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1 Introduction and mathematical preliminaries

The program of the paper is to find best proximity pairs between two subsets of a met-
ric space with a partial ordering. There are several works which utilize for that purpose
non-self mappings in the following manner. Let A and B be two non-intersecting subsets
of a metric space (X,d). A mapping S: A —> B realizes the best proximity pair (x, Sx) if
d(x,8x) = d(A, B). In that case the point x is called a best proximity point of S and the
problem of finding such a point is designated as best proximity point problem. This area
of research has attracted attention in recent time which has resulted into the publication
of a good number of papers as, for instances, those which are noted in [1-16].

The problem has two aspects. Primarily, it is a global minimization problem, where the
quantity d(x, Sx) is minimized over x € A subject to the condition that the minimum value
is d(A, B). When this global minimum is attained at a point z, then we have a best proximity
point for which d(z, Sz) = d(A, B). Another aspect is that it is an extension of the idea of
fixed point to which it reduces in the cases where AN B is nonempty. This is the reason that
fixed point methodologies are applicable to these category of problems. More elaborately,
the problem can be treated as that of finding a global optimal approximate solution of the
fixed point equation x = Sx even when the exact solution is nonexistent for A N B =,
which is the case of interest here. We adopt the latter approach in this paper.

© 2016 Choudhury et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13663-016-0569-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-016-0569-5&domain=pdf
mailto:maniugeorgeta@gmail.com

Choudhury et al. Fixed Point Theory and Applications (2016) 2016:79 Page 2 of 13

We use a generalized weak contraction in our results. Weak contraction was studied
in partially ordered metric spaces by Harjani and Sadarangani [17]. In a recent result by
Choudhury et al. [18], a generalization of the above result to a coincidence point theorem
has been made using three control functions. More specifically, here we utilize a gener-
alized weak contraction mapping defined with the help of three control functions for the
purpose of obtaining the desired minimum distance. The above mentioned mapping is as-
sumed to be defined from one set A to the other set B. Then under suitable conditions, by
applying fixed point methodologies, we obtained a best proximity point of the above men-
tioned mapping which realizes the minimum distance. Several metric and order theoretic
concepts are utilized in our results. The main result has four corollaries and an illustrative
example. Separate order theoretic condition are imposed to ensure the uniqueness of the
best proximity point in the main result. It is also shown that the corollaries are properly
contained in the main theorem.

The following are the requisite mathematical concepts for the discussions in this paper.

Throughout the paper (X, d) denotes a metric space, < a partial order on X and A,B C X.

We use the following notations:

d(A,B) =inf{d(a,b):a € Aand b € B},
Ay = {a €A:d(a,b) =d(A,B) for some b € B},

By = {b € B:d(a,b) = d(A,B) for some a eA}.

It is to be noted that if (4, B) is a nonempty, weakly compact, and convex pair in a Banach
space X, then Ay and By are nonempty [5, 11]. If a mapping S: A UB — A U B is cyclic
relatively nonexpansive mapping, and (4, B) is a nonempty, weakly compact, and convex
pair in a Banach space X then further we have S(A¢) C By.

Definition 1.1 (P-property [16]) Let A and B be two nonempty subsets of a metric space
(X, d) with Ay # 9. Then the pair (A4, B) is said to have the P-property if, for any x;,x, € Ag
and y1,y, € By,

d(xl)yl) = d(A’B)J
= dx,x2) =d(¥1,52).
(3, 72) = d(A,B) o) =)

In [1], Abkar and Gabeleh show that every nonempty, bounded, closed, and convex pair
of subsets of a uniformly convex Banach spaces has the P-property. Some non-trivial ex-

amples of a nonempty pair of subsets which satisfies the P-property are given in [1].
Lemma 1.1 ([10]) Let (A, B) be a pair of nonempty closed subsets of a complete metric space
(X, d) such that A is nonempty and (A, B) has the P-property. Then, (Ao, Bo) is a closed pair
of subsets of X.

Definition 1.2 A mapping S: A — A is said to be increasing if for all x,y € A,

x=<y = Sx=x&.
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Definition 1.3 ([4]) A mapping S: A — B is called proximally increasing if for all
V1V, )1, Y2 € A,

=y, dv,S)=d(A,B) and d(1,Sy)=d(4,B) = vi=<wn.

In case of self-mapping the above definition reduces to the definition of increasing map-
ping.

Definition 1.4 A mapping S: A — B is called proximally increasing on A, if for all
V1, V2, )1, )2 € AO!

y1 =y, dv,Sn)=d(A,B) and d(v,Sy)=d(A,B) = v <.

Definition 1.5 The partially ordered metric space (X, d, <) is called regular if it has the
following properties:
(i) if {z,} is any nondecreasing sequence in X converging to z, then z,, < z for any n > 0;

(ii) if {z,} is any nonincreasing sequence in X converging to z, then z, > z for any n > 0.
2 Main results
Let I" and A denote the following classes of functions:

I' = {n: [0,00) — [0, 00),7n is continuous and monotonic increasing};
A ={&:[0,00) — [0,00), £ is bounded on any bounded interval in [0, c0)}.

Now, we discuss some properties of some special type of functions in A.

Let ® = {6 € A : limf(z,) > 0,whenever {z,} is any sequence of nonnegative real
numbers converging to / > 0}.

We note that © is nonempty. For an illustration, we define 6; on [0, 00) by 6,(x) = €**,
x € [0,00). Then 0; € ®. Here we observe that #,(0) = 1 > 0. On the other hand, if 0, (x) = x3,
x € [0,00), then 6, € ® and 6,(0) = 0.

Also, for any 0 € 0, it is clear that 0(x) > 0 for x > 0; and 6(0) need not be equal to 0.

Let Y = {¢p € A : limg(z,) < I,whenever {z,} is any sequence of nonnegative real
numbers converging to / > 0}.

It follows from the definition that, for any ¢ € T, ¢(y) <y for all y > 0.

Theorem 2.1 Let (X, d) be a complete metric space and < be a partial order on X. Let (A, B)
be a pair of nonempty subsets of X such that A is nonempty and closed. Let S: A — Bbea
mapping with the properties that S(Ay) C By and S is proximally increasing on Ay. Assume
that there exist n € I and &,0 € A such that
(i) forx,y € [0,00), n(x) <&(y) = x <,
(i) n(z) —limé&(z,) + lim6O(z,) > 0, whenever {z,} is any sequence of nonnegative real
numbers converging to z > 0,
(ili) forall x,y,u,v € A

x = Y
d(u, Sx) = d(A, B), = n(dwv) <&My, u,v)) -0 (M(x,y,1,v)),
d(v,Sy) =d(A,B)

where M(x, y, u, v) = max{d(x, y), d(x’”);d(y’v), d(y‘”);d(’c’v) ).
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Suppose either S is continuous or X is regular. Also, suppose that there exist elements
x0,%1 € Ag for which d(x1,Sx0) = d(A,B) and x¢ < x1. Then S has a best proximity point
in Ao.

Proof 1t follows from the definition of Ay and By that for every x € Ay there exists y €
By such that d(x,y) = d(A, B) and conversely, for every y' € By there exists ' € Ay such
that d(x',y’) = d(A, B). Since S(Ag) C By, for every x € A, there exists a y € Ag such that
d(y,Sx) = d(A, B).
By the hypothesis of the theorem there exist xy,x; € Ag for which xyp < x; and
d(x1,Sx0) = d(A, B). (2.1)
Now, x1 € Ap and S(Ay) C By imply the existence of a point x; € A such that

d(x2,Sx1) = d(A, B). (2.2)

As S is proximally increasing on Ao, we get x; < x,. In this way we obtain a sequence {x,}
in Ag such that for all # > 0,

Xy X Xpsl (23)
and
d(x,.1,Sx,) = d(A, B). (2.4)

By the hypothesis (iii), x, < %41, d(®441, Sx,) = d(A, B) and d(xy42, Sx441) = d(A, B) imply
that

n (d(xn+1: xn+2)) < E (M(xn: Xn+1r Xn+ls xn+2)) -0 (M(xm Xn+1r Xn+1s xn+2)) ) (25)

where

M(xm Knels Kpals Xns2)

d(xmxn+l) + d(xn+1: xn+2) d(xn+11xn+l) + d(xm xn+2) }
2 ’ 2

=max { A%y, %p41),

AXy, Xpi1) + AKXy, Xa2) AKX, Xpis2) }

= max{d(xmxnﬂ): 2 ’ 2

By the triangular inequality, d(x”’; n2) < d(x”’x”+1)+j Constne2) S it follows that

d(xn) xn+1) + d(xwrlr xn+2) }

MKy Xps1, Kpa, Xna2) = max{d(x,,, Xne)s )

Let U, = d(x,,,%,.1), for all > 0.
Case 1: M(x,,, %11, %41, Xns2) = (%, X41). Then by (2.5),

n(d(x;ﬁl: xn+2)) < E(d(xm xn+l)) - Q(d(xn: xn+1))’
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that is,
U(Uml) = E(un) - 9(”}4): (26)

which implies that n(U,,1) < £(U,). Then it follows by the hypothesis (i) of the theorem
that U,.1 < U, foralln > 0.

Case 2: M(%,, %41, Xns1, Xns2) = d(x"’x”“)*j(x"“'x””) = un+2un+1 =V, (say). Then it follows
from (2.5) that

U(Un+1) = %'(Vn) - O(Vn): (2.7)

which implies that n(U,,1) < &(V,) = é(w). Again by the hypothesis (i) the theorem
it follows that U,,,; < %, thatis, U, < U, forall n > 0.

From Case 1 and Case 2, we conclude that {lU/,} is a monotone decreasing sequence of
nonnegative real numbers. As {U,} is bounded below by zero, there exists an ¢ > 0 such

that
lim U, = A%, Xpi1). (2.8)
Then it follows that
lim V, = A%y Xpe1) + d(xn+1rxn+2). (2.9)
100 2

Taking the limit supremum in both sides of the inequality (2.6), using (2.8), the continuity
of 1, and the property of &£ and 6, we obtain

n(t) < img(U,) +1im (-0(U,)).

Since lim (-6(U,,)) = —lim 6(U,,), it follows that
n(6) < limé (U,,) - lim6(Uy),

that is,
n(t) - limé&(U,) + im0 (U,) <0,

which, by the hypothesis (ii) and (2.8), is a contradiction unless ¢ = 0.
Arguing similarly as above, from (2.7) and (2.8), we have

n(t) - Lim&(V,) +lim6(V,,) <0,
which, by the hypothesis (ii) and (2.9), is a contradiction unless ¢ = 0. Hence
u,=dx,,x,.,1) — 0 asn— oo. (2.10)

Next we show that {x,} is a Cauchy sequence.
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Suppose that {x,} is not a Cauchy sequence. Then there exist § > 0 and two sequences
{m(k)} and {n(k)} of positive integers such that for all positive integers k, n(k) > m(k) > k
and d(X,,k), Xn(k)) = 8. Assuming that n(k) is the smallest such positive integer, we get

n(k) > m(k) >k, d@m), *ny) =8 and  dXmk), Xn(r)-1) < 3.
Now,
8 < dmwy Xn(k) < AXmk)s Fni)-1) + AXn(k)-1,Xn(k)) < 8 + AXn(r)-1, Xn(h))-
From the above inequality and (2.10), it follows that
lim d (%), X)) = 6. (2.11)
k—00
Again,
A Xy Xn(k)) < AEm(r)s Xmiy+1) + ACmE) 41, Fn(h)+1) + A Xk 15 %n(k)
and
d(xm(k)+1’ xn(k)+l) = d(xm(/()+17 xm(k)) + d(xm(k)r xn(k)) + d(xn(k)vxn(k)ﬂ)'

The above two inequalities imply that

Ay Xny) — A Xy Tm()+1) — AEni 11, Xnik))

< AXm()+15 Xn)+1) < A X1 Xm)) + AKXk Fnik)) + AXn(k)s Xniio)+1)-

From the above inequality, (2.10) and (2.11), we have

klgglo AKXy +1, Xnk)+1) = 6. (2.12)
Again,

A Xy %nk)) < AXmii)s Xn()41) + A Xy +1, Xnik))
and

A Xy n(ry+1) < AGomii), %) + Ank) (k) 1)-
The above two inequalities imply that

A Xy Xn(k)) — AXn()+1, Fn(k)) < AXm(k) X +1) < AXmiyr Xnr)) + A En(k), Xniioy+1)-
From the above inequality, (2.10) and (2.11), we have

lim d(xm(k)7xn(k)+l) =4. (213)

k—o00
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Similarly, we can prove that

kll)nolo A%y Xm(gy1) = 8. (2.14)
By the construction of the sequence {x,}, we have

X)) =X Xnk)s A Xm()+1, S¥my) = A(A,B)  and  d(Xuy1, Sxn(k)) = d(A, B),
which, by the hypothesis (iii), imply that

1 (d@m(o+1 %n(i+1))

< E(M@m(k)s %) X111, Fn(+1)) = O (M (i) %) Emii) 11> ¥ +1)) (2.15)
where

MKk Bl Km(k)+15 Xa(he)+1)

AKX (k) Xmio)+1) + AXn(k)s Xn(i)+1)
2

’

= max { A Xy %nk))»

AKX Xm11) + AEmt)s Xn(iy+1) }
> )

From (2.10), (2.11), (2.13), and (2.14), it follows that

lm M Xy Xn(k)> Xk +1) Xniy+1) = 8. (2.16)

k—o00
Taking the limit supremum in both sides of the inequality (2.15), using (2.12), (2.16), the
continuity of 1, and the property of £ and 6, we obtain

1(8) < lim & (Mt n)» () +1> Fntiy41) ) + Hm (=0 (M@ Xy X1 X +1)) ) -

As Tim (=0 (M Fpm()» iy Xt +1 Xn(i)41))) = =M O (M Ko Xy Xk +1, %) +1))» it follows
that

1(8) < M & (MXm(ky> Xy Xk 11> ¥ +1)) — M O (M Koy %) X1 Xn(i)+1))
that is,
1(8) = Tim & (M (Xym(hy> Xn)» K1 %n(i9+1)) + 1m0 (M Xy Xk %) 11 %ni91)) < O,

which, by the hypothesis (ii) and (2.16), is a contradiction. Therefore, {x,} is a Cauchy
sequence in Ag. Since Ay is a closed subset of complete metric space (X, d), there exists
a € Ay such that

lim x, =a; thatis, lim d(x,,a) =0. (2.17)
n—0oQ n—00
« Suppose that S is continuous.
Taking n — o0 in (2.4) and using the continuity of S, we have d(a, Sa) = d(A, B); that is,
a is a best proximity point of S.
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« Next we suppose that X is regular.
By (2.3) and (2.17), we have

x, <a foralln=>0. (2.18)
Now a € Ag and S(A¢) C By imply the existence of a point p € Ay for which

d(p,Sa) = d(A,B). (2.19)
By (2.4), (2.18) and (2.19), we have

xy <a, dx,1,5%,)=d(A,B) and d(p,Sa)=d(A,B),
which, by the hypothesis (iii) of the theorem, imply that

1(d(¥ns1,0)) < & (MF, @ %001, P)) = O (M (%, @ %111, P)) (2.20)

where

d nr ¥+ d ’ d »n+ d n
M(xmﬂ;xnﬂyp):max{d(xmﬂ); (x i 1)+ (ﬂp)’ (ax 1)+ (x p)}

2 2
From (2.17), it follows that

d(a,
lim M(x,,a,%,.1,p) = (a p)‘ (2.21)

n—00 2

Taking the limit supremum in both sides of the inequality (2.20), using (2.17), (2.21), the
properties of 1, and the property of &£ and 6, we obtain

(d(fl;P)
n( —=

5 ) < n(d(a,p)) < lim&(M(x,, a,%,:1,p)) + 1im (=6 (M (%, @, %11, P)) )

Arguing similarly as discussed above, we have

0 (d(gp)> —lim & (M(x, @, %111, p)) + 1im 6 (M (1, @, %11, p)) < O,

which, by the hypothesis (ii) and (2.21), is a contradiction unless d(a, p) = 0; that is, p = a.
Then by (2.19) we have d(a, Sa) = d(A, B); that is, a is a best proximity point of S. O

Theorem 2.2 In addition to the hypotheses of Theorem 2.1, suppose that for every x,y € Ag
there exists u € Ag such that u is comparable to x and y. Then S has a unique best proximity
point.

Proof By Theorem 2.1, the set of best proximity points of S is nonempty. Suppose x,y € Ao
are two best proximity points of S; that is,

d(x,Sx)=d(A,B) and d(y,Sy) =d(A,B). (2.22)

By the assumption, there exists u € Ay, which is comparable with x and y.



Choudhury et al. Fixed Point Theory and Applications (2016) 2016:79

Put uo = u. Suppose that

uo <x (in the other case the proof is similar).

S(Ao) € By and up = u € Ap imply the existence of a point u; € A for which
d(uy, Sug) = d(A, B).

Since S is proximally increasing on Ay, from (2.22), (2.23), and (2.24) we have
U < x.

Following this process, we obtain a sequence {u,} in Ao such that for all n > 0,
d(ty1,Su,) =d(A,B) and u, <x.

By (2.22) and (2.26), we have
u, <x, duy.1,Su,)=d(A,B) and d(x,Sx)=d(A,B),

which, by the hypothesis (iii) of Theorem 2.1, imply that
(A1, %)) < & (M, &, th11,%)) = 0 (M, %, 1411, %)),

where

d 1 Un+ d ) d » Un+ d n
M(un,x,um,x):max{d(un,xx (s, 1) + Ao, 20) Aoy ) + o ")}

2 ’ 2
Aty Uns1) A%, Uyir) + d(tty, x)
2 ’ 2 ’

= max{d(un,x),

By the triangular inequality d(””’zu nel) < d(x’“”“;'d(””’x). Then it follows that

A, 1) + d(ny,
M(”"’x’”mbx):max{d(un,x), (o, 1)2+ (ue x)}.

Let Q, = d(u,,x), for all n > 0.

Page 9 of 13

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

Arguing similarly as in the proof of Theorem 2.1 (Case 1 and Case 2), we can prove that

{Q,} is a monotone decreasing sequence of nonnegative real numbers and
lim Q, = lim d(u,,x) = 0.
n— 00 n—00
Similarly, we show that
lim d(u,,y) = 0.
n—00

By the triangle inequality, and using (2.28) and (2.29), we have

0 <d(x,y) <[dx,u,) +d(uny)] — 0 asn— oo,

(2.28)

(2.29)
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which implies that d(x,y) = 0; that is, x = y; that is, the best proximity point of S is
unique. |

With the help of P-property we have the following theorem which is obtained by an
application of Theorem 2.1.

Theorem 2.3 Let (X,d) be a complete metric space and < be a partial order on X. Let
(A, B) be a pair of nonempty and closed subsets of X such that A is nonempty and (A, B)
satisfies the P-property. Let S: A —> B be a mapping with the properties that S(Ay) C By
and S is proximally increasing on Ay. Assume that there existn € I and £,0 € A such that
(i) forx,y € [0,00), n(x) <&(y) = x <y,
(i) n(z) —limé&(z,) + lim6O(z,) > 0, whenever {z,} is any sequence of nonnegative real
numbers converging to z > 0,
(iii) for all x,y,u,v € Ag

X<
d(u,Sx)=d(A,B),; = n(d(Sx,Sy)) <&(Mx,y,u,v)) — 0 (M(x,y,u,v)),
d(v,Sy) =d(A,B)

x,u)+d(y,v) d(y,u)+d(x,v)}
2 2 :

where M(x, y, u,v) = max{d(x,y), a ,
Suppose either S is continuous or X is regular. Also, suppose that there exist elements
x0,%1 € Ag for which d(x1,Sx0) = d(A,B) and x¢ < x1. Then S has a best proximity point

in Ao.

Proof By Lemma 1.1, A is nonempty and closed. Since (A, B) satisfies the P-property,
d(u, Sx) = d(A, B) and d(v, Sy) = d(A, B) imply that d(u,v) = d(Sx, Sy). Then condition (iii)
of the theorem reduces to the condition (iii) of Theorem 2.1. Therefore, all the conditions

of the Theorem 2.1 are satisfied and hence we have the required proof. g

3 Corollaries and example

Corollary 3.1 Let (X,d) be a complete metric space and < be a partial order on X. Let
(A, B) be a pair of nonempty subsets of X such that A, is nonempty and closed. Let S: A —
B be a mapping with the properties that S(Ao) C Bo and S is proximally increasing on A,.
Let there exists &€ € A such that lim&(z,,) < z, whenever {z,)} is any sequence of nonnegative
real numbers converging to z > 0 and for all x,y,u,v € A

x =Y
d(u,Sx)=d(A,B),; = du,v) <§(Mx,y,uv)),
d(v,Sy) =d(A,B)

where M(x,y,u,v) is the same as in Theorem 2.1. Suppose either S is continuous or X is
regular. Also, suppose that there exist elements xy,x1 € Ao such that d(x;,Sxy) = d(A,B)
and xo < x1. Then S has a best proximity point in Ag.

Proof Let n be the identity mapping and 6(¢) = 0 for all ¢ € [0,00) in Theorem 2.1. Then

we have the required proof from that of Theorem 2.1. O
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Corollary 3.2 Let (X,d) be a complete metric space and < be a partial order on X. Let
(A, B) be a pair of nonempty subsets of X such that A, is nonempty and closed. Let S: A —
B be a mapping with the properties that S(Ao) € By and S is proximally increasing on Ay.
Assume that there exist n € I' and 0 € A such that for any sequence of nonnegative real

numbers {z,} with z, — z > 0, lim6(z,) > 0 and for all x,y,u,v € Ay

x =Y,
du,Sx)=d(A,B),; = n(dw,v)) <n(Mxy,uv)) -0 (Mx,y,u,v)),
d(v,Sy) =d(A,B)

where M(x,y,u,v) is the same as in Theorem 2.1. Suppose either S is continuous or X is
regular. Also, suppose that there exist elements xo,x1 € Ao for which d(x1,Sxo) = d(A, B)

and xy < x1. Then S has a best proximity point in Ag.

Proof The required proof is obtained by considering & to be identical with the function 5
in Theorem 2.1. O

Corollary 3.3 Let (X,d) be a complete metric space and < be a partial order on X. Let
(A, B) be a pair of nonempty subsets of X such that A, is nonempty and closed. Let S: A —>
B be a mapping with the properties that S(Ag) € By and S is proximally increasing on Ay.
Let there exists 6 € A such that lim6(z,) > 0, whenever {z,} is any sequence of nonnegative

real numbers converging to z > 0 and for all x,y,u,v € A

x =Y,
d(u,Sx) = d(A, B), = du,v) <My, u,v) -0 (M(x,y,u, v)),
d(v,Sy) =d(A,B)

where M(x,y,u,v) is the same as in Theorem 2.1. Suppose either S is continuous or X is
regular. Also, suppose that there exist elements xo,x1 € Ao for which d(x1,Sxo) = d(A, B)
and xy < x1. Then S has a best proximity point in Ag.

Proof Let n and & be the identity mappings in Theorem 2.1. Then we have the required
proof from that of Theorem 2.1. d

Corollary 3.4 Let (X,d) be a complete metric space and < be a partial order on X. Let
(A, B) be a pair of nonempty subsets of X such that A is nonempty and closed. Let S: A —>
B be a mapping with the properties that S(Ag) C By and S is proximally increasing on Ay.
Assume that there exists k € [0,1) such that for all x,y,u,v € Ao

X ﬁ y;
d(u,Sx) = d(A, B), = du,v) <kM(x,y,u,v),
d(v,5y) = d(A, B)

where M(x,y,u,v) is the same as in Theorem 2.1. Suppose either S is continuous or X is
regular. Also, suppose that there exist elements xo,x1 € Ao for which d(x1,Sxo) = d(A, B)
and xo < x1. Then S has a best proximity point in Ag.
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Proof We consider that n and & are the identity mappings and 6(¢) = (1 — k)¢, where 0 <
k <1, in Theorem 2.1. Then we have the required proof from that of Theorem 2.1. d

Example 3.1 Let X = R? (R denotes the set of all real numbers) and d be a metric on X
defined as d(x,y) = |x1 —x2| + [y1 — 2|, for x = (x1,31),y = (x2,¥2) € X. Define a partial order
=< on X such that (x,y) < (»,v) ifand only if x <u and y <v, for all (x,), (&, v) € X. Let

A:{(x, 0<wx } {Ox):1§x<2},
B={(x-1):0<x<1}U{(0,x):-2<x=<-1},

Ao_{(x,l) 0<x<1}CA and By={(x,-1):0<x<1}CB.
Let S: A — Bbe defined as

S(6) - (3,-1), ift=(x1) €A,
) ,-x), ift=(0,%)e{(0,x):1<x<2},

and n,&,60: [0,00) —> [0, 00) be defined as follows:

2 0, ifo<x<l,
n(x) = 2%, s(x)=%, 0(x) = U=r=

T otherwise.

The function S now satisfies all the postulates of Theorems 2.1 and 2.2. Then, by joint
applications of Theorems 2.1 and 2.2 we conclude that S must have a best proximity point
which is unique. The point can be seen here to be (0,1) € Ao.

Note In this example A and B are not closed sets. This is an illustration of the fact that

the closedness of A and B are not required in our theorem.

Remark 3.1 Corollaries 3.1, 3.2, 3.3, and 3.4 are not applicable to this example and hence
Theorem 2.1 is an actual extension of its Corollaries 3.1, 3.2, 3.3, and 3.4.

4 Conclusions

The present paper is an application of weak inequalities satisfied by non-self mappings.
Weak contractions are intermediate to the contractions and non-expansions which have
been generalized in various ways and have been utilized in different types of problem. We
make such an application for finding a best proximity pair. The speciality of this paper is
that it has been obtained in the most general settings of a metric space without any special
assumptions on this space.
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