Skip to main content

Fixed Points of Weakly Contractive Maps and Boundedness of Orbits

Abstract

We discuss weakly contractive maps on complete metric spaces. Following three methods of generalizing the Banach contraction principle, we obtain some fixed point theorems under some relatively weaker and more general contractive conditions.

[1234567891011121314151617]

References

  1. Rhoades BE: A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society 1977, 226: 257–290.

    MathSciNet  Article  MATH  Google Scholar 

  2. Collaço P, Silva JCE: A complete comparison of 25 contraction conditions. Nonlinear Analysis. Theory, Methods & Applications 1997,30(1):471–476. 10.1016/S0362-546X(97)00353-2

    MathSciNet  Article  MATH  Google Scholar 

  3. Ciric LB: A generalization of Banach's contraction principle. Proceedings of the American Mathematical Society 1974,45(2):267–273.

    MathSciNet  Article  MATH  Google Scholar 

  4. Fisher B: Quasi-contractions on metric spaces. Proceedings of the American Mathematical Society 1979,75(2):321–325.

    MathSciNet  MATH  Google Scholar 

  5. Guseman LF Jr.: Fixed point theorems for mappings with a contractive iterate at a point. Proceedings of the American Mathematical Society 1970,26(4):615–618. 10.1090/S0002-9939-1970-0266010-3

    MathSciNet  Article  MATH  Google Scholar 

  6. Walter W: Remarks on a paper by F. Browder about contraction. Nonlinear Analysis. Theory, Methods & Applications 1981,5(1):21–25. 10.1016/0362-546X(81)90066-3

    Article  MATH  Google Scholar 

  7. Jachymski JR, Schroder B, Stein JD Jr.: A connection between fixed-point theorems and tiling problems. Journal of Combinatorial Theory. Series A 1999,87(2):273–286. 10.1006/jcta.1998.2960

    MathSciNet  Article  MATH  Google Scholar 

  8. Jachymski JR, Stein JD Jr.: A minimum condition and some related fixed-point theorems. Journal of the Australian Mathematical Society. Series A 1999,66(2):224–243. 10.1017/S144678870003932X

    MathSciNet  Article  MATH  Google Scholar 

  9. Merryfield J, Rothschild B, Stein JD Jr.: An application of Ramsey's theorem to the Banach contraction principle. Proceedings of the American Mathematical Society 2002,130(4):927–933. 10.1090/S0002-9939-01-06169-X

    MathSciNet  Article  MATH  Google Scholar 

  10. Merryfield J, Stein JD Jr.: A generalization of the Banach contraction principle. Journal of Mathematical Analysis and Applications 2002,273(1):112–120. 10.1016/S0022-247X(02)00215-9

    MathSciNet  Article  MATH  Google Scholar 

  11. Boyd DW, Wong JSW: On nonlinear contractions. Proceedings of the American Mathematical Society 1969,20(2):458–464. 10.1090/S0002-9939-1969-0239559-9

    MathSciNet  Article  MATH  Google Scholar 

  12. Jachymski J: A generalization of the theorem by Rhoades and Watson for contractive type mappings. Mathematica Japonica 1993,38(6):1095–1102.

    MathSciNet  MATH  Google Scholar 

  13. Kirk WA: Fixed points of asymptotic contractions. Journal of Mathematical Analysis and Applications 2003,277(2):645–650. 10.1016/S0022-247X(02)00612-1

    MathSciNet  Article  MATH  Google Scholar 

  14. Rakotch E: A note on contractive mappings. Proceedings of the American Mathematical Society 1962,13(3):459–465. 10.1090/S0002-9939-1962-0148046-1

    MathSciNet  Article  MATH  Google Scholar 

  15. Jungck G: Fixed point theorems for semi-groups of self maps of semi-metric spaces. International Journal of Mathematics and Mathematical Sciences 1998,21(1):125–132. 10.1155/S0161171298000167

    MathSciNet  Article  MATH  Google Scholar 

  16. Sharma BK, Thakur BS: Fixed point with orbital diametral function. Applied Mathematics and Mechanics 1996,17(2):145–148. 10.1007/BF00122309

    MathSciNet  Article  MATH  Google Scholar 

  17. Xia DF, Xu SL: Fixed points of continuous self-maps under a contractive condition. Mathematica Applicata 1998,11(1):81–84.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-Hua Mai.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Mai, JH., Liu, XH. Fixed Points of Weakly Contractive Maps and Boundedness of Orbits. Fixed Point Theory Appl 2007, 020962 (2007). https://doi.org/10.1155/2007/20962

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/20962

Keywords

  • Point Theorem
  • Differential Geometry
  • Fixed Point Theorem
  • Contractive Condition
  • Computational Biology