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Abstract
A new definition of essential fixed points is introduced for a large class of multivalued
maps. Two abstract existence theorems are presented for approximable maps on
compact ANR-spaces in terms of a nontrivial fixed point index, or a nontrivial
Lefschetz number and a zero topological dimension of the fixed point set. The second
one is applied to the periodic dissipative Marchaud differential inclusions for
obtaining the existence of a discretely essential subharmonic solution. Three simple
illustrative examples are supplied.

MSC: Primary 55M20; 54C60; 55M15; secondary 54H25; 47H04; 47H10; 34A60; 34C25

Keywords: essential fixed points; fixed point index; Lefschetz number; absolute
neighborhood retracts; approximable multivalued mappings; J-maps; Poincaré
translation operators; dissipative differential inclusions; discretely essential periodic
solutions

1 Introduction
In the present note, we will consider for the first time the notion of essential fixed points
to multivalued maps as defined below. More concretely, we will present two abstract the-
orems about the existence of essential fixed points to a large class of approximable mul-
tivalued maps, on compact ANR-spaces, in terms of a nontrivial fixed point index, or a
nontrivial Lefschetz number and a zero topological dimension of the fixed point set.

These two theorems can be regarded as a multivalued generalisation of their analogies
in our recent paper [] (cf. also [], Section ), where single-valued maps were exclusively
examined for the same goal. On the other hand, unlike in [, ], we do not consider here
compact multivalued maps, or even multivalued maps with only a certain amount of com-
pactness like compact absorbing contractions, on arbitrary ANR-spaces. This remains as
a challenge for our future research.

In our approach, we again follow the seminal ideas of Fort, Jr. and O’Neil in their classi-
cal papers [, ] from the early s. Hence, roughly speaking, the fixed point, say x, of a
given multivalued approximable mapping is essential if any continuous single-valued map
which is sufficiently ‘near’ admits a fixed point in the neighborhood of x. For a precise
formulation, see Definition . below, and for some further results in this field, see the ref-
erences in []. Let us note that this definition significantly differs from all the other defini-
tions for multivalued maps (see e.g. [, ] and the references therein), because it effectively
employs the approximability of given multivalued maps on their graphs by single-valued
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maps. In this way, topological invariants like a fixed point index can easily be calculated
just by means of these single-valued approximations. This profit naturally connects our
approach with the classical theory developed by Fort, Jr. [] and O’Neil [].

There are a lot of important applications of the essential fixed point theory like those in
economy and the theory of games (see again the references in []). In [], we concentrated
to essential multivalued fractals considered as fixed points of the induced (single-valued)
Hutchinson-Barnsley operators in hyperspaces. Here, our application concerns periodic
solutions of periodic dissipative (in the sense of Levinson) differential inclusions. From
our theoretical results, we will deduce that if a periodic dissipative system of Marchaud
inclusions possesses at most a finite number of subharmonic periodic solutions or, in par-
ticular, entirely bounded solutions, then it admits a discretely essential periodic solution.

As already pointed out in [], the essentiality can be regarded as a sort of structural
stability which has a lot to do with the shadowing property for chaotic dynamics. Thus,
the main profit consists not only in an additional information as regards the localization
of fixed points of ‘near’ single-valued approximations, but in a numerical reliability at all.

In order to demonstrate the power of the obtained results, three simple illustrative ex-
amples are supplied.

2 Preliminaries
Let X = (X, d) be a metric space. Let us recall that X is an absolute neighborhood retract
(written X ∈ ANR) if there exist an open set U in a normed space and two single-valued
continuous maps r : U → X and s : X → U such that r ◦ s = idX , where idX stands for the
identity on X.

If U is an arbitrary convex set, then X is called an absolute retract (written X ∈ AR).
Evidently: AR ⊂ ANR.

A compact space is called an Rδ-set if it is an intersection of a decreasing sequence of
compact AR-spaces. For compact sets, in particular: convex ⊂ AR ⊂ Rδ .

Let X = (X, dX) and Y = (Y , dY ) be metric spaces. By multivalued mappings ϕ : X � Y ,
we understand here those with nonempty, closed values, i.e. that ϕ : X → Y \ {∅} and a
closed set ϕ(x) ⊂ Y is assigned to every point x ∈ X. By a fixed point of ϕ : X � Y , we
mean the point x ∈ X ∩ Y such that x ∈ ϕ(x).

A mapping ϕ : X � Y is said to be upper semicontinuous (written u.s.c.) if, for every
open U ⊂ Y , the set ϕ–(U) := {x ∈ X; ϕ(x) ⊂ U} is open in X or equivalently if, for every
closed U ⊂ Y , the set ϕ–

+ (U) := {x ∈ X; ϕ(x) ∩ U �= ∅} is closed in X.
It is well known that, for every u.s.c. mapping ϕ : X � Y , its graph �ϕ := {(x, y) ∈ X ×

Y ; y ∈ ϕ(x)} is a closed subset of X × Y . The reverse implication does not hold, in general.
On the other hand, if ϕ : X � Y is such that ϕ(X) ⊂ K , where K ⊂ Y is a compact set

and the graph �ϕ is closed, then ϕ is u.s.c.
For u.s.c. maps ϕ : X � Y with compact values, if K ⊂ X is compact, then so is ϕ(K) ⊂ Y .
The composition ϕ ◦ ϕ : X � Z of two u.s.c. maps ϕ : X � Y and ϕ : Y � Z with

compact values is again u.s.c. with compact values.
If a u.s.c. mapping ϕ is single-valued, i.e. ϕ : X → Y , then it is continuous.
For the proofs and more details as regards ANR-spaces and multivalued maps, we rec-

ommend [, ].



Andres and Górniewicz Fixed Point Theory and Applications  (2016) 2016:78 Page 3 of 13

3 Approximable multivalued mappings
In the entire text, all topological spaces are metric and all single-valued mappings are con-
tinuous. Moreover, we shall consider only upper semicontinuous (u.s.c.) multivalued map-
pings with compact values.

Let X, Y be two metric spaces. We shall use the following notation: f : X → Y , for single-
valued mappings, and ϕ : X � Y , for multivalued mappings.

For a subset A ⊂ X and ε > , we let

Oε(A) :=
{

x ∈ X; ∃y ∈ A and d(x, y) < ε
}

,

where d is the metric in X. For a singleton x ∈ X, i.e. for A = {x}, we simply put Oε(x).

Definition . (cf. [–]) Let ε >  be a given real number. A map f : X → Y is an ε-
approximation of ϕ : X � Y if �f ⊂ Oε(�ϕ), where

�f :=
{

(x, y) ∈ X × Y ; y = f (x)
}

and �ϕ :=
{

(x, y) ∈ X × Y ; y ∈ ϕ(x)
}

are the graphs of f and ϕ, respectively.

In the following, in X × Y , we shall consider the max metric.
The following property is self-evident (cf. e.g. []):

�ϕ ⊂ Oε(�ϕ) if and only if, for every x ∈ X , there is f (x) ∈ Oε(ϕ(Oε(x))).
If f : X → Y is an ε-approximation of ϕ : X � Y , then we write f ∈ a(ϕ; ε).
Now, we shall define the main, from our point of view, class of multivalued mappings.

Definition . A multivalued map ϕ : X � Y is called approximable (written ϕ ∈
A(X, Y )) if the following two conditions are satisfied:

(a) for every ε > , we have a(ϕ; ε) �= ∅,
(b) for every δ > , there exists ε >  such that, for every ε ( < ε ≤ ε), if f , g ∈ a(ϕ; ε),

then there exists a homotopy h : X × [, ] → Y linking f and g such that
ht ∈ a(ϕ; δ), for every t ∈ [, ], where ht(x) = h(x, t).

Let U be an open subset of X and let ∂U denote its boundary. We let

AU (X) :=
{
ϕ ∈ A(X, Y ); Fix(ϕ) ∩ ∂U = ∅}

,

where Fix(ϕ) := {x ∈ X; x ∈ ϕ(x)}.
We shall employ the following lemma.

Lemma . Assume that X is a compact space and ϕ ∈ AU (X). Then there exists ε > 
such that, for every fε ∈ a(ϕ; ε), with  < ε ≤ ε, we have

Fix(fε) :=
{

x ∈ X; fε(x) = x
} ∩ ∂U = ∅.

Proof Let, on the contrary, for every ε > , there exist fε ∈ a(ϕ; ε) such that Fix(fε)∩∂U �= ∅.
We put εn = 

n , n = , , . . . , and fn ∈ a(ϕ; ε).
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For every n, there exists xn ∈ ∂U ∩ Fix(fn). Since fn ∈ a(ϕ; ε), for every n, we get (x̃n, ỹn) ∈
�ϕ such that

d(xn, x̃n) <

n

and d(xn, ỹn) <

n

, for n = , , . . . . ()

But ∂U is a compact set, so we can assume that limn→∞ xn = x ∈ ∂U . Consequently, in view
of (), we obtain limn→∞ x̃n = x, and limn→∞ ỹn = x. Using the fact that ϕ is u.s.c., we deduce
that (x, x) ∈ �ϕ and x ∈ ∂U . It means that x ∈ Fix(ϕ) ∩ ∂U , which is a contradiction. �

Now, we shall define the appropriate notion of homotopy in AU (X).

Definition . Two maps ϕ,ψ ∈ AU (X) are called homotopic (written ϕ ∼ ψ ) if there
exists χ ∈ A(X × [, ], X) such that χ (x, ) = ϕ(x) and χ (x, ) = ψ(x), for every x ∈ X, and
x /∈ χ (x, t), for every x ∈ ∂U and t ∈ [, ].

To indicate how large the class A(X, Y ) is, we let

J(X, Y ) :=
{
ϕ : X � Y ;ϕ is u.s.c.,ϕ(x) is an Rδ-set,

for every x ∈ X, and Y is an ANR-space
}

.

We recall the following propositions (see e.g. [–]).

Proposition . (cf. [], Corollary .) If ϕ : X � Y can be decomposed as

ϕ : X = Y
ϕ� Y

ϕ� · · · ϕn� Yn = Y ,

where X = Y is a compact ANR-space and ϕi ∈ J(Yi–, Yi), i = , . . . , n, then ϕ is approx-
imable, i.e. ϕ ∈ A(X, Y ). In particular, if X is a compact ANR-space, then J(X, Y ) ⊂ A(X, Y ).

Proposition . (cf. [], Theorem .) Let X be a compact space and Y , Z be arbi-
trary spaces. If ϕ : X � Y and ϕ : Y � Z are approximable, i.e. if ϕ ∈ A(X, Y ) and
ϕ ∈ A(Y , Z), then so is ϕ ◦ ϕ : X � Z, i.e. ϕ ◦ ϕ ∈ A(X, Z).

As a direct consequence of Proposition . and Proposition ., we can give the follow-
ing corollary which is quite appropriate for the class of multivalued Poincaré operators
considered in the two concluding sections.

Corollary . In particular, if ϕ ∈ J(X, Y ), where X is a compact ANR-space, then f ◦ ϕ ∈
A(X, Z), for any single-valued map f : Y → Z.

Open Problem  Is it true that acyclic mappings (cf. [, ]) defined on compact ANR-
spaces are approximable? Let us note that by the acyclicity, we mean the one in the sense
of the Čech homology theory with rational coefficients.

Let X be a compact space and B be a closed subset of X. Assume that r : X → B is a
continuous mapping and ϕ ∈ A(B, B). Then we put ϕ̃ = i ◦ ϕ ◦ r, where i : B → X is the
inclusion map.
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Proposition . Under the above assumption, we claim that, for each ρ > , there exists
ε >  such that, for any ε ( < ε < ε), if f ∈ a(ϕ; ε), then i ◦ f ◦ r ∈ a(ϕ̃;ρ).

The proof of Proposition . is quite analogous to the one in [], Proposition .. (cf.
also [], Proposition ..). From Proposition ., we immediately have the following.

Corollary . If ϕ ∈ A(B, B), then ϕ̃ ∈ A(X, X).

4 Fixed point index for approximable mappings
Let X be a compact ANR and U be an open subset of X. We shall define the fixed point
index:

Ind : AU (X) → Z,

where Z is the set of integers.
Let ϕ ∈ AU (X). According to Lemma ., we choose ε > . Then we use Defini-

tion .(b), for δ = ε, and we get ε >  such that Definition .(b) holds true. Let
fε ∈ a(ϕ; ε). Thus, in view of Lemma ., we have Fix(fε) ∩ ∂U = ∅. So the fixed point index
ind(fε , U) of fε is well defined (cf. []).

We put

Ind(ϕ, U) = ind(fε , U). ()

Let us observe that Definition .(b) and Lemma . guarantee that the definition () does
not depend on the choice of fε ∈ a(ϕ; ε).

In particular, if ϕ ∈ A(X, X), we can define the Lefschetz number λ(ϕ) of ϕ by putting

λ(ϕ) = λ(f ), ()

where f is chosen according to Definition .(b) and λ(f ) is the ordinary Lefschetz number
of f (cf. e.g. []).

Below there are collected the most important properties of the above fixed point index
(cf. [, , ]).

Proposition .
(i) (Existence) If Ind(ϕ, U) �= , then Fix(ϕ) ∩ U �= ∅.

(ii) (Excision) If {x ∈ U ; x ∈ ϕ(x)} ⊂ V ⊂ U , then ind(ϕ, V ) = ind(ϕ, U), where V is an
open subset of X .

(iii) (Additivity) Let U, U be two open subsets of X such that U = U ∪ U, U ∩ U = ∅
and Fix(ϕ) ∩ (U \ (U ∪ U)) = ∅, then

Ind(ϕ, U) = Ind(ϕ, U) + Ind(ϕ, U).

(iv) (Homotopy) If ϕ,ψ ∈ AU (X) are homotopic, then Ind(ϕ, U) = Ind(ψ , U).
(v) (Normalization) If ϕ ∈ A(X, X), then λ(ϕ) = Ind(ϕ, X), where λ(ϕ) stands for the

ordinary Lefschetz number for ϕ.
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Observe that from the properties (i) and (v) in Proposition ., we have the following.

Corollary . If ϕ ∈ A(X, X) and λ(ϕ) �= , then Fix(ϕ) �= ∅.

Let B ⊂ X also be a compact ANR-space and ϕ ∈ AU (X) be such that ϕ(X) ⊂ B. Let
ϕ : B � B be defined by the formula ϕ(x) = ϕ(x), for every x ∈ B. Then ϕ ∈ AU∩B(B) and
Ind(ϕ, U) = Ind(ϕ, U ∩ B).

Let X be a compact ANR-space and r : X → B be a retraction map. According to Corol-
lary ., if ϕ ∈ A(B, B), then ϕ̃ ∈ A(X, X).

Observe that

Fix(ϕ) = Fix(ϕ̃) ⊂ B. ()

Let V be an open subset of B such that Fix(ϕ) ∩ ∂V = ∅. We let U = r–(V ). Then U is
an open subset of X such that ∂U ∩ Fix(ϕ̃) = ∅. Consequently Ind(ϕ, V ) and Ind(ϕ̃, U) are
well defined. Using the excision property (ii) of the fixed point index, we get

Ind(ϕ, V ) = Ind(ϕ̃, U). ()

5 Essential fixed points
In this section, we assume that all the spaces, under our consideration, are compact.
Hence, let (X, d) be a compact space. For a given point x ∈ X and ε > , we denote by

Oε(x) :=
{

x ∈ X; d(x, x) < ε
}

and Oε(x) :=
{

x ∈ X; d(x, x) ≤ ε
}

the open and closed balls in X, respectively.

Definition . Let x be an isolated fixed point of ϕ ∈ A(X, X). We say that x ∈ X is an
essential fixed point of ϕ if, for every ε > , there exists δ = δ(ε) >  such that if f ∈ a(ϕ; δ),
then Fix(f ) ∩ Oε(x) �= ∅.

Observe that if ϕ is a single-valued mapping, then the essentiality in the sense of Defini-
tion . coincides with the one presented in [], Definition .. Concretely, an isolated
fixed point x of a single-valued mapping f : X → X is essential if, for every open ε-
neighborhood Oε(x) of x, there exists δ = δ(ε) >  such that any map g : X → X which is
‘δ-near’ to f , i.e. supx∈X d(f (x), g(x)) < δ, has a fixed point in Oε(x).

For a given ϕ ∈ A(X, X), we put

Ess(ϕ) :=
{

x ∈ Fix(ϕ); x is an essential fixed point of ϕ
}

.

We have the following.

Theorem . Let X be a compact ANR-space and ϕ ∈ A(X, X). Assume further that x ∈
Fix(ϕ) is an isolated fixed point and U be an open subset of X such that x ∈ U and Fix(ϕ)∩
∂U = ∅. Then Ind(ϕ, U) �=  implies that x ∈ Ess(ϕ).
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Proof Letting ε > , we can assume without any loss of generality that Oε (x) ⊂ U , where
x ∈ Fix(ϕ) is an isolated fixed point such that x ∈ U . From the excision property of the
fixed point index, it then follows that Ind(ϕ, Oε (x)) = Ind(ϕ, U) �= . Applying Lemma .
we can take ε >  such that if fε ∈ a(ϕ; ε), for every  < ε ≤ ε, then Fix(fε) ∩ ∂Oε (x) = ∅.
Thus, ind(fε , Oε (x)) is well defined.

Now, for δ = ε, we apply condition (b) from Definition ., by which we obtain ε > 
such that, for every  < ε ≤ ε, all the maps fε , gε ∈ a(ϕ; ε) are ε-homotopic, i.e. there exists
a homotopy h : X × [, ] → X, linking f with g such that ht : X → X, ht(x) = h(x, t) belongs
to a(ϕ; ε).

We can assume that ε ≤ ε. Consequently, for every two mappings fε , gε ∈ a(ϕ; ε), we
have ind(fε , Oε (x)) = ind(gε , Oε (x)), for every  < ε ≤ ε.

Finally, it follows from the definition of the fixed point index for ϕ that

Ind
(
ϕ, Oε (x)

)
= ind

(
fε , Oε (x)

) �= ,

for every  < ε ≤ ε. Hence, for every  < ε ≤ ε and for all fε ∈ a(ϕ; ε), we can deduce that
Fix(fε) ∩ Oε (x) �= ∅, which completes the proof. �

Let X be a compact ANR-space and B be a retract of X. In view of the arguments pre-
sented in the foregoing section for ϕ ∈ A(B, B), we denote by ϕ̃ ∈ A(X, X) the map defined
by the formula ϕ̃ = i ◦ ϕ ◦ r, where r is a retraction map and i is an inclusion.

The following proposition is obvious.

Proposition . If x ∈ Ess(ϕ̃), then x ∈ Ess(ϕ).

The reverse implication is an open problem.
Let X be a compact ANR-space. We let

A(X, X) :=
{
ϕ ∈ A(X, X); dim Fix(ϕ) = 

}
,

where dim(·) stands for the topological (Lebesgue covering) dimension (see e.g. []).

Lemma . (cf. []) Let B be a compact space such that dim B = . Then, for every x ∈ B
and for every ε > , there exists an open set V ⊂ Oε(x) such that x ∈ V and ∂V ∩ B = ∅.

Now, we are ready to give the main result of this paper.

Theorem . Let X be a compact ANR-space and ϕ ∈ A(X, X). If λ(ϕ) �= , then Ess(ϕ) �=
∅.

Proof By the hypothesis λ(ϕ) �= , the fixed point set Fix(ϕ) is nonempty and compact, and
dim Fix(ϕ) = . Let x ∈ Fix(ϕ). In view of Lemma ., there exists an open set V ⊂ Oε(x)
such that ∂V ∩ Fix(ϕ) = ∅, for every ε > .

Letting still � ={A ⊂ Fix(ϕ); A is nonempty and compact, and there exists a neighbor-
hood V of A in X such that ∂V ∩Fix(ϕ) = ∅ and ind(ϕ, V ) �= }, observe that � is nonempty,
because Fix(t) ∈ �. Thus, we can take V = X and, by the normalization property of the
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fixed point index, we get

Ind(ϕ, V ) = λ(ϕ) �= .

We can consider in � the partial ordering given by the inclusion of subsets of X.
Now, we shall verify the assumptions of the well-known Kuratowski-Zorn lemma. To do

it, let us assume that {Ai}i∈J is the chain in �. We put A =
⋂{Ai; i ∈ J}.

To prove that A ∈ �, assume that W is an open neighborhood of A in X. We claim that
there exists i ∈ J such that Ai ⊂ W . Otherwise, if we would have assumed, on the contrary,
that it is not so, then there is a family Bi = (X \ W ) ∩ Ai, i ∈ J , of nonempty, compact sets
which has nonempty, compact intersection B. Therefore, B ⊂ X \W , together with B ⊂
A, which is a contradiction, and subsequently A ∈ �. Thus, in view of the Kuratowski-
Zorn lemma, we get a minimal element A∗ in �.

We furthermore claim that A∗ is a singleton. Let z ∈ A∗. It is sufficient to show that {z} ∈
�. Since A∗ ∈ �, we obtain an open neighborhood V∗ of A∗ with the following properties:
V∗ ⊂ V , ∂V∗ ∩ Fix(ϕ) = ∅ and Ind(ϕ, V∗) �= .

Let W be an arbitrary open neighborhood of z in X. Applying Lemma ., we can choose
an open neighborhood Vz of z in V∗ ∩ W such that Fix(ϕ) ∩ ∂Vz = ∅. Since A∗ is a minimal
element of �, the compact set A∗ \ Vz is not in �, and so there exists an open set U ⊂ V∗
such that (A∗ \ Uz) ⊂ U ⊂ V∗, Fix(ϕ) ∩ ∂U = ∅, Ind(ϕ, U) =  and Ind(ϕ, V∗) = Ind(ϕ, U ∪
Vz).

Now, from the additivity property of the fixed point index, it follows that

Ind(ϕ, V∗) = Ind(ϕ, Vz) + Ind(ϕ, U) �= ,

by which we arrive (in view of the above properties Ind(ϕ, V∗) �=  and Ind(ϕ, U) = ) at
Ind(ϕ, Vz) �= .

This already implies that {z} ∈ � and, according to Theorem ., we can conclude that
z is an essential fixed point of ϕ. This completes the proof. �

Corollary . If X is a compact AR-space and ϕ ∈ A(X, X), then Ess(ϕ) �= ∅.

6 Simple examples
At first, we will give two simple illustrative examples of application of the main theorems.

Example . Consider the mapping ϕ : [, ] � [, ] defined as (see Figure ):

ϕ(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[, 
 ], for x ∈ [, 

 ],

 , for x ∈ ( 

 , 
 ),

[ 
 , 

 ], for x = 
 ,


 , for x ∈ ( 

 , 
 ),

[ 
 , ], for x = 

 ,

, for x ∈ ( 
 , ].

Since the graph �ϕ of ϕ is closed and [, ] is a compact AR-space, ϕ is obviously an
upper semicontinuous map with convex, compact values, i.e. a special case of a J-mapping
which is, according to Proposition ., approximable.
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Figure 1 Graph of ϕ1.

Hence, in order to apply Theorem ., let us observe that since the interval [, 
 ] is a set

of non-isolated fixed points such that dim Fix(ϕ) =  (by which Theorem . cannot be
applied here) and since the fixed point 

 is, in view of Ind(ϕ, U 


) = , non-essential, we
must concentrate on the fixed points 

 and . Since Fix(ϕ) ∩ ∂U 


= ∅ and Ind(ϕ, U 


) �= 
as well as Fix(ϕ) ∩ ∂U = ∅ and Ind(ϕ, U) �= , both fixed points are, according to Theo-
rem ., essential.

Let us note that although the essentiality of  easily follows from the classical results
for single-valued maps due to Fort, Jr. [] and O’Neil [], the appropriate application of
Theorem . concerns the essential fixed point 

 .

Example . Consider the mapping ϕ : [, ] � [, ] defined as (see Figure ):

ϕ(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[, 
 ], for x = , 

 ,

, for x ∈ (, 
 ),


 , for x ∈ ( 

 , 
 ),

[ 
 , 

 ], for x = 
 ,


 , for x ∈ ( 

 , 
 ),

[ 
 , 

 ], for x = 
 ,


 , for x ∈ ( 

 , ),

[ 
 , ], for x = .

By the same reasoning as in Example ., ϕ is obviously an approximable J-mapping.
Hence, in order to apply Theorem ., resp. Corollary ., it is enough to realize that
λ(ϕ) =  and dim Fix(ϕ) = . Thus, Ess(ϕ) �= ∅.

Since Ind(ϕ, U 


) = Ind(ϕ, U 


) = Ind(ϕ, U 


) = Ind(ϕ, U) = , there is (in view of The-
orem .) the only essential fixed point . Let us note that, because of a multivalued char-
acter of ϕ, the essentiality of  cannot be this time deduced by the local application of
classical results due to Fort, Jr. [] and O’Neil []. On the other hand, the same easily fol-
lows from the locally applied Theorem ..
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Figure 2 Graph of ϕ2.

Now, we would like to discuss a possible application of Theorem . and Theorem .
to scalar differential equations and inclusions. Hence, consider the scalar differential in-
clusion

x′ ∈ F(t, x), ()

where F(t, x) ≡ F(t + ω, x), for some ω > , and assume that F : [,ω] ×R � R is an upper
semicontinuous mapping with convex, compact values, i.e. F to be a Marchaud mapping.
Let, furthermore, () be dissipative in the sense of Levinson, i.e.

∃D > : lim sup
t→∞

∣∣x(t)
∣∣ < D, for all solutions x(·) of (). ()

This already implies (cf. [], pp.-) that, under F(t, x) ≡ F(t + ω, x), () is uniformly
dissipative, i.e.

∀D > ∃�t > , D > :
(
t ∈ R, |x| < D, t ≥ t + �t

) ⇒ ∣∣x(t)
∣∣ < D, ()

for all solutions x(·) = x(·; t, x), satisfying x(t; t, x) = x.
Defining the Poincaré translation operator along the trajectories of (), Tω : R � R,

namely

Tω(x) :=
{

x(ω; , x); x(·; , x) is a solution of () with x(; , x) = x
}

,

it is well known (cf. e.g. [], Chapter .) that, unlike in higher dimensions, Tn
ω ∈ J(R,R),

where

Tn
ω = Tω ◦ · · · ◦ Tω︸ ︷︷ ︸

n-times

= Tnω,

for all n ∈ N. Furthermore, each fixed point, say x̄ ∈ Tn
ω(x̄), determines an nω-periodic

solution x(·) = x(·; , x̄) of (), because it can be entirely prolongated in an ω-periodic way.
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On the other hand, although nω need not be its minimal period, we have proved in []
that if n >  is minimal then, for each m ∈N, there exists a fixed point x̄m ∈ Tm

ω (x̄m) of Tm
ω ,

determining a subharmonic mω-periodic solution of () with a minimal period. For n = ,
the existence of a fixed point x̄ ∈ Tn

ω(x̄), determining a harmonic ω-periodic solution of
(), follows already from the generalised Levinson transformation theory (see [] and the
references therein).

In our context, condition () and subsequently () imply the existence of a sufficiently
large n ∈ N such that, for every n ≥ n, Tn

ω|[–D,D] ∈ J([–D, D], [–D, D]). Thus, a fixed point
of Tn

ω|[–D,D] : [–D, D] � [–D, D] determines an nω-periodic solution for (), but in order
this fixed point to be essential, we need to satisfy the assumptions of Theorem . or
Corollary .. In the latter case, it would mean to suppose still that dim Fix(Tn

ω|[–D,D]) =
dim Fix(Tnω|[–D,D]) = , which seems to be rather difficult to verify in general, because
generically dim Fix(Tn

ω|[–D,D]) =  (cf. e.g. [, ]), for multivalued maps Tω in R, i.e. in
the lack of uniquely solvable Cauchy (initial value) problems for (). If additionally

F(t, x) sgn x < , for |x| ≥ D, ()

then the interval [–D, D] is obviously positively invariant under Tω|[–D,D], by which only
dim Fix(Tω|[–D,D]) =  should be verified, but the same obstruction remains there again.

In the trivial case of uniqueness, Tω : R → R must be strictly increasing (otherwise, we
get a contradiction) by which no purely subharmonic (i.e. those with n > ) nω-periodic
solutions can exist. Moreover, this behavior highly increases the chance that

dim Fix
(
Tn

ω|[–D,D]
)

= dim Fix(Tω|[–D,D]) = 

holds, even without ().
Let us therefore give the last simple illustrative related example.

Example . Consider the scalar differential inclusion

x′ + cx ∈ –F(x) + cos t, with c > , ()

where

F(x) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

arctan x, for |x| < ,
π
 + [– π

 , ], for x = ,

– π
 + [, π

 ], for x = –,

, for |x| > .

Since condition () can easily be verified for F(t, x) := –F(x) – cx + cos t, on |x| ≥ D,
where D ∈ ( 

c , ), and F(t, x) ≡ F(t + π , x), F(t, x) ≡ –F(t + π , –x), the associated Poincaré
translation operator along the trajectories of (), Tπ : R � R, satisfies Tπ |[–,] :
[–, ] � (–, ). Observe that Tπ |(–,) is even single-valued, because arctan x is, for
|x| ≤ , Lipschitzian with constant L =  as well as cx with constant c > .

Moreover, one can easily check that the differential equation

x′ + cx = – arctan x + cos t ()
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has a unique π-periodic solution, provided only c > ; for more details, see e.g. [],
pp.-.

Because of an evident one-to-one correspondence between the fixed points x̄ =
Tπ |(–,)(x̄) = Tπ |[–,](x̄) of Tπ |[–,] and π-periodic solutions x(·; , x̄) ≡ x(· + π ;
, x̄) of () as well as (), the unique fixed point x̄ must be, in view of dim Fix(Tπ |[–,]) =
, essential by means of Corollary .. The determined π-periodic solution x(·; , x̄) of
() can be therefore called discretely essential.

Remark . Since F(t, x) ≡ –F(t + π , –x), we can still prove by means of the modified
operator T̃π |[–,] = –Tπ |[–,] : [–, ] � (–, ) that the unique discretely essential π-
periodic solution x(·; , x̄) ≡ x(· + π ; , x̄) of () in Example . is π-antiperiodic, i.e.
x(·; , x̄) ≡ –x(· + π ; , x̄).

7 Application and concluding remarks
In higher dimensions, i.e. in R

n with n > , the principle of essential fixed points
of the Poincaré translation operators Tω|OD() : OD() � OD(), resp. their iterates
Tk

ω|OD() : OD() � OD(), along the trajectories of ω-periodic dissipative systems, is quite
analogous (see Corollary .). In fact, it again consists in verification of the property

dim Fix
(
Tk

ω|OD()
)

= dim Fix(Tkω|OD()) = .

However, since this verification is not an easy task in general, we have not formulated so
far the related statement as a theorem.

Nevertheless, we can finally state as a theorem at least a particular case of it.

Theorem . Let x′ ∈ F(t, x) be an ω-periodic dissipative Marchaud system, i.e. let
F : [,ω] × R

n � R
n be an upper semicontinuous map with convex, compact values and

F(t, x) ≡ F(t + ω, x) such that () is satisfied for all solutions of (). If inclusion () possesses
at most a finite number of subharmonic solutions x(·), i.e. those with x(t) ≡ x(t + kω), k ∈N,
then at least one of them exists to be discretely essential. In other words, then for some k ∈N

there exists an essential fixed point x̄ ∈ OD() ⊂ R
n of the associated Poincaré operator

Tkω = Tk
ω : OD() � OD(), determining this discretely essential subharmonic.

Corollary . If a periodic dissipative system of Marchaud inclusions possesses at most a
finite number of entirely bounded solutions, then it admits a discretely essential (subhar-
monic) periodic solution.

Open Problem  Is, under the same assumptions, the conclusion of Theorem ., resp.
Corollary ., true for k = , i.e. is among the existing (cf. []) harmonic solutions at least
one to be discretely essential?

Remark . For the same conclusion of Theorem ., resp. Corollary ., the Marchaud
maps F can be replaced by more general upper Carathéodory maps with convex, compact
values. For their definition and more details, see e.g. [, ]

Remark . It can be proved that the discretely essential solution of (), in Exam-
ple ., is at the same time essential as a fixed point of the Hammerstein-type operator
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∫ π

 G(t, s)[–F(x(t)) + cos t] dt, where

G(t, s) :=

⎧
⎨

⎩

e–c(t–s+π )
–e–πc , for  ≤ t ≤ s ≤ π ,

e–c(t–s)
–e–πc , for  ≤ s ≤ t ≤ π .
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