, Kadelburg Z, Radenovic S, Rhoades BE:
**Assad-Kirk-type fixed point theorems for a pair of nonself mappings on cone metric spaces.***Fixed Point Theory and Applications*2009,**2009:**-16.Google Scholar - Jungck G, Radenovic S, Radojevic S, Rakocevic V:
**Common fixed point theorems for weakly compatible pairs on cone metric spaces.***Fixed Point Theory and Applications*2009,**2009:**-13.Google Scholar - Raja P, Vaezpour SM:
**Some extensions of Banach's contraction principle in complete cone metric spaces.***Fixed Point Theory and Applications*2008,**2008:**-11.Google Scholar - Wardowski D:
**Endpoints and fixed points of set-valued contractions in cone metric spaces.***Nonlinear Analysis: Theory, Methods & Applications*2009,**71**(1–2):512–516. 10.1016/j.na.2008.10.089MathSciNetView ArticleMATHGoogle Scholar - Deimling K:
*Nonlinear Functional Analysis*. Springer, Berlin, Germany; 1985:xiv+450.View ArticleMATHGoogle Scholar - Denkowski Z, Migórski S, Papageorgiou NS:
*An Introduction to Nonlinear Analysis: Applications*. Kluwer Academic Publishers, Boston, Mass, USA; 2003:xii+823.View ArticleMATHGoogle Scholar - Rezapour Sh, Hamlbarani R:
**Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings".***Journal of Mathematical Analysis and Applications*2008,**345**(2):719–724. 10.1016/j.jmaa.2008.04.049MathSciNetView ArticleMATHGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.