Skip to main content

Hybrid Iteration Method for Fixed Points of Nonexpansive Mappings in Arbitrary Banach Spaces

Abstract

We prove that recent results of Wang (2007) concerning the iterative approximation of fixed points of nonexpansive mappings using a hybrid iteration method in Hilbert spaces can be extended to arbitrary Banach spaces without the strong monotonicity assumption imposed on the hybrid operator.

[12345678]

References

  1. 1.

    Wang L: An iteration method for nonexpansive mappings in Hilbert spaces. Fixed Point Theory and Applications 2007, 2007: 8 pages.

    Article  Google Scholar 

  2. 2.

    Xu HK, Kim TH: Convergence of hybrid steepest-descent methods for variational inequalities. Journal of Optimization Theory and Applications 2003,119(1):185–201.

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Yamada I: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Haifa, 2000), Studies in Computational Mathematics. Volume 8. Edited by: Butnariu D, Censor Y, Reich S. North-Holland, Amsterdam, The Netherlands; 2001:473–504.

    Google Scholar 

  4. 4.

    Opial Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bulletin of the American Mathematical Society 1967, 73: 591–597. 10.1090/S0002-9904-1967-11761-0

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Jung JS: Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. Journal of Mathematical Analysis and Applications 2005,302(2):509–520. 10.1016/j.jmaa.2004.08.022

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Osilike MO, Aniagbosor SC: Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings. Mathematical and Computer Modelling 2000,32(10):1181–1191. 10.1016/S0895-7177(00)00199-0

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Osilike MO, Aniagbosor SC, Akuchu BG: Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces. Panamerican Mathematical Journal 2002,12(2):77–88.

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Deng L: Convergence of the Ishikawa iteration process for nonexpansive mappings. Journal of Mathematical Analysis and Applications 1996,199(3):769–775. 10.1006/jmaa.1996.0174

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to MO Osilike.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Osilike, M., Isiogugu, F. & Nwokoro, P. Hybrid Iteration Method for Fixed Points of Nonexpansive Mappings in Arbitrary Banach Spaces. Fixed Point Theory Appl 2007, 064306 (2008). https://doi.org/10.1155/2007/64306

Download citation

Keywords

  • Hilbert Space
  • Banach Space
  • Recent Result
  • Differential Geometry
  • Iteration Method