Skip to content
  • Research Article
  • Open Access

A Fixed Point Theorem Based on Miranda

Fixed Point Theory and Applications20072007:078706

https://doi.org/10.1155/2007/78706

  • Received: 5 June 2007
  • Accepted: 1 October 2007
  • Published:

Abstract

A new fixed point theorem is proved by using the theorem of Miranda.

Keywords

  • Point Theorem
  • Differential Geometry
  • Computational Biology

[1234567812345678]

Authors’ Affiliations

(1)
Institut für Angewandte und Numerische Mathematik, Fakultät für Mathematik, Universität Karlsruhe (TH), Karlsruhe, D-76128, Germany

References

  1. Miranda C: Un'osservazione su un teorema di Brouwer. Bollettino dell'Unione Matematica Italiana 1940, 3: 5–7.MathSciNetMATHGoogle Scholar
  2. Vrahatis MN: A short proof and a generalization of Miranda's existence theorem. Proceedings of the American Mathematical Society 1989,107(3):701–703.MathSciNetMATHGoogle Scholar
  3. Kioustelidis JB: Algorithmic error estimation for approximate solutions of nonlinear systems of equations. Computing 1978,19(4):313–320. 10.1007/BF02252029MathSciNetView ArticleMATHGoogle Scholar
  4. Mayer J: A generalized theorem of Miranda and the theorem of Newton-Kantorovich. Numerical Functional Analysis and Optimization 2002,23(3–4):333–357. 10.1081/NFA-120006697MathSciNetView ArticleMATHGoogle Scholar
  5. Alefeld G, Frommer A, Heindl G, Mayer J: On the existence theorems of Kantorovich, Miranda and Borsuk. Electronic Transactions on Numerical Analysis 2004, 17: 102–111.MathSciNetMATHGoogle Scholar
  6. Pavel NH: Theorems of Brouwer and Miranda in terms of Bouligand-Nagumo fields. Analele Stiintifice ale Universitatii Al. I. Cuza din Iasi. Serie Noua. Matematica 1991,37(2):161–164.MathSciNetMATHGoogle Scholar
  7. Avramescu C: A generalization of Miranda's theorem. Seminar on Fixed Point Theory Cluj-Napoca 2002, 3: 121–127.MathSciNetMATHGoogle Scholar
  8. Avramescu C: Some remarks about Miranda's theorem. Analele Universitatii din Craiova. Seria Matematica Informatica 2000, 27: 6–13.MathSciNetMATHGoogle Scholar

Copyright

Advertisement