Open Access

A Common Fixed Point Theorem in -Metric Spaces

Fixed Point Theory and Applications20072007:027906

https://doi.org/10.1155/2007/27906

Received: 27 February 2007

Accepted: 16 July 2007

Published: 5 September 2007

Abstract

We give some new definitions of -metric spaces and we prove a common fixed point theorem for a class of mappings under the condition of weakly commuting mappings in complete -metric spaces. We get some improved versions of several fixed point theorems in complete -metric spaces.

[1234567891011121314151617181920212223242526]

Authors’ Affiliations

(1)
Department of Mathematics, Islamic Azad University
(2)
Department of Mathematics, Islamic Azad University
(3)
Department of Mathematics, Shijiazhuang Mechnical Engineering University

References

  1. Zadeh LA: Fuzzy sets. Information and Control 1965,8(3):338–353. 10.1016/S0019-9958(65)90241-XMathSciNetView ArticleMATHGoogle Scholar
  2. Deng Z: Fuzzy pseudo-metric spaces. Journal of Mathematical Analysis and Applications 1982,86(1):74–95. 10.1016/0022-247X(82)90255-4MathSciNetView ArticleMATHGoogle Scholar
  3. Erceg MA: Metric spaces in fuzzy set theory. Journal of Mathematical Analysis and Applications 1979,69(1):205–230. 10.1016/0022-247X(79)90189-6MathSciNetView ArticleMATHGoogle Scholar
  4. Kaleva O, Seikkala S: On fuzzy metric spaces. Fuzzy Sets and Systems 1984,12(3):215–229. 10.1016/0165-0114(84)90069-1MathSciNetView ArticleMATHGoogle Scholar
  5. Kramosil I, Michálek J: Fuzzy metrics and statistical metric spaces. Kybernetika 1975,11(5):336–344.MathSciNetMATHGoogle Scholar
  6. George A, Veeramani P: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 1994,64(3):395–399. 10.1016/0165-0114(94)90162-7MathSciNetView ArticleMATHGoogle Scholar
  7. El Naschie MS: On the uncertainty of Cantorian geometry and the two-slit experiment. Chaos, Solitons & Fractals 1998,9(3):517–529. 10.1016/S0960-0779(97)00150-1MathSciNetView ArticleMATHGoogle Scholar
  8. El Naschie MS: A review of -infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons & Fractals 2004,19(1):209–236. 10.1016/S0960-0779(03)00278-9View ArticleMATHGoogle Scholar
  9. El Naschie MS: On a fuzzy Kähler-like manifold which is consistent with the two-slit experiment. International Journal of Nonlinear Sciences and Numerical Simulation 2005,6(2):95–98. 10.1515/IJNSNS.2005.6.2.95View ArticleGoogle Scholar
  10. Tanaka Y, Mizno Y, Kado T: Chaotic dynamics in Friedmann equation. Chaos, Solitons & Fractals 2005,24(2):407–422. 10.1016/j.chaos.2004.09.034View ArticleMATHGoogle Scholar
  11. Fang JX: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets and Systems 1992,46(1):107–113. 10.1016/0165-0114(92)90271-5MathSciNetView ArticleMATHGoogle Scholar
  12. Gregori V, Sapena A: On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems 2002,125(2):245–252. 10.1016/S0165-0114(00)00088-9MathSciNetView ArticleMATHGoogle Scholar
  13. Hadžić O: Fixed Point Theory in Probabilistic Metric Spaces. University of Novi Sad, Institute of Mathematics, Novi Sad, Yugoslavia; 1995:iv+129.MATHGoogle Scholar
  14. Miheţ D: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets and Systems 2004,144(3):431–439. 10.1016/S0165-0114(03)00305-1MathSciNetView ArticleMATHGoogle Scholar
  15. Schweizer B, Sherwood H, Tardiff RM: Contractions on probabilistic metric spaces: examples and counterexamples. Stochastica 1988,12(1):5–17.MathSciNetMATHGoogle Scholar
  16. Song G: Comments on: "A common fixed point theorem in a fuzzy metric space". Fuzzy Sets and Systems 2003,135(3):409–413. 10.1016/S0165-0114(02)00131-8MathSciNetView ArticleMATHGoogle Scholar
  17. Vasuki R, Veeramani P: Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and Systems 2003,135(3):415–417. 10.1016/S0165-0114(02)00132-XMathSciNetView ArticleMATHGoogle Scholar
  18. Dhage BC: Generalised metric spaces and mappings with fixed point. Bulletin of the Calcutta Mathematical Society 1992,84(4):329–336.MathSciNetMATHGoogle Scholar
  19. Ahmad B, Ashraf M, Rhoades BE: Fixed point theorems for expansive mappings in -metric spaces. Indian Journal of Pure and Applied Mathematics 2001,32(10):1513–1518.MathSciNetMATHGoogle Scholar
  20. Dhage BC: A common fixed point principle in -metric spaces. Bulletin of the Calcutta Mathematical Society 1999,91(6):475–480.MathSciNetMATHGoogle Scholar
  21. Dhage BC, Pathan AM, Rhoades BE: A general existence principle for fixed point theorems in -metric spaces. International Journal of Mathematics and Mathematical Sciences 2000,23(7):441–448. 10.1155/S0161171200001587MathSciNetView ArticleMATHGoogle Scholar
  22. Rhoades BE: A fixed point theorem for generalized metric spaces. International Journal of Mathematics and Mathematical Sciences 1996,19(3):457–460. 10.1155/S0161171296000658MathSciNetView ArticleMATHGoogle Scholar
  23. Singh B, Sharma RK: Common fixed points via compatible maps in -metric spaces. Radovi Matematički 2002,11(1):145–153.MathSciNetMATHGoogle Scholar
  24. Naidu SVR, Rao KPR, Srinivasa Rao N: On the topology of -metric spaces and generation of -metric spaces from metric spaces. International Journal of Mathematics and Mathematical Sciences 2004,2004(51):2719–2740. 10.1155/S0161171204311257MathSciNetView ArticleMATHGoogle Scholar
  25. Naidu SVR, Rao KPR, Srinivasa Rao N: On the concepts of balls in a -metric space. International Journal of Mathematics and Mathematical Sciences 2005,2005(1):133–141. 10.1155/IJMMS.2005.133MathSciNetView ArticleMATHGoogle Scholar
  26. Naidu SVR, Rao KPR, Srinivasa Rao N: On convergent sequences and fixed point theorems in -metric spaces. International Journal of Mathematics and Mathematical Sciences 2005,2005(12):1969–1988. 10.1155/IJMMS.2005.1969MathSciNetView ArticleMATHGoogle Scholar

Copyright

© Shaban Sedghi et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.