

### RESEARCH Open Access



# Fixed point theorems for a class of generalized nonexpansive mappings

Fatemeh Lael<sup>1\*</sup> and Zohre Heidarpour<sup>2</sup>

\*Correspondence: fatemehlael@yahoo.com ¹Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran Full list of author information is available at the end of the article

#### **Abstract**

In this paper, we introduce a new class of generalized nonexpansive mappings. Some new fixed point theorems for these mappings are obtained.

MSC: 47H10

**Keywords:** monotone mapping; nonexpansive mapping; fixed point;  $L_p$ 

#### 1 Introduction and preliminaries

A nonexpansive mapping has a Lipschitz constant equal to 1. The fixed point theory for such mappings is very rich [1–5] and has many applications in nonlinear functional analysis [6].

We first commence some basic concepts about generalization of nonexpansive mappings as formulated by Suzuki *et al.* [7, 8].

**Definition 1** [8] Let *C* be a nonempty subset of a Banach space *X*. We say that a mapping  $T: C \to C$  satisfies condition (*C*) on *C* if  $\frac{1}{2} ||x - T(x)|| \le ||x - y||$  implies  $||T(x) - T(y)|| \le ||x - y||$ , for  $x, y \in C$ .

Of course, every nonexpansive mapping satisfies condition (C) but the converse is not correct and you can find some counterexamples for it in [8]. So the class of mappings which has condition (C) is broader than the class of nonexpansive mappings.

In [7], condition (*C*) is generalized as follows.

**Definition 2** [7] Let C be a nonempty subset of a Banach space X and  $\lambda \in (0,1)$ . We say that a mapping  $T: C \to X$  satisfies  $(C_{\lambda})$ -condition on C if  $\lambda \|x - T(x)\| \le \|x - y\|$  implies  $\|T(x) - T(y)\| \le \|x - y\|$ , for  $x, y \in C$ .

So if  $\lambda = \frac{1}{2}$ , we will have condition (*C*). There are examples that show the converse is false; see [7].

In [9], monotone nonexpansive mappings are defined in  $L_1[0,1]$ .

We next review some notions in  $L_{\nu}[0,1]$ . All of them can be found in [10].

Consider the Riesz Banach space  $L_p[0,1]$ , where  $\int_0^1 |f(x)|^p dx < +\infty$  and  $p \in (0,+\infty)$ . Also, we have f = 0 when the set

$${x \in [0,1] : f(x) = 0},$$



© 2016 Lael and Heidarpour. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

has Lebesgue measure zero. In this case, we say f=0 almost everywhere. An element of  $L_p[0,1]$  is therefore seen as a class of functions. The norm of any  $f \in L_p[0,1]$  is given by  $\|f\|_p = (\int_0^1 |f(x)|^p \, dx)^{\frac{1}{p}}$ . Throughout this paper, we will write  $L_p$  instead of  $L_p[a,b]$ ,  $a,b \in \mathbb{R}$  and  $\|\cdot\|$  instead of  $\|\cdot\|_p$ .

In this paper, we redefine Definition 2 on a subset of Banach space  $L_p$  and those theorems which are proved in [9] generalize to a wider class of monotone ( $C_{\lambda}$ )-condition with preserving their fixed point property.

#### 2 Main results

Let *C* be a nonempty subset of  $L_p$  which is equipped with a vector order relation  $\leq$ . A map  $T: C \to C$  is called monotone if for all  $f \leq g$  we have  $T(f) \leq T(g)$ .

We generalize the  $(C_{\lambda})$ -condition as follows.

**Definition 3** Let C be a nonempty subset of a Banach space  $L_p$ . For  $\lambda \in (0,1)$ , we say that a mapping T monotone  $(C_{\lambda})$ -condition on C if T is monotone and for all  $f \leq g$ ,  $\lambda ||f - T(f)|| \leq ||g - f||$  implies  $||T(g) - T(f)|| \leq ||g - f||$ .

Note Definition 3 is a generalization of the monotone nonexpansive mapping which is defined in [9] as follows.

A map T is said to be monotone nonexpansive if T is monotone and for  $f \leq g$ , we have  $||T(g) - T(f)|| \leq ||g - f||$ .

The next example is a direct generalization of monotone nonexpansive mapping.

**Example 1** Let  $C = \{f \in L_p[0,3] : f(x) = a\}$ , where  $a \in [0,3]$ . For  $f,g \in C$ , consider the partial order relation

$$f \leq g$$
 iff  $f(x) \leq g(x)$ .

Let  $T: C \to C$  be defined by

$$T(f) = \begin{cases} 1, & f = 3, \\ 0, & f \neq 3. \end{cases}$$

Then the mapping T satisfies the monotone  $(C_{\frac{1}{2}})$ -condition but it fails monotone nonexpansiveness. Indeed, whenever  $f \leq g$ , if  $0 \leq f(x) \leq g(x) < 3$ , then  $\|T(f) - T(g)\| \leq \|f - g\|$ . On the other hand,  $0 \leq f(x) < 3$  and g = 3, so if  $0 \leq f(x) \leq 2$  and g = 3, then we have again  $\|T(f) - T(g)\| \leq \|f - g\|$ , but if 2 < f(x) < 3 and g = 3, then  $\frac{1}{2}\|f\| \nleq \|f - 3\|$ . Thus, the mapping T satisfying monotone  $(C_{\frac{1}{2}})$ -condition on [0,3].

Let f = 2.9 and g = 3. Then  $f \leq g$  while  $||T(f) - T(g)|| \nleq ||f - g||$ . Thus, T is not monotone nonexpansive.

The following lemmas will be crucial to prove the main result of this paper.

**Lemma 1** Let C be convex and T monotone. Assume that for some  $f_1 \in C$ ,  $f_1 \leq T(f_1)$ . Then the sequence  $f_n$  defined by

$$(\star) \qquad f_{n+1} = \lambda T(f_n) + (1 - \lambda)f_n,$$

 $\lambda \in (0,1)$ , satisfies

$$f_n \leq f_{n+1} \leq T(f_n) \leq T(f_{n+1}).$$

for n > 1.

*Proof* First, we prove that  $f_n \leq T(f_n)$ . By assumption, we have  $f_1 \leq T(f_1)$ . Assume that  $f_n \leq T(f_n)$ , for n > 1. Then we have

$$f_n = \lambda f_n + (1 - \lambda) f_n \leq \lambda T(f_n) + (1 - \lambda) f_n = f_{n+1}$$

*i.e.*  $f_n \leq f_{n+1}$ . Since T is monotone,  $T(f_n) \leq T(f_{n+1})$ . We have

$$f_{n+1} = \lambda T(f_n) + (1-\lambda)f_n \leq \lambda T(f_n) + (1-\lambda)T(f_n) = T(f_n).$$

Thus

$$f_n \leq f_{n+1} \leq T(f_n) \leq T(f_{n+1}),$$

for  $n \ge 1$ . The proof is closely modeled on Lemma 3.1 of [9].

Note that under the assumption of Lemma 1, if we assume  $T(f_1) \leq f_1$ , then we have

$$T(f_{n+1}) \leq T(f_n) \leq f_{n+1} \leq f_n$$

for any  $n \ge 1$ .

A sequence  $\{f_n\}$  in C is called an almost fixed point sequence for T, if  $||f_n - T(f_n)|| \to 0$  (a.f.p.s. in short).

**Lemma 2** Let  $T: C \to L_p$  be a monotone  $(C_{\lambda})$ -condition mapping and  $f_n$  be a bounded a.f.p.s. for T. Then

$$\liminf_{n} ||f_n - T(f)|| \leq \liminf_{n_k} ||f_n - f||,$$

for  $f \in C$  which  $f_n \leq f$  and  $\liminf_n ||f_n - f|| > 0$ , for all  $n \geq 1$ .

*Proof* Fix  $f \in C$  such that  $f_n \leq f$ . Since  $f_n$  is an a.f.p.s., for  $\epsilon = \frac{1}{2} \liminf_n \|f_n - f\|$ , there is  $n_0$  such that  $\|f_n - T(f_n)\| < \epsilon$ , for all  $n \geq n_0$ . This implies that

$$\lambda \|f_n - T(f_n)\| \le \|f_n - T(f_n)\| < \epsilon < \|f_n - f\|,$$

for all  $n \ge n_0$ . Since T satisfies the monotone  $(C_{\lambda})$ -condition, we have

$$||T(f_n) - T(f)|| \le ||f_n - f||,$$
 (1)

for all  $n \ge n_0$ . So by the triangle inequality and (1), we have

$$||f_n - T(f)|| \le ||f_n - T(f_n)|| + ||T(f_n) - T(f)|| \le ||f_n - T(f_n)|| + ||f_n - f||.$$

Thus  $\liminf_n \|f_n - T(f)\| \le \liminf_n \|f_n - f\|$ . The proof is closely modeled on Lemma 1 of [7].

**Lemma 3** [11] If  $\{f_n\}$  is a sequence of  $L_p$ -uniformly bounded functions on a measure space, and  $f_n \to f$  almost everywhere, then

$$\liminf_{n} ||f_n||^p = \liminf_{n} ||f_n - f||^p + ||f||^p,$$

for all  $p \in (0, \infty)$ .

In the following, let C be a nonempty, convex, and bounded set and  $T: C \to C$  be a monotone  $(C_{\lambda})$ -condition, for some  $\lambda \in (0,1)$ .

**Theorem 1** Let  $f_1 \in C$  such that  $f_1 \leq T(f_1)$ . Then  $f_n$  defined in  $(\star)$  is an a.f.p.s.

*Proof* Since  $f_{n+1} = \lambda T(f_n) + (1 - \lambda)f_n$ , for  $n \ge 1$ , we have

$$\lambda ||f_n - T(f_n)|| = ||f_n - f_{n+1}||.$$

By Lemma 1, we have  $f_n \leq f_{n+1}$ . Therefore, monotone  $(C_{\lambda})$ -condition implies that  $||T(f_n) - T(f_{n+1})|| \leq ||f_n - f_{n+1}||$ . Now, we can apply Lemma 3 of [1] to conclude that  $\lim_n ||f_n - T(f_n)|| = 0$ .

**Example 2** We show that T, which is defined in Example 1, has an a.f.p.s. It is easy to see that C is a nonempty, convex, and bounded subset of  $L_p$ . Also, we proved T obeys the monotone  $(C_{\frac{1}{2}})$ -condition. Moreover,  $0 \le T(0)$ . Thus, by Theorem 1, T has an a.f.p.s.

Now, we construct an a.f.p.s. according ( $\star$ ). Let  $f_1 = 0$ . So  $f_n = 0$ . Therefore

$$||f_n-T(f_n)||=0.$$

Thus  $f_n$  is an a.f.p.s.

**Theorem 2** Let C be compact. Assume there exists  $f_1 \in C$  such that  $f_1$  and  $T(f_1)$  are comparable. Then T has a fixed point.

*Proof* Let  $f_n$  be a sequence which is defined in  $(\star)$ . By Theorem 1,  $f_n$  is an a.f.p.s. Since C is compact,  $f_n$  has a convergent subsequence  $f_{n_k}$  to f. By triangle inequality, we get

$$\liminf_{n_k} \|T(f_{n_k}) - T(f)\| \le \lim_{n_k} \|T(f_{n_k}) - f_{n_k}\| + \liminf_{n_k} \|f_{n_k} - T(f)\|.$$

Since  $f_n$  is an a.f.p.s., we have

$$\liminf_{n_k} \|T(f_{n_k}) - T(f)\| \le \liminf_{n_k} \|f_{n_k} - T(f)\|.$$
(2)

Again, by triangle inequality, we have

$$\liminf_{n_k} \|f_{n_k} - T(f)\| \le \lim_{n_k} \|f_{n_k} - T(f_{n_k})\| + \liminf_{n_k} \|T(f) - T(f_{n_k})\|.$$

Therefore,

$$\liminf_{n_k} \|f_{n_k} - T(f)\| \le \liminf_{n_k} \|T(f_{n_k}) - T(f)\|.$$
(3)

From equations (2) and (3), we have

$$\liminf_{n_k} \|f_{n_k} - T(f)\| = \liminf_{n_k} \|T(f_{n_k}) - T(f)\|.$$
(4)

By using the partially order and convergent properties  $f_{n_k} \leq f$ . Lemma 1 implies  $f_{n_k} \leq f_{n_k+1} \leq f$ . So  $||f_{n_k+1} - f_{n_k}|| \leq ||f - f_{n_k}||$ . Since  $f_{n_k+1} - f_{n_k} = \lambda(f_{n_k} - T(f_{n_k}))$ , we get

$$\lambda \|f_{n_k} - T(f_{n_k})\| = \|f_{n_k+1} - f_{n_k}\|.$$

Therefore

$$\lambda \| (f_{n_k} - T(f_{n_k})) \| \le \| f - f_{n_k} \|.$$

Thus the monotone ( $C_{\lambda}$ )-condition implies

$$||T(f_{n_k}) - T(f)|| \le ||f_{n_k} - f||.$$
 (5)

Since  $f_{n_k}$  is bounded, Lemma 3 implies

$$\liminf_{n_k} \|f_{n_k} - T(f)\| = \liminf_{n_k} \|f_{n_k} - f\| + \|f - T(f)\|.$$

From equation (4), we get

$$\liminf_{n_k} \|f_{n_k} - f\| + \|f - T(f)\| = \liminf_{n_k} \|T(f_{n_k}) - T(f)\|.$$

From equation (5), we get

$$\liminf_{n_k} \|f_{n_k} - f\| + \|f - T(f)\| \le \liminf_{n_k} \|f_{n_k} - f\|.$$

This implies that T(f) = f.

By Theorem 2, we can see that T in Example 1, has a fixed point.

The following example shows that monotone  $(C_{\lambda})$ -condition is a direct generalization of  $(C_{\lambda})$ -condition.

**Example 3** Let  $C = co\{x, \sin(x)\}$ , where  $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ . Define a partial order on C as follows:

$$f \leq g$$
 iff  $f(x) \leq g(x)$ .

Let  $T: C \to C$  be

$$T(f) = \begin{cases} \sin(x) & f \neq x, \\ x & f = x. \end{cases}$$

Since C is convex hull of a compact set  $\{x, \sin(x)\}$ , so it is a nonempty, convex and compact subset of  $L_p$ . Put f = x. Then f and T(f) are comparable. Also, T obeys the monotone  $(C_{\lambda})$ -condition. Thus, by Theorem 2, T has a fixed point.

Note, for  $\lambda \in (0,1)$ , T does not obey the  $(C_{\lambda})$ -condition. Because, for f=x and  $g=\frac{x}{2}+\frac{1}{2}\sin(x)$ , we have  $\lambda \|f-T(f)\| \leq \|f-g\|$ , but  $\|T(g)-T(f)\| \nleq \|f-g\|$ .

**Theorem 3** Let C be a weakly compact subset of  $L_2$ . Assume, there is  $f_1 \in C$  such that  $f_1 \leq T(f_1)$ . Then T has a fixed point.

*Proof* By Theorem 1, T has an a.f.p.s.  $f_n$ . Since C is weakly compact, there is a weakly convergent subsequence  $f_{n_k}$  to some  $f \in C$ . If  $\liminf_{n_k} \|f_{n_k} - f\| = 0$ , then  $f_{n_k}$  is convergent and we will have the same proof of Theorem 2. On the other hand, if  $\liminf_{n_k} \|f_{n_k} - f\| > 0$ , then by Lemma 2,

$$\liminf_{n_k} \|f_{n_k} - T(f)\| \le \liminf_{n_k} \|f_{n_k} - f\|.$$
(6)

We claim that f = T(f). Because if  $f \neq T(f)$ , since  $L_2$  satisfies Opial condition, we have

$$\liminf_{n_k} \|f_{n_k} - f\| < \liminf_{n_k} \|f_{n_k} - T(f)\|,$$

which is a contradiction with inequality (6).

This result is a generalization of the original existence theorem in [7, 9] form monotone nonexpansive to monotone ( $C_{\lambda}$ )-condition. Therefore this class is bigger and is used to answer the question asked by T Benavides [12]: Does X also satisfy the fixed point property for Suzuki-type mappings?

#### Competing interests

The authors declare that they have no competing interests.

#### Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

#### **Author details**

<sup>1</sup>Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran. <sup>2</sup>Department of Mathematics, Payame Noor University, Tehran, 19395-3697, Iran.

#### Acknowledgements

The first author acknowledges Buein Zahra Technical University for supporting this research.

Received: 13 February 2016 Accepted: 20 July 2016 Published online: 01 August 2016

#### References

- 1. Goebel, K, Kirk, WA: Iteration processes for nonexpansive mappings. Contemp. Math. 21, 115-123 (1983)
- Ishikawa, S: Fixed points and iteration of a nonexpansive mapping in a Banach space. Proc. Am. Math. Soc. 59, 65-71 (1976)
- 3. Khan, AR, Hussain, N: Iterative approximation of fixed points of nonexpansive maps. Sci. Math. Jpn. 54, 503-511 (2001)
- 4. Kirk, WA: Fixed point theory for nonexpansive mappings. In: Fixed Point Theory. Lecture Notes in Mathematics, vol. 886, pp. 485-505 (1981)
- Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 595-597 (1967)
- 6. Browder, FE: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041-1044 (1965)
- Falset, JG, Fuster, EL, Suzuki, T: Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 375, 185-195 (2011)
- 8. Suzuki, T: Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. **340**, 1088-1095 (2008)

- 9. Khamsi, MA, Khan, AR: On monotone nonexpansive mappings in  $L_1([0,1])$ . Fixed Point Theory Appl. **2015**, Article ID 94 (2015). doi:10.1186/s13663-015-0346-x
- 10. Beauzamy, B: Introduction to Banach Spaces and Their Geometry. North-Holland, Amsterdam (1985)
- 11. Brezis, H, Lieb, E: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486-490 (1983)
- 12. Benavides, TD, Medina Perez, B: The fixed point property for some generalized nonexpansive mappings and renormings. J. Math. Anal. Appl. **429**, 800-813 (2015)

## Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com