
Iiduka Fixed Point Theory and Applications (2016) 2016:77
DOI 10.1186/s13663-016-0567-7

R E S E A R C H Open Access

Line search fixed point algorithms based
on nonlinear conjugate gradient directions:
application to constrained smooth convex
optimization
Hideaki Iiduka*

*Correspondence:
iiduka@cs.meiji.ac.jp
Department of Computer Science,
Meiji University, 1-1-1 Higashimita,
Tama-ku, Kawasaki-shi, Kanagawa,
214-8571, Japan

Abstract
This paper considers the fixed point problem for a nonexpansive mapping on a real
Hilbert space and proposes novel line search fixed point algorithms to accelerate the
search. The termination conditions for the line search are based on the well-known
Wolfe conditions that are used to ensure the convergence and stability of
unconstrained optimization algorithms. The directions to search for fixed points are
generated by using the ideas of the steepest descent direction and conventional
nonlinear conjugate gradient directions for unconstrained optimization. We perform
convergence as well as convergence rate analyses on the algorithms for solving the
fixed point problem under certain assumptions. The main contribution of this paper is
to make a concrete response to an issue of constrained smooth convex optimization;
that is, whether or not we can devise nonlinear conjugate gradient algorithms to
solve constrained smooth convex optimization problems. We show that the
proposed fixed point algorithms include ones with nonlinear conjugate gradient
directions which can solve constrained smooth convex optimization problems. To
illustrate the practicality of the algorithms, we apply them to concrete constrained
smooth convex optimization problems, such as constrained quadratic programming
problems and generalized convex feasibility problems, and numerically compare
them with previous algorithms based on the Krasnosel’skĭı-Mann fixed point
algorithm. The results show that the proposed algorithms dramatically reduce the
running time and iterations needed to find optimal solutions to the concrete
optimization problems compared with the previous algorithms.

MSC: 47H10; 65K05; 90C25

Keywords: constrained smooth convex optimization; fixed point problem;
generalized convex feasibility problem; Krasnosel’skĭı-Mann fixed point algorithm; line
search method; nonexpansive mapping; nonlinear conjugate gradient methods

1 Introduction
Consider the following fixed point problem (see [], Chapter , [], Chapter , [], Chap-
ter , [], Chapter ):

Find x� ∈ Fix(T) :=
{

x� ∈ H : T
(
x�

)
= x�

}
, (.)

© 2016 Iiduka. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13663-016-0567-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-016-0567-7&domain=pdf
http://orcid.org/0000-0001-9173-6723
mailto:iiduka@cs.meiji.ac.jp

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 2 of 32

where H stands for a real Hilbert space with inner product 〈·, ·〉 and its induced norm
‖ · ‖, T is a nonexpansive mapping from H into itself (i.e., ‖T(x) – T(y)‖ ≤ ‖x – y‖ (x, y ∈
H)), and one assumes Fix(T) �= ∅. Problem (.) includes convex feasibility problems [],
[], Example ., constrained smooth convex optimization problems [], Proposition .,
problems of finding the zeros of monotone operators [], Proposition ., and monotone
variational inequalities [], Subchapter ..

There are useful algorithms for solving Problem (.), such as the Krasnosel’skiı̆-Mann
algorithm [], Subchapter ., [], Subchapter ., [–], the Halpern algorithm [], Sub-
chapter ., [, ], and the hybrid method [] (Solodov and Svaiter [] proposed the
hybrid method to solve problems of finding the zeros of monotone operators). This paper
focuses on the Krasnosel’skĭı-Mann algorithm, which has practical applications, such as
analyses of dynamic systems governed by maximal monotone operators [] and nons-
mooth convex variational signal recovery [], defined as follows: given the current iterate
xn ∈ H and step size αn ∈ [, ], the next iterate xn+ of the algorithm is

xn+ := xn + αn
(
T(xn) – xn

)
. (.)

Assuming that (αn)n∈N satisfies the condition

∞∑

n=

αn( – αn) = ∞, (.)

the sequence (xn)n∈N generated by Algorithm (.) weakly converges to a fixed point of T
(see, e.g., [], Theorem .). This result indicates that Algorithm (.) with constant step
sizes (e.g., αn := α ∈ (, ) (n ∈ N)) or diminishing step sizes (e.g., αn := /(n + ) (n ∈ N))
can solve Problem (.). Propositions  and  in [] indicate that Algorithm (.) with
condition (.) has the following rate of convergence: for all n ∈ N,

∥∥xn – T(xn)
∥∥ = O

({ n∑

k=

αk( – αk)

}– 

)

(.)

(e.g., ‖xn – T(xn)‖ = O(/
√

n + ) when αn := α ∈ (, ) (n ∈ N)). This fact implies that Al-
gorithm (.) with (.) does not always have fast convergence and has motivated the de-
velopment of modifications and variants for the Krasnosel’skĭı-Mann algorithm in order
to accelerate Algorithm (.).

One approach to accelerate Algorithm (.) with (.) is to develop line search meth-
ods that can determine a more adequate step size than a step size satisfying (.) at each
iteration n so that the value of ‖xn+ – T(xn+)‖ decreases dramatically. Magnanti and Per-
akis proposed an adaptive line search framework [], Section , that can determine step
sizes to satisfy weaker conditions [], Assumptions A and A, than (.). On the basis of
this framework, they showed that Algorithm (.), with step sizes αn satisfying the follow-
ing Armijo-type condition, converges to a fixed point of T [], Theorems  and : given
xn ∈ R

N , β > , D > , and b ∈ (, ), choose the smallest nonnegative integer ln so that
αn = bln satisfies the condition

gn(αn) – gn() ≤ –Dbln
∥∥T(xn) – xn

∥∥, (.)

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 3 of 32

where gn : [, ] →R is a potential function [], Scheme IV, defined for all α ∈ [, ] by

gn(α) :=
∥∥(

xn + α
(
T(xn) – xn

))
– T

(
xn + α

(
T(xn) – xn

))∥∥

– βα( – α)
∥∥T(xn) – xn

∥∥. (.)

Theorem  in [] shows that Algorithm (.) with the Armijo-type condition (.) satisfies
‖xn+ –T(xn+)‖ ≤ [–β(αn –/)]‖xn –T(xn)‖ (n ∈ N), which implies that the algorithm
has, for all n ∈ N,

∥∥xn – T(xn)
∥∥ = O

({ n∑

k=

(
αk –




)
}– 


)

. (.)

In this paper, we introduce a line search framework using Pn defined by (.), (.), and
(.), which is the simplest of all potential functions including gn defined as in (.): given
xn, dn ∈ H , for all α ∈ [, ],

xn(α) := xn + αdn, (.)

Qn(α) := xn(α) – T
(
xn(α)

)
, (.)

Pn(α) :=
∥∥Qn(α)

∥∥. (.)

When dn := –(xn – T(xn)) and αn is given as in (.), the point xn(αn) in (.) coincides with
xn+ defined by Algorithm (.) with (.).

Consider the following problem of minimizing Pn over [, ]:

Find αn ∈ [, ] such that Pn(αn) = min
α∈[,]

Pn(α). (.)

When the solution αn to Problem (.) can be obtained in each iteration, Pn(αn) ≤ Pn()
holds for all n ∈N. Accordingly, if the next iterate xn+ is defined by xn+ := xn(αn), ‖xn+ –
T(xn+)‖ ≤ ‖xn – T(xn)‖ (n ∈ N) holds, i.e., (‖xn – T(xn)‖)n∈N is monotone decreasing.
Since the exact solution to Problem (.) cannot easily be obtained, the step size αn can
be chosen so as to yield an approximate minimum for Problem (.) in each iteration,
specifically, to satisfy the following Wolfe-type conditions [, ]: given xn, dn ∈ H , and
δ,σ ∈ (, ) with δ ≤ σ ,

Pn(αn) – Pn() ≤ δαn
〈
Qn(), dn

〉
, (.)

〈
Qn(αn), dn

〉 ≥ σ
〈
Qn(), dn

〉
. (.)

Condition (.) is the Armijo-type condition for Pn (see (.) for the Armijo-type
condition with dn := –(xn – T(xn)) for the potential function gn). Under the conditions
that dn := –(xn – T(xn)) and xn+ := xn(αn) (n ∈ N), Algorithm (.) with (.) satisfies
‖xn+ – T(xn+)‖ ≤ ( – δαn)‖xn – T(xn)‖ (n ∈N), which implies that, for all n ∈ N,a

∥∥xn – T(xn)
∥∥ = O

({ n∑

k=

αk

}– 

)

. (.)

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 4 of 32

Here, let us see how the step size conditions (.), (.), (.), and (.) affect the ef-
ficiency of Algorithm (.). Algorithm (.) with (.) satisfies ‖xn+ – T(xn+)‖ ≤ ‖xn –
T(xn)‖ (n ∈ N) [], (.), while Algorithm (.) with each of (.) and (.) satisfies
‖xn+ – T(xn+)‖ < ‖xn – T(xn)‖ (n ∈ N). Hence, it can be expected that Algorithm (.)
with each of (.) and (.) performs better than Algorithm (.) with (.). Since the
Armijo-type conditions (.) and (.) are satisfied for all sufficiently small values of αn

[], Subchapter ., there is a possibility that Algorithm (.) with only the Armijo-type
condition (.) does not make reasonable progress. Meanwhile, (.) based on the curva-
ture condition [], Subchapter ., is used to ensure that αn is not too small and that un-
acceptably short steps are ruled out. Therefore, the Wolfe-type conditions (.) and (.)
should be used to secure efficiency of the algorithm. Moreover, even when αn satisfying
(.) is not small enough, it can be expected that Algorithm (.) with the Wolfe-type con-
ditions (.) and (.) will have a better convergence rate than Algorithm (.) with the
Armijo-type condition (.) because of (.), (.), and (α – /) ≤ α (α ∈ [( –

√
)/, ]).

Section  introduces the line search algorithm [], Algorithm ., to compute step sizes
satisfying (.) and (.) with appropriately chosen δ and σ and gives performance com-
parisons of Algorithm (.) with each of (.) and (.) with the one with (.) and (.).

The main concern regarding this line search is how the direction dn should be updated to
accelerate the search for a fixed point of T . To address this concern, the following problem
will be discussed:

Minimize f (x) subject to x ∈ H , (.)

where f : H → R is convex and Fréchet differentiable and ∇f : H → H is Lipschitz con-
tinuous with a constant L. Let us define T (f) : H → H by

T (f) := Id – λ∇f , (.)

where Id stands for the identity mapping on H and λ > . The mapping T (f) satisfies the
nonexpansivity condition for λ ∈ (, /L] [], Proposition ., and Fix(T (f)) coincides
with the solution set of Problem (.). From T (f)(x)–x = (x–λ∇f (x))–x = –λ∇f (x) (λ > ,
x ∈ H), Algorithm (.) for solving Problem (.) is

xn+ = xn + αn
(
T (f)(xn) – xn

)
= xn – λαn∇f (xn). (.)

This means that the direction d(f)
n := –(xn – T (f)(xn)) = –λ∇f (xn) is the steepest descent

direction of f at xn and Algorithm (.) with T (f) (i.e., Algorithm (.)) is the steepest
descent method [], Subchapter ., for Problem (.).

There are many algorithms with useful search directions [], Chapters -, to acceler-
ate the steepest descent method for unconstrained optimization. In particular, algorithms
with nonlinear conjugate gradient directions [], [], Subchapter .,

d(f)
n+ := –∇f (xn+) + βnd(f)

n , (.)

where βn ∈ R, have been widely used as efficient accelerated versions for most gradient
methods. Well-known formulas for βn include the Hestenes-Stiefel (HS) [], Fletcher-

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 5 of 32

Reeves (FR) [], Polak-Ribière-Polyak (PRP) [, ], and Dai-Yuan (DY) [] formulas:

βHS
n :=

〈∇f (xn+), yn〉
〈dn, yn〉 , βFR

n :=
‖∇f (xn+)‖

‖∇f (xn)‖ ,

βPRP
n :=

〈∇f (xn+), yn〉
‖∇f (xn)‖ , βDY

n :=
‖∇f (xn+)‖

〈dn, yn〉 ,
(.)

where yn := ∇f (xn+) – ∇f (xn).
Motivated by these observations, we decided to use the following direction to accelerate

the search for a fixed point of T , which can be obtained by replacing ∇f in (.) with
Id–T (see also (.) for the relationship between ∇f and T (f)): given the current direction
dn ∈ H , the current iterate xn ∈ H , and a step size αn satisfying (.) and (.), the next
direction dn+ is defined by

dn+ := –
(
xn+ – T(xn+)

)
+ βndn, (.)

where βn is given by one of the formulas in (.) when ∇f = Id – T .
This paper proposes iterative algorithms (Algorithm .) that use the direction (.)

and step sizes satisfying the Wolfe-type conditions (.) and (.) for solving Problem
(.) and describes their convergence analyses (Theorems .-.). We also provide their
convergence rate analyses (Theorem .).

The main contribution of this paper is to enable us to propose nonlinear conjugate gra-
dient algorithms for constrained smooth convex optimization which are examples of the
proposed line search fixed point algorithms, in contrast to the previously reported re-
sults for nonlinear conjugate gradient algorithms for unconstrained smooth nonconvex
optimization [], Subchapter ., [–]. Concretely speaking, our nonlinear conju-
gate gradient algorithms are obtained in the following steps. Given a nonempty, closed,
and convex set C ⊂ H and a convex function f : H → R with the Lipschitz continuous
gradient, let us define

T := PC(Id – λ∇f),

where λ ∈ (, /L], L is the Lipschitz constant of ∇f , and PC stands for the metric projec-
tion onto C. Then Proposition . in [] indicates that the mapping T is nonexpansive
and satisfies

Fix(T) = argmin
x∈C

f (x).

From (.) with T := PC(Id–λ∇f), the proposed nonlinear conjugate gradient algorithms
for finding a point in Fix(T) = argminx∈C f (x) can be expressed as follows: given xn, dn ∈ H
and αn satisfying (.) and (.),

xn+ := xn(αn) = xn + αndn,

dn+ := –
(
xn+ – PC

(
xn+ – λ∇f (xn+)

))
+ βndn,

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 6 of 32

where βn ∈R is each of the following formulas:b

βHS+
n := max

{ 〈xn+ – PC(xn+ – λ∇f (xn+)), yn〉
〈dn, yn〉 , 

}
,

βFR
n :=

‖xn+ – PC(xn+ – λ∇f (xn+))‖

‖xn – PC(xn – λ∇f (xn))‖ ,

βPRP+
n := max

{ 〈xn+ – PC(xn+ – λ∇f (xn+)), yn〉
‖xn – PC(xn – λ∇f (xn))‖ , 

}
,

βDY
n :=

‖xn+ – PC(xn+ – λ∇f (xn+))‖

〈dn, yn〉 ,

(.)

where yn := (xn+ – PC(xn+ – λ∇f (xn+))) – (xn – PC(xn – λ∇f (xn))). Our convergence anal-
yses are performed by referring to useful results on unconstrained smooth nonconvex op-
timization (see [, , , , –] and references therein) because the proposed fixed
point algorithms are based on the steepest descent and nonlinear conjugate gradient di-
rections for unconstrained smooth nonconvex optimization (see (.)-(.)). We would
like to emphasize that combining unconstrained smooth nonconvex optimization theory
with fixed point theory for nonexpansive mappings enables us to develop the novel nonlin-
ear conjugate gradient algorithms for constrained smooth convex optimization. The non-
linear conjugate gradient algorithms are a concrete response to the issue of constrained
smooth convex optimization that is whether or not we can present nonlinear conjugate
gradient algorithms to solve constrained smooth convex optimization problems.

To verify whether the proposed nonlinear conjugate gradient algorithms are acceler-
ations for solving practical problems, we apply them to constrained quadratic program-
ming problems (Section .) and generalized convex feasibility problems (Section .) (see
[, ] and references therein for the relationship between the generalized convex feasi-
bility problem and signal processing problems), which are constrained smooth convex
optimization problems and particularly interesting applications of Problem (.). More-
over, we numerically compare their abilities to solve concrete constrained quadratic pro-
gramming problems and generalized convex feasibility problems with those of previous
algorithms based on the Krasnosel’skĭı-Mann algorithm (Algorithm (.) with step sizes
satisfying (.) and Algorithm (.) with step sizes satisfying (.)) and show that they can
find optimal solutions to these problems faster than the previous ones.

Throughout this paper, we shall let N be the set of zero and all positive integers, Rd be
a d-dimensional Euclidean space, H be a real Hilbert space with inner product 〈·, ·〉 and
its induced norm ‖ · ‖, and T : H → H be a nonexpansive mapping with Fix(T) := {x ∈
H : T(x) = x} �= ∅.

2 Line search fixed point algorithms based on nonlinear conjugate gradient
directions

Let us begin by explicitly stating our algorithm for solving Problem (.) discussed in Sec-
tion .

Algorithm .

Step . Take δ,σ ∈ (, ) with δ ≤ σ . Choose x ∈ H arbitrarily and set d := –(x – T(x))
and n := .

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 7 of 32

Step . Compute αn ∈ (, ] satisfying

∥∥xn(αn) – T
(
xn(αn)

)∥∥ –
∥∥xn – T(xn)

∥∥ ≤ δαn
〈
xn – T(xn), dn

〉
, (.)

〈
xn(αn) – T

(
xn(αn)

)
, dn

〉 ≥ σ
〈
xn – T(xn), dn

〉
, (.)

where xn(αn) := xn + αndn. Compute xn+ ∈ H by

xn+ := xn + αndn. (.)

Step . If ‖xn+ – T(xn+)‖ = , stop. Otherwise, go to Step .
Step . Compute βn ∈R by using each of the following formulas:

βSD
n := ,

βHS+
n := max

{ 〈xn+ – T(xn+), yn〉
〈dn, yn〉 , 

}
, βFR

n :=
‖xn+ – T(xn+)‖

‖xn – T(xn)‖ , (.)

βPRP+
n := max

{ 〈xn+ – T(xn+), yn〉
‖xn – T(xn)‖ , 

}
, βDY

n :=
‖xn+ – T(xn+)‖

〈dn, yn〉 ,

where yn := (xn+ – T(xn+)) – (xn – T(xn)). Generate dn+ ∈ H by

dn+ := –
(
xn+ – T(xn+)

)
+ βndn.

Step . Put n := n +  and go to Step .

We need to use appropriate line search algorithms to compute αn (n ∈N) satisfying (.)
and (.). In Section , we use a useful one (Algorithm .) [], Algorithm ., that can
obtain the step sizes satisfying (.) and (.) whenever the line search algorithm termi-
nates [], Theorem .. Although the efficiency of the line search algorithm depends on
the parameters δ and σ , thanks to the reference [], Section ., we can set appropriate δ

and σ before executing it [], Algorithm ., and Algorithm .. See Section  for the nu-
merical performance of the line search algorithm [], Algorithm ., and Algorithm ..

It can be seen that Algorithm . is well defined when βn is defined by βSD
n , βFR

n , or
βPRP+

n . The discussion in Section . shows that Algorithm . with βn = βDY
n is well defined

(Lemma .(i)). Moreover, it is guaranteed that under certain assumptions, Algorithm .
with βn = βHS+

n is well defined (Theorem .).

2.1 Algorithm 2.1 with βn = βSD
n

This subsection considers Algorithm . with βSD
n (n ∈N), which is based on the steepest

descent (SD) direction (see (.)), i.e.,

xn+ := xn + αn
(
T(xn) – xn

)
(n ∈N). (.)

Theorems  and  in [] indicate that, if (αn)n∈N satisfies the Armijo-type condition (.),
Algorithm (.) converges to a fixed point of T . The following theorem says that Algorithm
(.), with (αn)n∈N satisfying the Wolfe-type conditions (.) and (.), converges to a fixed
point of T .

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 8 of 32

Theorem . Suppose that (xn)n∈N is the sequence generated by Algorithm . with βn =
βSD

n (n ∈N). Then (xn)n∈N either terminates at a fixed point of T or

lim
n→∞

∥∥xn – T(xn)
∥∥ = .

In the latter situation, (xn)n∈N weakly converges to a fixed point of T .

.. Proof of Theorem .
If m ∈ N exists such that ‖xm – T(xm)‖ = , Theorem . holds. Accordingly, it can be
assumed that, for all n ∈N, ‖xn – T(xn)‖ �=  holds.

First, the following lemma can be proven by referring to [, , ].

Lemma . Let (xn)n∈N and (dn)n∈N be the sequences generated by Algorithm .. Assume
that 〈xn – T(xn), dn〉 <  for all n ∈N. Then

∞∑

n=

(〈xn – T(xn), dn〉
‖dn‖

)

< ∞.

Proof The Cauchy-Schwarz inequality and the triangle inequality ensure that, for all
n ∈ N, 〈dn, (xn+ – T(xn+)) – (xn – T(xn))〉 ≤ ‖dn‖‖(xn+ – T(xn+)) – (xn – T(xn))‖ ≤
‖dn‖(‖T(xn) – T(xn+)‖ + ‖xn+ – xn‖), which, together with the nonexpansivity of T and
(.), implies that, for all n ∈N,

〈
dn,

(
xn+ – T(xn+)

)
–

(
xn – T(xn)

)〉 ≤ αn‖dn‖.

Moreover, (.) means that, for all n ∈N,

〈
dn,

(
xn+ – T(xn+)

)
–

(
xn – T(xn)

)〉 ≥ (σ – )
〈
dn, xn – T(xn)

〉
.

Accordingly, for all n ∈N,

(σ – )
〈
dn, xn – T(xn)

〉 ≤ αn‖dn‖.

Since ‖dn‖ �=  (n ∈N) holds from 〈xn – T(xn), dn〉 <  (n ∈N), we find that, for all n ∈N,

(σ – )〈dn, xn – T(xn)〉
‖dn‖ ≤ αn. (.)

Condition (.) means that, for all n ∈ N, ‖xn+ – T(xn+)‖ – ‖xn – T(xn)‖ ≤ δαn〈xn –
T(xn), dn〉, which, together with 〈xn – T(xn), dn〉 <  (n ∈N), implies that, for all n ∈N,

αn ≤ ‖xn – T(xn)‖ – ‖xn+ – T(xn+)‖

–δ〈xn – T(xn), dn〉 . (.)

From (.) and (.), for all n ∈N,

(σ – )〈dn, xn – T(xn)〉
‖dn‖ ≤ ‖xn – T(xn)‖ – ‖xn+ – T(xn+)‖

–δ〈xn – T(xn), dn〉 ,

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 9 of 32

which implies that, for all n ∈N,

δ( – σ)〈dn, xn – T(xn)〉

‖dn‖ ≤ ∥∥xn – T(xn)
∥∥ –

∥∥xn+ – T(xn+)
∥∥.

Summing up this inequality from n =  to n = N ∈N guarantees that, for all N ∈N,

δ( – σ)


N∑

n=

〈dn, xn – T(xn)〉

‖dn‖ ≤ ∥∥x – T(x)
∥∥ –

∥∥xN+ – T(xN+)
∥∥

≤ ∥∥x – T(x)
∥∥ < ∞.

Therefore, the conclusion in Lemma . is satisfied. �

Lemma . leads to the following.

Lemma . Suppose that the assumptions in Theorem . are satisfied. Then:
(i) limn→∞ ‖xn – T(xn)‖ = .

(ii) (‖xn – x‖)n∈N is monotone decreasing for all x ∈ Fix(T).
(iii) (xn)n∈N weakly converges to a point in Fix(T).

Items (i) and (iii) in Lemma . indicate that Theorem . holds under the assumption
that ‖xn – T(xn)‖ �=  (n ∈N).

Proof (i) In the case where βn := βSD
n =  (n ∈ N), dn = –(xn – T(xn)) holds for all n ∈N.

Hence, 〈xn – T(xn), dn〉 = –‖xn – T(xn)‖ <  (n ∈ N). Lemma . thus guarantees that
∑∞

n= ‖xn – T(xn)‖ < ∞, which implies limn→∞ ‖xn – T(xn)‖ = .
(ii) The triangle inequality and the nonexpansivity of T ensure that, for all n ∈ N and for

all x ∈ Fix(T), ‖xn+ – x‖ = ‖xn +αn(T(xn) – xn) – x‖ ≤ ( –αn)‖xn – x‖+αn‖T(xn) – T(x)‖ ≤
‖xn – x‖.

(iii) Lemma .(ii) means that limn→∞ ‖xn – x‖ exists for all x ∈ Fix(T). Accord-
ingly, (xn)n∈N is bounded. Hence, there is a subsequence (xnk)k∈N of (xn)n∈N such that
(xnk)k∈N weakly converges to a point x∗ ∈ H . Here, let us assume that x∗ /∈ Fix(T). Then
Opial’s condition [], Lemma , Lemma .(i), and the nonexpansivity of T guarantee
that

lim inf
k→∞

∥∥xnk – x∗∥∥ < lim inf
k→∞

∥∥xnk – T
(
x∗)∥∥

= lim inf
k→∞

∥∥xnk – T(xnk) + T(xnk) – T
(
x∗)∥∥

= lim inf
k→∞

∥∥T(xnk) – T
(
x∗)∥∥

≤ lim inf
k→∞

∥∥xnk – x∗∥∥,

which is a contradiction. Hence, x∗ ∈ Fix(T). Let us take another subsequence (xni)i∈N
(⊂ (xn)n∈N) which weakly converges to x∗ ∈ H . A similar discussion to the one for ob-
taining x∗ ∈ Fix(T) ensures that x∗ ∈ Fix(T). Assume that x∗ �= x∗. The existence of

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 10 of 32

limn→∞ ‖xn – x‖ (x ∈ Fix(T)) and Opial’s condition [], Lemma , imply that

lim
n→∞

∥∥xn – x∗∥∥ = lim
k→∞

∥∥xnk – x∗∥∥ < lim
k→∞

‖xnk – x∗‖

= lim
n→∞‖xn – x∗‖ = lim

i→∞‖xni – x∗‖

< lim
i→∞

∥∥xni – x∗∥∥ = lim
n→∞

∥∥xn – x∗∥∥,

which is a contradiction. Therefore, x∗ = x∗. Since any subsequence of (xn)n∈N weakly
converges to the same fixed point of T , it is guaranteed that the whole (xn)n∈N weakly
converges to a fixed point of T . This completes the proof. �

2.2 Algorithm 2.1 with βn = βDY
n

The following is a convergence analysis of Algorithm . with βn = βDY
n .

Theorem . Suppose that (xn)n∈N is the sequence generated by Algorithm . with βn =
βDY

n (n ∈N). Then (xn)n∈N either terminates at a fixed point of T or

lim
n→∞

∥∥xn – T(xn)
∥∥ = .

.. Proof of Theorem .
Since the existence of m ∈ N such that ‖xm – T(xm)‖ =  implies that Theorem . holds,
it can be assumed that, for all n ∈ N, ‖xn – T(xn)‖ �=  holds. Theorem . can be proven
by using the ideas presented in the proof of [], Theorem .. The proof of Theorem .
is divided into three steps.

Lemma . Suppose that the assumptions in Theorem . are satisfied. Then:
(i) 〈xn – T(xn), dn〉 <  (n ∈N).

(ii) lim infn→∞ ‖xn – T(xn)‖ = .
(iii) limn→∞ ‖xn – T(xn)‖ = .

Proof (i) From d := –(x –T(x)), 〈x –T(x), d〉 = –‖x –T(x)‖ < . Suppose that 〈xn –
T(xn), dn〉 <  holds for some n ∈ N. Accordingly, the definition of yn := (xn+ – T(xn+)) –
(xn – T(xn)) and (.) ensure that

〈dn, yn〉 =
〈
dn, xn+ – T(xn+)

〉
–

〈
dn, xn – T(xn)

〉

≥ (σ – )
〈
dn, xn – T(xn)

〉
> ,

which implies that

βDY
n :=

‖xn+ – T(xn+)‖

〈dn, yn〉 > .

From the definition of dn+ := –(xn+ – T(xn+)) + βDY
n dn, we have

〈
dn+, xn+ – T(xn+)

〉
= –

∥∥xn+ – T(xn+)
∥∥ + βDY

n
〈
dn, xn+ – T(xn+)

〉

=
∥∥xn+ – T(xn+)

∥∥
{

– +
〈dn, xn+ – T(xn+)〉

〈dn, yn〉
}

=
∥∥xn+ – T(xn+)

∥∥ 〈dn, (xn+ – T(xn+)) – yn〉
〈dn, yn〉 ,

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 11 of 32

which, together with the definitions of yn and βDY
n (> ), implies that

〈
dn+, xn+ – T(xn+)

〉
=

∥∥xn+ – T(xn+)
∥∥ 〈dn, xn – T(xn)〉

〈dn, yn〉
= βDY

n
〈
dn, xn – T(xn)

〉
< . (.)

Induction shows that 〈xn – T(xn), dn〉 <  for all n ∈ N. This implies βDY
n >  (n ∈ N); i.e.,

Algorithm . with βn = βDY
n is well defined.

(ii) Assume that lim infn→∞ ‖xn – T(xn)‖ > . Then there exist n ∈ N and ε >  such
that ‖xn – T(xn)‖ ≥ ε for all n ≥ n. Since we have assumed that ‖xn – T(xn)‖ �=  (n ∈N),
we may further assume that ‖xn – T(xn)‖ ≥ ε for all n ∈ N. From the definition of dn+ :=
–(xn+ – T(xn+)) + βDY

n dn (n ∈N), we have, for all n ∈N,

βDY
n ‖dn‖ =

∥∥dn+ +
(
xn+ – T(xn+)

)∥∥

= ‖dn+‖ + 
〈
dn+, xn+ – T(xn+)

〉
+

∥∥xn+ – T(xn+)
∥∥.

Lemma .(i) and (.) mean that, for all n ∈N,

βDY
n =

〈dn+, xn+ – T(xn+)〉
〈dn, xn – T(xn)〉 .

Hence, for all n ∈N,

‖dn+‖

〈dn+, xn+ – T(xn+)〉

= –
‖xn+ – T(xn+)‖

〈dn+, xn+ – T(xn+)〉 –


〈dn+, xn+ – T(xn+)〉 +
‖dn‖

〈dn, xn – T(xn)〉

=
‖dn‖

〈dn, xn – T(xn)〉 +


‖xn+ – T(xn+)‖

–
{


‖xn+ – T(xn+)‖ +

‖xn+ – T(xn+)‖
〈dn+, xn+ – T(xn+)〉

}

≤ ‖dn‖

〈dn, xn – T(xn)〉 +


‖xn+ – T(xn+)‖ .

Summing up this inequality from n =  to n = N ∈N yields, for all N ∈N,

‖dN+‖

〈dN+, xN+ – T(xN+)〉 ≤ ‖d‖

〈d, x – T(x)〉 +
N+∑

k=


‖xk – T(xk)‖ ,

which, which together with ‖xn – T(xn)‖ ≥ ε (n ∈N) and d := –(x – T(x)), implies that,
for all N ∈N,

‖dN+‖

〈dN+, xN+ – T(xN+)〉 ≤
N+∑

k=


‖xk – T(xk)‖ ≤ N + 

ε .

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 12 of 32

Since Lemma .(i) implies ‖dn‖ �=  (n ∈N), we have, for all N ∈N,

〈dN+, xN+ – T(xN+)〉

‖dN+‖ ≥ ε

N + 
.

Therefore, Lemma . guarantees that

∞ >
∞∑

k=

(〈dk , xk – T(xk)〉
‖dk‖

)

≥
∞∑

k=

ε

k + 
= ∞.

This is a contradiction. Hence, lim infn→∞ ‖xn – T(xn)‖ = .
(iii) Condition (.) and Lemma .(i) lead to that, for all n ∈N,

∥∥xn+ – T(xn+)
∥∥ –

∥∥xn – T(xn)
∥∥ ≤ δαn

〈
xn – T(xn), dn

〉
< .

Accordingly, (‖xn – T(xn)‖)n∈N is monotone decreasing; i.e., there exists limn→∞ ‖xn –
T(xn)‖. Lemma .(ii) thus ensures that limn→∞ ‖xn – T(xn)‖ = . This completes the
proof. �

2.3 Algorithm 2.1 with βn = βFR
n

To establish the convergence of Algorithm . when βn = βFR
n , we assume that the step sizes

αn satisfy the strong Wolfe-type conditions, which are (.) and the following strengthened
version of (.): for σ ≤ /,

∣∣〈xn(αn) – T
(
xn(αn)

)
, dn

〉∣∣ ≤ –σ
〈
xn – T(xn), dn

〉
. (.)

See [] on the global convergence of the FR method for unconstrained optimization un-
der the strong Wolfe conditions.

The following is a convergence analysis of Algorithm . with βn = βFR
n .

Theorem . Suppose that (xn)n∈N is the sequence generated by Algorithm . with βn =
βFR

n (n ∈ N), where (αn)n∈N satisfies (.) and (.). Then (xn)n∈N either terminates at a fixed
point of T or

lim
n→∞

∥∥xn – T(xn)
∥∥ = .

.. Proof of Theorem .
It can be assumed that, for all n ∈ N, ‖xn – T(xn)‖ �=  holds. Theorem . can be proven
by using the ideas in the proof of [], Theorem .

Lemma . Suppose that the assumptions in Theorem . are satisfied. Then:
(i) 〈xn – T(xn), dn〉 <  (n ∈N).

(ii) lim infn→∞ ‖xn – T(xn)‖ = .
(iii) limn→∞ ‖xn – T(xn)‖ = .

Proof (i) Let us show that, for all n ∈ N,

–
n∑

j=

σ j ≤ 〈xn – T(xn), dn〉
‖xn – T(xn)‖ ≤ – +

n∑

j=

σ j. (.)

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 13 of 32

From d := –(x –T(x)), (.) holds for n :=  and 〈x –T(x), d〉 < . Suppose that (.)
holds for some n ∈ N. Accordingly, from

∑n
j= σ j <

∑∞
j= σ j = /( – σ) and σ ∈ (, /], we

have

〈xn – T(xn), dn〉
‖xn – T(xn)‖ < – +

∞∑

j=

σ j =
–( – σ)

 – σ
≤ ,

which implies that 〈xn – T(xn), dn〉 < . The definitions of dn+ and βFR
n enable us to deduce

that

〈xn+ – T(xn+), dn+〉
‖xn+ – T(xn+)‖ =

〈xn+ – T(xn+), –(xn+ – T(xn+)) + βFR
n dn〉

‖xn+ – T(xn+)‖

= – +
‖xn+ – T(xn+)‖

‖xn – T(xn)‖
〈xn+ – T(xn+), dn〉
‖xn+ – T(xn+)‖

= – +
〈xn+ – T(xn+), dn〉

‖xn – T(xn)‖ .

Since (.) satisfies σ 〈xn – T(xn), dn〉 ≤ 〈xn+ – T(xn+), dn〉 ≤ –σ 〈xn – T(xn), dn〉 and (.)
holds for some n, it is found that

– +
〈xn+ – T(xn+), dn〉

‖xn – T(xn)‖ ≥ – + σ
〈xn – T(xn), dn〉
‖xn – T(xn)‖

≥ – – σ

n∑

j=

σ j = –
n+∑

j=

σ j

and

– +
〈xn+ – T(xn+), dn〉

‖xn – T(xn)‖ ≤ – – σ
〈xn – T(xn), dn〉
‖xn – T(xn)‖

≤ – + σ

n∑

j=

σ j = – +
n+∑

j=

σ j.

Hence,

–
n+∑

j=

σ j ≤ 〈xn+ – T(xn+), dn+〉
‖xn+ – T(xn+)‖ ≤ – +

n+∑

j=

σ j.

A discussion similar to the one for obtaining 〈xn – T(xn), dn〉 <  guarantees that 〈xn+ –
T(xn+), dn+〉 <  holds. Induction thus shows that (.) and 〈xn – T(xn), dn〉 <  hold for
all n ∈N.

(ii) Assume that lim infn→∞ ‖xn – T(xn)‖ > . A discussion similar to the one in the proof
of Lemma .(ii) ensures the existence of ε >  such that ‖xn – T(xn)‖ ≥ ε for all n ∈ N.
From (.) and (.), we have, for all n ∈N,

∣
∣〈xn+ – T(xn+), dn

〉∣∣ < –σ
〈
xn – T(xn), dn

〉 ≤
n+∑

j=

σ j∥∥xn – T(xn)
∥∥,

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 14 of 32

which, together with
∑n+

j= σ j <
∑∞

j= σ j = σ /( – σ) and βFR
n := ‖xn+ – T(xn+)‖/‖xn –

T(xn)‖ (n ∈N), implies that, for all n ∈N,

βFR
n

∣∣〈xn+ – T(xn+), dn
〉∣∣ <

σ

 – σ

∥∥xn+ – T(xn+)
∥∥.

Accordingly, from the definition of dn+ := –(xn+ – T(xn+)) + βFR
n dn, we find that, for all

n ∈N,

‖dn+‖ =
∥∥βFR

n dn –
(
xn+ – T(xn+)

)∥∥

= βFR
n ‖dn‖ – βFR

n
〈
dn, xn+ – T(xn+)

〉
+

∥∥xn+ – T(xn+)
∥∥

≤ ‖xn+ – T(xn+)‖

‖xn – T(xn)‖ ‖dn‖ +
(

σ

 – σ
+ 

)∥∥xn+ – T(xn+)
∥∥,

which means that, for all n ∈N,

‖dn+‖

‖xn+ – T(xn+)‖ ≤ ‖dn‖

‖xn – T(xn)‖ +
 + σ

 – σ


‖xn+ – T(xn+)‖ .

The sum of this inequality from n =  to n = N ∈N and d := –(x – T(x)) ensure that, for
all N ∈N,

‖dN+‖

‖xN+ – T(xN+)‖ ≤ 
‖x – T(x)‖ +

 + σ

 – σ

N+∑

k=


‖xk – T(xk)‖ .

From ‖xn – T(xn)‖ ≥ ε (n ∈ N), for all N ∈ N,

‖dN+‖

‖xN+ – T(xN+)‖ ≤ 
ε +

 + σ

 – σ

N + 
ε =

( + σ)N + 
ε( – σ)

.

Therefore, from Lemma .(i) guaranteeing that ‖dn‖ �=  (n ∈N) and
∑∞

k= ε( – σ)/(( +
σ)(k – ) + ) = ∞, it is found that

∞∑

k=

‖xk – T(xk)‖

‖dk‖ = ∞.

Meanwhile, since (.) guarantees that 〈xn – T(xn), dn〉 ≤ (– +
∑n

j= σ j)‖xn – T(xn)‖ <
(–(–σ)/(–σ))‖xn –T(xn)‖ (n ∈N), Lemma . and Lemma .(i) lead to the deduction
that

∞ >
∞∑

k=

(〈xk – T(xk), dk〉
‖dk‖

)

≥
(

 – σ

 – σ

) ∞∑

k=

‖xk – T(xk)‖

‖dk‖ = ∞,

which is a contradiction. Therefore, lim infn→∞ ‖xn – T(xn)‖ = .
(iii) A discussion similar to the one in the proof of Lemma .(iii) leads to Lemma .(iii).

This completes the proof. �

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 15 of 32

2.4 Algorithm 2.1 with βn = βPRP+
n

It is well known that the convergence of the nonlinear conjugate gradient method with
βPRP

n defined as in (.) for a general nonlinear function is uncertain [], Section . To
guarantee the convergence of the PRP method for unconstrained optimization, the fol-
lowing modification of βPRP

n was presented in []: for βPRP
n defined as in (.), βPRP+

n :=
max{βPRP

n , }. On the basis of the idea behind this modification, this subsection considers
Algorithm . with βPRP+

n defined as in (.).

Theorem . Suppose that (xn)n∈N and (dn)n∈N are the sequences generated by Algo-
rithm . with βn = βPRP+

n (n ∈ N) and there exists c >  such that 〈xn – T(xn), dn〉 ≤
–c‖xn – T(xn)‖ for all n ∈ N. If (xn)n∈N is bounded, then (xn)n∈N either terminates at a
fixed point of T or

lim
n→∞

∥∥xn – T(xn)
∥∥ = .

.. Proof of Theorem .
It can be assumed that ‖xn – T(xn)‖ �=  holds for all n ∈N. Let us first show the following
lemma by referring to the proof of [], Lemma ..

Lemma . Let (xn)n∈N and (dn)n∈N be the sequences generated by Algorithm . with βn ≥
 (n ∈ N) and assume that there exists c >  such that 〈xn – T(xn), dn〉 ≤ –c‖xn – T(xn)‖

for all n ∈N. If there exists ε >  such that ‖xn – T(xn)‖ ≥ ε for all n ∈N, then
∑∞

n= ‖un+ –
un‖ < ∞, where un := dn/‖dn‖ (n ∈N).

Proof Assuming ‖xn – T(xn)‖ ≥ ε and 〈xn – T(xn), dn〉 ≤ –c‖xn – T(xn)‖ (n ∈N), ‖dn‖ �= 
holds for all n ∈N. Define rn := –(xn – T(xn))/‖dn‖ and δn := βn‖dn‖/‖dn+‖ (n ∈ N). From
δnun = βndn/‖dn+‖ and dn+ = –(xn+ – T(xn+)) + βndn (n ∈N), we have, for all n ∈N,

un+ = –rn+ + δnun,

which, together with ‖un+ – δnun‖ = ‖un+‖ – δn〈un+, un〉 + δ
n‖un‖ = ‖un‖ – δn〈un,

un+〉 + δ
n‖un+‖ = ‖un – δnun+‖ (n ∈N), implies that, for all n ∈N,

‖rn+‖ = ‖un+ – δnun‖ = ‖un – δnun+‖.

Accordingly, the condition βn ≥  (n ∈ N) and the triangle inequality mean that, for all
n ∈N,

‖un+ – un‖ ≤ ( + δn)‖un+ – un‖
≤ ‖un+ – δnun‖ + ‖un – δnun+‖
= ‖rn+‖. (.)

From Lemma ., 〈xn – T(xn), dn〉 ≤ –c‖xn – T(xn)‖ (n ∈N), the definition of rn, and ‖xn –
T(xn)‖ ≥ ε (n ∈N), we have

∞ >
∞∑

n=

(〈xn – T(xn), dn〉
‖dn‖

)

≥ c
∞∑

n=

‖xn – T(xn)‖

‖dn‖ ≥ cε
∞∑

n=

‖rn‖,

which, together with (.), completes the proof. �

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 16 of 32

The following property, referred to as Property (�), is a result of modifying [], Prop-
erty (∗), to conform to Problem (.).

Property (�). Suppose that there exist positive constants γ and γ̄ such that γ ≤ ‖xn –
T(xn)‖ ≤ γ̄ for all n ∈ N. Then Property (�) holds if b >  and λ >  exist
such that, for all n ∈ N,

|βn| ≤ b and ‖xn+ – xn‖ ≤ λ implies |βn| ≤ 
b

.

The proof of the following lemma can be omitted since it is similar to the proof of [],
Lemma ..

Lemma . Let (xn)n∈N and (dn)n∈N be the sequences generated by Algorithm . and as-
sume that there exist c >  and γ >  such that 〈xn – T(xn), dn〉 ≤ –c‖xn – T(xn)‖ and
‖xn – T(xn)‖ ≥ γ for all n ∈ N. Suppose also that Property (�) holds. Then there exists λ > 
such that, for all
 ∈ N\{} and for any index k, there is k ≥ k such that |Kλ

k,
| >
/,
where Kλ

k,
 := {i ∈ N\{} : k ≤ i ≤ k +
 – ,‖xi – xi–‖ > λ} (k ∈ N,
 ∈ N\{}, λ > ) and
|Kλ

k,
| stands for the number of elements of Kλ
k,
.

The following can be proven by referring to the proof of [], Theorem ..

Lemma . Let (xn)n∈N be the sequence generated by Algorithm . with βn ≥  (n ∈ N)
and assume that there exists c >  such that 〈xn – T(xn), dn〉 ≤ –c‖xn – T(xn)‖ for all n ∈N

and Property (�) holds. If (xn)n∈N is bounded, lim infn→∞ ‖xn – T(xn)‖ = .

Proof Assuming that lim infn→∞ ‖xn – T(xn)‖ > , there exists γ >  such that ‖xn –
T(xn)‖ ≥ γ for all n ∈ N. Since c >  exists such that 〈xn – T(xn), dn〉 ≤ –c‖xn – T(xn)‖

(n ∈ N), ‖dn‖ �=  (n ∈ N) holds. Moreover, the nonexpansivity of T ensures that, for all
x ∈ Fix(T), ‖T(xn) – x‖ ≤ ‖xn – x‖, and this, together with the boundedness of (xn)n∈N, im-
plies the boundedness of (T(xn))n∈N. Accordingly, γ̄ >  exists such that ‖xn – T(xn)‖ ≤ γ̄

(n ∈N). The definition of xn implies that, for all n ≥ ,

xn – xn– = αn–dn– = αn–‖dn–‖un– = ‖xn – xn–‖un–,

where un := dn/‖dn‖ (n ∈N). Hence, for all l, k ∈N with l ≥ k > ,

xl – xk– =
l∑

i=k

(xi – xi–) =
l∑

i=k

‖xi – xi–‖ui–,

which implies that

l∑

i=k

‖xi – xi–‖uk– = xl – xk– –
l∑

i=k

‖xi – xi–‖(ui– – uk–).

From ‖un‖ =  (n ∈N) and the triangle inequality, for all l, k ∈N with l ≥ k > ,
∑l

i=k ‖xi –
xi–‖ ≤ ‖xl – xk–‖ +

∑l
i=k ‖xi – xi–‖‖ui– – uk–‖. Since the boundedness of (xn)n∈N means

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 17 of 32

there is M >  satisfying ‖xn+ – xn‖ ≤ M (n ∈N), we find that, for all l, k ∈N with l ≥ k > ,

l∑

i=k

‖xi – xi–‖ ≤ M +
l∑

i=k

‖xi – xi–‖‖ui– – uk–‖. (.)

Let λ >  be as given by Lemma . and define
 := �M/λ�, where �·� denotes the ceil-
ing operator. From Lemma ., an index k can be chosen such that

∑∞
i=k

‖ui – ui–‖ ≤
/(
). Accordingly, Lemma . guarantees the existence of k ≥ k such that |Kλ

k,
| >
/.
Since the Cauchy-Schwarz inequality implies that (

∑m
i= ai) ≤ m

∑m
i= a

i (m ≥ , ai ∈ R,
i = , , . . . , m), we have, for all i ∈ [k, k +
 – ],

‖ui– – uk–‖ ≤
(i–∑

j=k

‖uj – uj–‖
)

≤ (i – k)
i–∑

j=k

‖uj – uj–‖ ≤ 


.

Putting l := k +
 – , (.) ensures that

M ≥ 


k+
–∑

i=k

‖xi – xi–‖ >
λ


∣∣Kλ

k,

∣∣ >

λ


,

which implies that
 < M/λ. This contradicts
 := �M/λ�. Therefore, lim infn→∞ ‖xn –
T(xn)‖ = . �

Now we are in the position to prove Theorem ..

Proof The condition βPRP+
n ≥  holds for all n ∈N. Suppose that positive constants γ and

γ̄ exist such that γ ≤ ‖xn – T(xn)‖ ≤ γ̄ (n ∈ N) and define b := γ̄ /γ  and λ := γ /(γ̄ b).
The definition of βPRP+

n and the Cauchy-Schwarz inequality mean that, for all n ∈N,

∣∣βPRP+
n

∣∣ ≤ |〈xn+ – T(xn+), yn〉|
‖xn – T(xn)‖ ≤ ‖xn+ – T(xn+)‖‖yn‖

‖xn – T(xn)‖ ≤ γ̄ 

γ  = b,

where the third inequality comes from ‖yn‖ ≤ ‖xn+ – T(xn+)‖ + ‖xn – T(xn)‖ ≤ γ̄ and
γ ≤ ‖xn –T(xn)‖ ≤ γ̄ (n ∈N). When ‖xn+ –xn‖ ≤ λ (n ∈N), the triangle inequality and the
nonexpansivity of T imply that ‖yn‖ ≤ ‖xn+ – xn‖ + ‖T(xn) – T(xn+)‖ ≤ ‖xn+ – xn‖ ≤ λ

(n ∈N). Therefore, for all n ∈N,

∣∣βPRP+
n

∣∣ ≤ γ̄ ‖yn‖
‖xn – T(xn)‖ ≤ λγ̄

γ  =


b
,

which implies that Property (�) holds. Lemma . thus guarantees that lim infn→∞ ‖xn –
T(xn)‖ =  holds. A discussion in the same manner as in the proof of Lemma .(iii) leads
to limn→∞ ‖xn – T(xn)‖ = . This completes the proof. �

2.5 Algorithm 2.1 with βn = βHS+
n

The convergence properties of the nonlinear conjugate gradient method with βHS
n defined

as in (.) are similar to those with βPRP
n defined as in (.) [], Section . On the basis

of this fact and the modification of βPRP
n in Section ., this subsection considers Algo-

rithm . with βHS+
n defined by (.).

Lemma . leads to the following.

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 18 of 32

Theorem . Suppose that (xn)n∈N and (dn)n∈N are the sequences generated by Algo-
rithm . with βn = βHS+

n (n ∈ N) and there exists c >  such that 〈xn – T(xn), dn〉 ≤
–c‖xn – T(xn)‖ for all n ∈ N. If (xn)n∈N is bounded, then (xn)n∈N either terminates at a
fixed point of T or

lim
n→∞

∥∥xn – T(xn)
∥∥ = .

Proof When m ∈N exists such that ‖xm – T(xm)‖ = , Theorem . holds. Let us consider
the case where ‖xn – T(xn)‖ �=  for all n ∈ N. Suppose that γ , γ̄ >  exist such that γ ≤
‖xn – T(xn)‖ ≤ γ̄ (n ∈N) and define b := γ̄ /(( – σ)cγ ) and λ := ( – σ)cγ /(γ̄ b). Then
(.) implies that, for all n ∈N,

〈dn, yn〉 =
〈
dn, xn+ – T(xn+)

〉
–

〈
dn, xn – T(xn)

〉

≥ –( – σ)
〈
dn, xn – T(xn)

〉
,

which, together with the existence of c,γ >  such that 〈xn – T(xn), dn〉 ≤ –c‖xn – T(xn)‖,
and γ ≤ ‖xn – T(xn)‖ (n ∈N), implies that, for all n ∈N,

〈dn, yn〉 ≥ ( – σ)c
∥∥xn – T(xn)

∥∥ ≥ ( – σ)cγ  > .

This means Algorithm . with βn = βHS+
n is well defined. From ‖xn – T(xn)‖ ≤ γ̄ (n ∈ N)

and the definition of yn, we have, for all n ∈N,

∣∣βHS+
n

∣∣ ≤ |〈xn+ – T(xn+), yn〉|
|〈dn, yn〉| ≤ γ̄ 

( – σ)cγ  = b.

When ‖xn+ – xn‖ ≤ λ (n ∈ N), the triangle inequality and the nonexpansivity of T imply
that ‖yn‖ ≤ ‖xn+ – xn‖ + ‖T(xn) – T(xn+)‖ ≤ ‖xn+ – xn‖ ≤ λ (n ∈ N). Therefore, from
‖xn – T(xn)‖ ≤ γ̄ (n ∈N), for all n ∈N,

∣∣βHS+
n

∣∣ ≤ γ̄ ‖yn‖
〈dn, yn〉 ≤ λγ̄

( – σ)cγ  =


b
,

which in turn implies that Property (�) holds. Lemma . thus ensures that lim infn→∞‖xn –
T(xn)‖ =  holds. A discussion similar to the one in the proof of Lemma .(iii) leads to
limn→∞ ‖xn – T(xn)‖ = . This completes the proof. �

2.6 Convergence rate analyses of Algorithm 2.1
Sections .-. show that Algorithm . with equations (.) satisfies limn→∞ ‖xn –
T(xn)‖ =  under certain assumptions. The next theorem establishes rates of convergence
for Algorithm . with equations (.).

Theorem .
(i) Under the Wolfe-type conditions (.) and (.), Algorithm . with βn = βSD

n
satisfies, for all n ∈N,

∥∥xn – T(xn)
∥∥ ≤ ‖x – T(x)‖

√
δ
∑n

k= αk

.

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 19 of 32

(ii) Under the strong Wolfe-type conditions (.) and (.), Algorithm . with βn = βDY
n

satisfies, for all n ∈N,

∥∥xn – T(xn)
∥∥ ≤ ‖x – T(x)‖

√


+σ
δ
∑n

k= αk

.

(iii) Under the strong Wolfe-type conditions (.) and (.), Algorithm . with βn = βFR
n

satisfies, for all n ∈N,

∥∥xn – T(xn)
∥∥ ≤ ‖x – T(x)‖

√


–σ
δ
∑n

k=( – σ + σ k)αk

.

(iv) Under the assumptions in Theorem ., Algorithm . with βn = βPRP+
n satisfies, for

all n ∈N,

∥∥xn – T(xn)
∥∥ ≤ ‖x – T(x)‖

√
cδ

∑n
k= αk

.

(v) Under the assumptions in Theorem ., Algorithm . with βn = βHS+
n satisfies, for

all n ∈N,

∥∥xn – T(xn)
∥∥ ≤ ‖x – T(x)‖

√
cδ

∑n
k= αk

.

Proof (i) From dk = –(xk – T(xk)) (k ∈ N) and (.), we have  ≤ δαk‖xk – T(xk)‖ ≤
‖xk – T(xk)‖ – ‖xk+ – T(xk+)‖ (k ∈ N). Summing up this inequality from k =  to k = n
guarantees that, for all n ∈N,

δ

n∑

k=

αk
∥∥xk – T(xk)

∥∥ ≤ ∥∥x – T(x)
∥∥ –

∥∥xn+ – T(xn+)
∥∥ ≤ ∥∥x – T(x)

∥∥,

which, together with the monotone decreasing property of (‖xn – T(xn)‖)n∈N, implies
that, for all n ∈N,

δ
∥∥xn – T(xn)

∥∥
n∑

k=

αk ≤ ∥∥x – T(x)
∥∥.

This completes the proof.
(ii) Condition (.) and Lemma .(i) ensure that –σ ≤ 〈xk+ – T(xk+), dk〉/〈xk –

T(xk), dk〉 ≤ σ (k ∈N). Accordingly, (.) means that, for all k ∈N,

〈
xk+ – T(xk+), dk+

〉
=

〈xk – T(xk), dk〉
〈dk , (xk+ – T(xk+)) – (xk – T(xk))〉

∥∥xk+ – T(xk+)
∥∥

=
(〈xk+ – T(xk+), dk〉

〈xk – T(xk), dk〉 – 
)–∥∥xk+ – T(xk+)

∥∥

≤ –


 + σ

∥∥xk+ – T(xk+)
∥∥.

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 20 of 32

Hence, (.) implies that, for all k ∈N,

∥∥xk+ – T(xk+)
∥∥ –

∥∥xk – T(xk)
∥∥ ≤ –


 + σ

δαk
∥∥xk – T(xk)

∥∥.

Summing up this inequality from k =  to k = n and the monotone decreasing property of
(‖xn – T(xn)‖)n∈N ensure that, for all n ∈N,


 + σ

δ
∥∥xn – T(xn)

∥∥
n∑

k=

αk ≤ ∥∥x – T(x)
∥∥,

which completes the proof.
(iii) Inequality (.) guarantees that, for all k ∈N,

〈
xk – T(xk), dk

〉 ≤
(

– +
k∑

j=

σ j

)
∥∥xk – T(xk)

∥∥

= –
 – σ + σ k

 – σ

∥∥xk – T(xk)
∥∥,

which, together with (.), implies that, for all k ∈N,

∥∥xk+ – T(xk+)
∥∥ –

∥∥xk – T(xk)
∥∥ ≤ –

 – σ + σ k

 – σ
δαk

∥∥xk – T(xk)
∥∥.

Summing up this inequality from k =  to k = n and the monotone decreasing property of
(‖xn – T(xn)‖)n∈N ensure that, for all n ∈N,


 – σ

δ
∥∥xn – T(xn)

∥∥
n∑

k=

(
 – σ + σ k)αk ≤ ∥∥x – T(x)

∥∥,

which completes the proof.
(iv), (v) Since there exists c >  such that 〈xk – T(xk), dk〉 ≤ –c‖xk – T(xk)‖ for all k ∈N,

we have from (.) and the monotone decreasing property of (‖xn – T(xn)‖)n∈N, for all
n ∈N,

cδ
∥∥xn – T(xn)

∥∥
n∑

k=

αk ≤ cδ
n∑

k=

αk
∥∥xk – T(xk)

∥∥ ≤ ∥∥x – T(x)
∥∥.

This concludes the proof. �

The conventional Krasnosel’skĭı-Mann algorithm (.) with a step size sequence (αn)n∈N
obeying (.) satisfies the following inequality [], Propositions  and :

∥∥xn – T(xn)
∥∥ ≤ d(x, Fix(T))

√∑n
k= αk( – αk)

(n ∈N),

where d(x, Fix(T)) := minx∈Fix(T) ‖x – x‖. When αn (n ∈ N) is a constant in the range of
(, ), which is the most tractable choice of step size satisfying (.), the Krasnosel’skĭı-

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 21 of 32

Mann algorithm (.) has the rate of convergence,

∥∥xn – T(xn)
∥∥ = O

(
√

n + 

)
. (.)

Meanwhile, according to Theorem  in [], Algorithm (.) with (αn)n∈N satisfying the
Armijo-type condition (.) satisfies, for all n ∈N,

∥∥xn – T(xn)
∥∥ ≤ ‖x – T(x)‖

√
β

∑n
k=(αk – 

)
. (.)

In general, the step sizes satisfying (.) do not coincide with those satisfying the Armijo-
type condition (.) or the Wolfe-type conditions (.) and (.). This is because the line
search methods based on the Armijo-type conditions (.) and (.) determine step sizes
at each iteration n so as to satisfy ‖xn+ – T(xn+)‖ < ‖xn – T(xn)‖, while the constant step
sizes satisfying (.) do not change at each iteration. Accordingly, it would be difficult to
evaluate the efficiency of these algorithms by using only the theoretical convergence rates
in (.), (.), and Theorem .. To verify whether Algorithm . with the convergence
rates in Theorem . converges faster than the previous algorithms [], Propositions 
and , [], Theorem , with convergence rates (.) and (.), the next section numer-
ically compares their abilities to solve concrete constrained smooth convex optimization
problems.

3 Application of Algorithm 2.1 to constrained smooth convex optimization
This section considers the following problem:

Minimize f (x) subject to x ∈ C, (.)

where f : Rd →R is convex, ∇f : Rd →R
d is Lipschitz continuous with a constant L, and

C ⊂R
d is a nonempty, closed, and convex set onto which the metric projection PC can be

efficiently computed.

3.1 Experimental conditions and fixed point and line search algorithms used in
the experiment

Problem (.) can be solved by using the conventional Krasnosel’skĭı-Mann algorithm (.)
with a nonexpansive mapping T := PC(Id – λ∇f) satisfying Fix(T) = argminx∈C f (x), where
λ ∈ (, /L] [], Proposition .. It is represented as follows:

xn+ = xn + αn
(
PC

(
xn – λ∇f (xn)

)
– xn

)
, (.)

where x ∈ R
d and (αn)n∈N is a sequence satisfying (.) or the Armijo-type condition (.).

Algorithm . with T := PC(Id – λ∇f) is as follows:

xn+ := xn + αndn,

dn+ := –
(
xn+ – PC

(
xn+ – λ∇f (xn+)

))
+ βndn,

(.)

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 22 of 32

where x, d := –(x – PC(x – λ∇f (x))) ∈ R
d , (αn)n∈N is a sequence satisfying the Wolfe-

type conditions (.) and (.), and (βn)n∈N is defined by each of equations (.) with T :=
PC(Id – λ∇f) (see also (.)).

The best conventional nonlinear conjugate gradient method for unconstrained smooth
nonconvex optimization was proposed by Hager and Zhang [, ], and it uses the HS
formula defined as in (.):

βHZ
n :=


〈dn, yn〉

〈
yn – dn

‖yn‖

〈dn, yn〉 ,∇f (xn+)
〉

= βHS
n – 

‖yn‖

〈dn, yn〉
〈∇f (xn+), dn〉

〈dn, yn〉 .

Replacing ∇f in the above formula with Id – PC(Id – λ∇f) leads to the HZ-type formula
for Problem (.):

βHZ
n := βHS

n – 
‖yn‖

〈dn, yn〉
〈xn+ – PC(xn+ – λ∇f (xn+)), dn〉

〈dn, yn〉 , (.)

where yn := (xn+ – PC(xn+ – λ∇f (xn+))) – (xn – PC(xn – λ∇f (xn))) and βHS
n is defined by

βHS
n := 〈xn+ – PC(xn+ – λ∇f (xn+)), yn〉/〈dn, yn〉. We tested Algorithm (.) with βn := βHZ

n
defined by (.) in order to see how it works on Problem (.).

We used the Virtual Desktop PC at the Ikuta campus of Meiji University. The PC has
 GB of RAM memory,  core Intel Xeon . GHz CPU, and a Windows . operating
system. The algorithms used in the experiment were written in MATLAB (Rb), and
they are summarized as follows.

SD-: Algorithm (.) with constant step sizes αn := . (n ∈N) [], Theorem ..
SD-: Algorithm (.) with αn satisfying the Armijo-type condition (.) when β = .

[], Theorems  and .
SD-: Algorithm (.) with αn satisfying the Wolfe-type conditions (.) and (.) and

βn := βSD
n (Theorem .).

FR: Algorithm (.) with αn satisfying the Wolfe-type conditions (.) and (.) and
βn := βFR

n (Theorem .).
PRP+: Algorithm (.) with αn satisfying the Wolfe-type conditions (.) and (.) and

βn := βPRP+
n (Theorem .).

HS+: Algorithm (.) with αn satisfying the Wolfe-type conditions (.) and (.) and
βn := βHS+

n (Theorem .).
DY: Algorithm (.) with αn satisfying the Wolfe-type conditions (.) and (.) and

βn := βDY
n (Theorem .).

HZ: Algorithm (.) with αn satisfying the Wolfe-type conditions (.) and (.) and
βn := βHZ

n defined by (.) [, ].

The experiment used the following line search algorithm [], Algorithm ., to find
step sizes satisfying the Wolfe-type conditions (.) and (.) with δ := . and σ := .
that were chosen by referring to [], Section ., where, for each n, An(·) and Wn(·) are

An(t):
∥∥xn(t) – T

(
xn(t)

)∥∥ –
∥∥xn – T(xn)

∥∥ < δt
〈
xn – T(xn), dn

〉
,

Wn(t):
〈
xn(t) – T

(
xn(t)

)
, dn

〉
> σ

〈
xn – T(xn), dn

〉
.

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 23 of 32

Algorithm . ([], Algorithm .)

Require: An(·), Wn(·).
Ensure: An(α) and Wn(α).

α ← ,β ← ∞, t ← .
loop

if ¬An(t) then
β ← t.

else if ¬Wn(t) then
α ← t.

else
(α: found).

end if
if β < ∞ then

t ← 
 (α + β).

else
t ← α.

end if
end loop

For Algorithm SD-, we replaced An(·) above by

An(t): gn(t) – gn() < –Dt
∥∥xn – T(xn)

∥∥,

where D := δ = . and gn is defined as in (.), and deleted Wn(·) from the line search
algorithm. For Algorithms FR, PRP+, HS+, DY, and HZ, if the step sizes satisfying the
Wolfe-type conditions (.) and (.) were not computed by using Algorithm ., the step
sizes were computed by using Algorithm . when dn := –(xn – T(xn)). This is because
Algorithm . for Algorithm SD-, which uses dn := –(xn – T(xn)) (n ∈N), had a % suc-
cess rate in computing the step sizes satisfying (.) and (.). Tables , , , and  indicate
the satisfiability rates (defined below) of computing the step sizes for the algorithms in the
experiment.

The stopping condition was

n =  or
∥∥xn – T(xn)

∥∥ =  for some n ∈ [, ]. (.)

Before describing the results, let us describe the notation used to verify the numerical
performance of the algorithms.

• I : the number of initial points;
• x(i)

 : the initial point chosen randomly (i = , , . . . , I);
• ALGO: each of Algorithms SD-, SD-, SD-, FR, PRP+, HS+, DY, and HZ

(ALGO ∈ {SD-, SD-, SD-, FR, PRP+, HS+, DY, HZ});
• N(x(i)

 , ALGO): the number of step sizes computed by Algorithm . for ALGO with
x(i)

 before ALGO satisfies the stopping condition (.);
• N(x(i)

 , ALGO): the number of iterations needed to satisfy the stopping condition
(.) for ALGO with x(i)

 .

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 24 of 32

Note that N(x(i)
 , SD-) stands for the number of iterations n satisfying An(.) and Wn(.)

before Algorithm SD- with x(i)
 satisfies the stopping condition (.). The satisfiability rate

(SR) of Algorithm . to compute the step sizes for each of the algorithms is defined by

SR(ALGO) :=
∑I

i= N(x(i)
 , ALGO)

∑I
i= N(x(i)

 , ALGO)
×  [%]. (.)

We performed  samplings, each starting from different random initial points (i.e., I :=
) and averaged their results.

3.2 Constrained quadratic programming problem
In this subsection, let us consider the following constrained quadratic programming prob-
lem:

Problem . Suppose that C is a nonempty, closed convex subset of Rd onto which PC

can be efficiently computed, Q ∈R
d×d is positive semidefinite with the eigenvalues λmin :=

λ,λ, . . . ,λd =: λmax satisfying λi ≤ λj (i ≤ j), and b ∈R
d . Our objective is to

minimize f (x) :=


〈x, Qx〉 + 〈b, x〉 subject to x ∈ C.

Since f above is convex and ∇f (x) = Qx + b (x ∈R
d) is Lipschitz continuous such that the

Lipschitz constant of ∇f is the maximum eigenvalue λmax of Q, Problem . is an example
of Problem (.).

We compared the proposed algorithms SD-, FR, PRP+, HS+, DY, and HZ with the
previous algorithms SD- and SD- by applying them to Problem . (i.e., the fixed point
problem for T(x) := PC(x – (/λmax)(Qx + b)) (x ∈R

d)) in the following cases:

d :=  or , λmin := , λmax := d, λi ∈ [, d] (i = , , . . . , d – ),

b, c ∈ (–, )d, C :=
{

x ∈ R
d : ‖x – c‖ ≤ 

}
.

We randomly chose λi ∈ [, d] (i = , , . . . , d – ) and set Q as a diagonal matrix with
eigenvalues λ,λ, . . . ,λmax. The experiment used two random numbers in the range of
(–, )d for b and c to satisfy C ∩ {x ∈ R

d : ∇f (x) = } = ∅. Since C is a closed ball with
center c and radius , PC can be computed within a finite number of arithmetic operations.
More precisely, PC(x) := c + (x – c)/‖x – c‖ if ‖x – c‖ > , or PC(x) := x if ‖x – c‖ ≤ .

Table  shows the satisfiability rates as defined by (.) for Algorithms SD-, SD-, and
SD- that are applied to Problem .. It can be seen that the step sizes for SD- (con-
stant step sizes αn := .) do not always satisfy the Wolfe-type conditions (.) and (.),

Table 1 Satisfiability rate of Algorithm 3.1 for Algorithms SD-1, SD-2, and SD-3 applied to
Problem 3.1 when d := 103, 104

Algorithm SR (d := 103) SR (d := 104)

SD-1 55.9% 26.3%
SD-2 100% 100%
SD-3 100% 100%

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 25 of 32

Table 2 Satisfiability rate of Algorithm 3.1 for Algorithms FR, PRP+, HS+, DY, and HZ applied
to Problem 3.1 when d := 103, 104

Algorithm SR (d := 103) SR (d := 104)

FR 19.7% 28.1%
PRP+ 100% 100%
HS+ 100% 98.9%
DY 21.6% 27.2%
HZ 20.0% 20.0%

(a) ‖xn – T(xn)‖ vs. no. of iterations (b) ‖xn – T(xn)‖ vs. elapsed time

Figure 1 Evaluation of ‖xn – T(xn)‖ in terms of the number of iterations and elapsed time for
Algorithms SD-1, SD-2, and SD-3 for Problem 3.1 when d := 103.

whereas the step sizes computed by Algorithm . and SD- (resp. Algorithm SD-) def-
initely satisfy the Armijo-type condition (.) (resp. the Wolfe-type conditions (.) and
(.)).

Table  showing the satisfiability rates for Algorithms FR, PRP+, HS+, DY, and HZ indi-
cates that Algorithm . for PRP+ and HS+ has high success rates at computing the step
sizes satisfying (.) and (.), while the SRs of Algorithm . for other algorithms are
low. It can be seen from Tables  and  that SD-, PRP+, and HS+ are robust in the sense
that Algorithm . can compute the step sizes satisfying the Wolfe-type conditions (.)
and (.).

Figure  indicates the behaviors of SD-, SD-, and SD- when d := . The y-axes in
Figures (a) and (b) represent the value of ‖xn – T(xn)‖. The x-axis in Figure (a) repre-
sents the number of iterations, and the x-axis in Figure (b) represents the elapsed time.
If the (‖xn – T(xn)‖)n∈N generated by the algorithms converges to , they also converge to
a fixed point of T . Figure (a) shows that SD- and SD- terminate at fixed points of T
within a finite number of iterations. It can be seen from Figure (a) and Figure (b) that
SD- reduces the iterations and running time needed to find a fixed point compared with
SD-. These figures also show that (‖xn – T(xn)‖)n∈N generated by SD- converges slowest
and that SD- cannot find a fixed point of T before the tenth iteration. We can thus see
that the use of the step sizes satisfying the Wolfe-type conditions is a good way to solve
fixed point problems by using the Krasnosel’skĭı-Mann algorithm. Figure  indicates the
behaviors of SD-, SD-, and SD- when d := . Similarly to what is shown in Figure ,
SD- finds a fixed point of T faster than SD- and SD- can.

Figure  is the evaluation of (‖xn – T(xn)‖)n∈N in terms of the number of iterations and
elapsed time for Algorithms FR, PRP+, HS+, DY, and HZ when d := . Figure (a) shows

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 26 of 32

(a) ‖xn – T(xn)‖ vs. no. of iterations (b) ‖xn – T(xn)‖ vs. elapsed time

Figure 2 Evaluation of ‖xn – T(xn)‖ in terms of the number of iterations and elapsed time for
Algorithms SD-1, SD-2, and SD-3 for Problem 3.1 when d := 104.

(a) ‖xn – T(xn)‖ vs. no. of iterations (b) ‖xn – T(xn)‖ vs. elapsed time

Figure 3 Evaluation of ‖xn – T(xn)‖ in terms of the number of iterations and elapsed time for
Algorithms FR, PRP+, HS+, DY, and HZ for Problem 3.1 when d := 103.

(a) ‖xn – T(xn)‖ vs. no. of iterations (b) ‖xn – T(xn)‖ vs. elapsed time

Figure 4 Evaluation of ‖xn – T(xn)‖ in terms of the number of iterations and elapsed time for
Algorithms FR, PRP+, HS+, DY, and HZ for Problem 3.1 when d := 104.

that they can find fixed points of T within a finite number of iterations. Figure (b) indi-
cates that PRP+ and HS+ find the fixed points of T faster than FR, DY, and HZ. This is
because Algorithm . for each of PRP+ and HS+ has a % success rate at computing
the step sizes satisfying (.) and (.), while the SRs of Algorithm . for FR, DY, and HZ
are low (see Table ); i.e., FR, DY, and HZ require much more time to compute the step

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 27 of 32

sizes than PRP+ and HS+. In fact, we checked that the times to compute the step sizes for
FR, DY, and HZ account for .%, .%, and .% of all the com-
putational times, while the times to compute the step sizes for PRP+ and HS+ account
for .% and .% of all the computational times. Figure  indicate the be-
haviors of FR, PRP+, HS+, DY, and HZ when d :=  and PRP+ and HS+ perform better
than FR, DY, and HZ, as seen in Figure . Such a trend can also be verified from Table 
showing that the SRs of Algorithm . for PRP+ and HS+ are about %.

3.3 Generalized convex feasibility problem
This subsection considers the following generalized convex feasibility problem [], Sec-
tion I, Framework , [], Section ., [], Definition .:

Problem . Suppose that Ci (i = , , . . . , m) is a nonempty, closed convex subset of Rd

onto which PCi can be efficiently computed and define the weighted mean square value
of the distances from x ∈ R

d to Ci (i = , , . . . , m) as f (x) below; i.e., for wi ∈ (, ) (i =
, , . . . , m) satisfying

∑m
i= wi = ,

f (x) :=
m∑

i=

wi

(
min
y∈Ci

‖x – y‖
)

.

Our objective is to find a point in the generalized convex feasible set defined by

Cf :=
{

x� ∈ C : f
(
x�

)
= min

x∈C
f (x)

}
.

Cf is a subset of C having the elements closest to Ci (i = , , . . . , m) in terms of the
weighted mean square norm. Even if

⋂m
i= Ci = ∅, Cf is well defined because Cf is the set

of all minimizers of f over C. The condition Cf �= ∅ holds when C is bounded [], Re-
mark .(a). Moreover, Cf =

⋂m
i= Ci holds when

⋂m
i= Ci �= ∅. Accordingly, Problem . is

a generalization of the convex feasibility problem [] of finding a point in
⋂m

i= Ci �= ∅.
The convex function f in Problem . satisfies ∇f = Id –

∑m
i= wiPCi . Hence, ∇f is

Lipschitz continuous when its Lipschitz constant is two. This means Problem . is an
example of Problem (.). Since Problem . can be expressed as the problem of finding
a fixed point of T = PC (Id – λ∇f) = PC (Id – λ(Id –

∑m
i= wiPCi)) for λ ∈ (, ], we used T

with λ = ; i.e., T := PC (
∑m

i= wiPCi).
We applied SD-, SD-, SD-, FR, PRP+, HS+, DY, and HZ to Problem . in the follow-

ing cases:

d :=  or , m := , wi :=



(i = , , . . . , ),

ci ∈ (–, )d, Ci :=
{

x ∈R
d : ‖x – ci‖ ≤ 

}
(i = , , . . . , m).

The experiment used one hundred random numbers in the range of (–, )d for ci, which
means

⋂m
i= Ci = ∅. Since Ci (i = , , . . . , m) is a closed ball with center ci and radius , Pi

can be computed within a finite number of arithmetic operations.
Table  shows the satisfiability rates as defined by (.) for Algorithms SD-, SD-, and

SD- applied to Problem .. It can be seen that the step sizes for SD- do not always

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 28 of 32

Table 3 Satisfiability rate of Algorithm 3.1 for Algorithms SD-1, SD-2, and SD-3 applied to
Problem 3.2 when d := 103, 104

Algorithm SR (d := 103) SR (d := 104)

SD-1 80.6% 64.2%
SD-2 100% 100%
SD-3 100% 100%

Table 4 Satisfiability rate of Algorithm 3.1 for Algorithms FR, PRP+, HS+, DY, and HZ applied
to Problem 3.2 when d := 103, 104

Algorithm SR (d := 103) SR (d := 104)

FR 50.0% 50.0%
PRP+ 100% 100%
HS+ 55.8% 60.4%
DY 50.0% 50.0%
HZ 50.0% 50.0%

(a) ‖xn – T(xn)‖ vs. no. of iterations (b) ‖xn – T(xn)‖ vs. elapsed time

Figure 5 Evaluation of ‖xn – T(xn)‖ in terms of the number of iterations and elapsed time for
Algorithms SD-1, SD-2, and SD-3 for Problem 3.2 when d := 103.

satisfy the Wolfe-type conditions (.) and (.), whereas the step sizes computed by Al-
gorithm . and SD- (resp. Algorithm SD-) definitely satisfy the Armijo-type condition
(.) (resp. the Wolfe-type conditions (.) and (.)). Such a trend also existed when SD-,
SD-, and SD- were applied to Problem . (see Table ).

Table  shows the satisfiability rates for Algorithms FR, PRP+, HS+, DY, and HZ. The
table indicates that Algorithm . for PRP+ has a % success rate at computing the step
sizes satisfying (.) and (.), while the SRs of Algorithm . for the other algorithms lie
between % and about %. From Tables  and , we can see that SD- and PRP+ are
robust in the sense that Algorithm . can compute the step sizes satisfying the Wolfe-type
conditions (.) and (.).

Figure  indicates the behaviors of SD-, SD-, and SD- when d := . The y-axes rep-
resent the value of ‖xn – T(xn)‖. The x-axis in Figure (a) represents the number of it-
erations, and the x-axis in Figure (b) represents the elapsed time. From Figure (a), the
iterations needed to satisfy ‖xn – T(xn)‖ =  for SD- and SD- are, respectively,  and .
It can be seen that SD- reduces the running time and iterations needed to find a fixed
point compared with SD-. These figures also show that the (‖xn – T(xn)‖)n∈N generated
by SD- converges slowest. Therefore, we can see that the use of the step sizes satisfy-
ing the Wolfe-type conditions is a good way to solve fixed point problems by using the

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 29 of 32

(a) ‖xn – T(xn)‖ vs. no. of iterations (b) ‖xn – T(xn)‖ vs. elapsed time

Figure 6 Evaluation of ‖xn – T(xn)‖ in terms of the number of iterations and elapsed time for
Algorithms SD-1, SD-2, and SD-3 for Problem 3.2 when d := 104.

(a) ‖xn – T(xn)‖ vs. no. of iterations (b) ‖xn – T(xn)‖ vs. elapsed time

Figure 7 Evaluation of ‖xn – T(xn)‖ in terms of the number of iterations and elapsed time for
Algorithms FR, PRP+, HS+, DY, and HZ for Problem 3.2 when d := 103.

Krasnosel’skĭı-Mann algorithm, as seen in Figures  and  illustrating the behaviors of
SD-, SD-, and SD- on Problem . when d := , . Figure  indicates the behaviors
of SD-, SD-, and SD- when d := . Similarly to what is shown in Figure , SD- finds
a fixed point of T faster than SD- and SD- can.

Figure (a) is the evaluation of (‖xn – T(xn)‖)n∈N in terms of the number of iterations for
Algorithms FR, PRP+, HS+, DY, and HZ when d := . Except for HS+, the algorithms
approximate the fixed points of T very rapidly. It can also be seen that the algorithms
other than HS+ satisfy ‖x – T(x)‖ = . Figure (b) is the evaluation of (‖xn – T(xn)‖)n∈N
in terms of the elapsed time. Here, we can see that FR, PRP+, and DY can find fixed points
of T faster than SD- and SD- (Figure ). Figure  indicates the behaviors of FR, PRP+,
HS+, DY, and HZ when d := . The results in these figures are almost the same as the
ones in Figure .

From the above numerical results, we can conclude that the proposed algorithms can
find optimal solutions to Problems . and . faster than the previous fixed point algo-
rithms can. In particular, it can be seen that the algorithms for which the SRs of Algo-
rithm . are high converge quickly to solutions of Problems . and ..

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 30 of 32

(a) ‖xn – T(xn)‖ vs. no. of iterations (b) ‖xn – T(xn)‖ vs. elapsed time

Figure 8 Evaluation of ‖xn – T(xn)‖ in terms of the number of iterations and elapsed time for
Algorithms FR, PRP+, HS+, DY, and HZ for Problem 3.2 when d := 104.

4 Conclusion and future work
This paper discussed the fixed point problem for a nonexpansive mapping on a real Hilbert
space and presented line search fixed point algorithms for solving it on the basis of non-
linear conjugate gradient methods for unconstrained optimization and their convergence
analyses and convergence rate analyses. Moreover, we used these algorithms to solve con-
crete constrained quadratic programming problems and generalized convex feasibility
problems and numerically compared them with the previous fixed point algorithms based
on the Krasnosel’skĭı-Mann fixed point algorithm. The numerical results showed that the
proposed algorithms can find optimal solutions to these problems faster than the previous
algorithms.

In the experiment, the line search algorithm (Algorithm .) could not compute appro-
priate step sizes for fixed point algorithms other than Algorithms SD-, SD-, and PRP+.
In the future, we should consider modifying the algorithms to enable the line search to
compute appropriate step sizes. Or we may need to develop new line searches that can be
applied to all of the fixed point algorithms considered in this paper.

The main objective of this paper was to devise line-search fixed-point algorithms to
accelerate the previous Krasnosel’skĭı-Mann fixed point algorithm defined by (.), i.e.,
xn+ := λnxn + ( – λn)T(xn) (n ∈ N), where (λn)n∈N ⊂ [, ] with

∑∞
n= λn( – λn) = ∞ and

x ∈ H is an initial point. Another particularly interesting problem is determining whether
or not there are line search fixed point algorithms to accelerate the following Halpern fixed
point algorithm [, ]: for all n ∈ N,

xn+ := αnx + ( – αn)T(xn),

where (αn)n∈N ⊂ (, ) satisfies limn→∞ αn =  and
∑∞

n= αn = ∞. The Halpern algorithm
can minimize the convex function ‖ · –x‖ over Fix(T) (see, e.g., [], Theorem .).
A previously reported result [], Theorem ., Proposition ., showed that there is an
inconvenient possibility that the Halpern-type algorithm with a diminishing step size se-
quence (e.g., αn := /(n + )a, where a ∈ (, ]) and any of the FR, PRP, HS, and DY formulas
used in the conventional conjugate gradient methods may not converge to the minimizer
of ‖ · –x‖ over Fix(T). However, there is room for further research into devising line
search fixed point algorithms to accelerate the Halpern algorithm with a diminishing step
size sequence.

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 31 of 32

Competing interests
The author declares that they have no competing interests.

Acknowledgements
I am sincerely grateful to the editor, Juan Jose Nieto, the anonymous associate editor, and the anonymous reviewers for
helping me improve the original manuscript. The author thanks Mr. Kazuhiro Hishinuma for his discussion of the
numerical experiments. This work was supported by the Japan Society for the Promotion of Science through
a Grant-in-Aid for Scientific Research (C) (15K04763).

Endnotes
a See Theorem 2.6(i) for the details of the convergence rate of the proposed algorithm when dn := –(xn – T (xn)) (n ∈N).
b To guarantee the convergence of the PRP and HS methods for unconstrained optimization, the formulas

βPRP+
n := max{βPRP

n , 0} and βHS+
n := max{βHS

n , 0} were presented in [35]. We use the modifications to perform the
convergence analyses on the proposed line search fixed point algorithms.

Received: 2 April 2016 Accepted: 23 June 2016

References
1. Bauschke, HH, Combettes, PL: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin

(2011)
2. Goebel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics. Cambridge

University Press, Cambridge (1990)
3. Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984)
4. Takahashi, W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
5. Bauschke, HH, Borwein, JM: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367-426

(1996)
6. Yamada, I: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed

point sets of nonexpansive mappings. In: Butnariu, D, Censor, Y, Reich, S (eds.) Inherently Parallel Algorithms for
Feasibility and Optimization and Their Applications, pp. 473-504. Elsevier, Amsterdam (2001)

7. Berinde, V: Iterative Approximation of Fixed Points. Springer, Berlin (2007)
8. Cominetti, R, Soto, JA, Vaisman, J: On the rate of convergence of Krasnosel’skĭı-Mann iterations and their connection

with sums of Bernoulli’s. Isr. J. Math. 199, 757-772 (2014)
9. Krasnosel’skĭı, MA: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123-127 (1955)
10. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
11. Halpern, B: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957-961 (1967)
12. Wittmann, R: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486-491 (1992)
13. Nakajo, K, Takahashi, W: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups.

J. Math. Anal. Appl. 279, 372-379 (2003)
14. Solodov, MV, Svaiter, BF: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program.

87, 189-202 (2000)
15. Boţ, RI, Csetnek, ER: A dynamical system associated with the fixed points set of a nonexpansive operator. J. Dyn. Differ.

Equ. (2015). doi:10.1007/s10884-015-9438-x
16. Combettes, PL, Pesquet, JC: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery.

IEEE J. Sel. Top. Signal Process. 1, 564-574 (2007)
17. Magnanti, TL, Perakis, G: Solving variational inequality and fixed point problems by line searches and potential

optimization. Math. Program. 101, 435-461 (2004)
18. Wolfe, P: Convergence conditions for ascent methods. SIAM Rev. 11, 226-235 (1969)
19. Wolfe, P: Convergence conditions for ascent methods. II: some corrections. SIAM Rev. 13, 185-188 (1971)
20. Nocedal, J, Wright, SJ: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial

Engineering. Springer, Berlin (2006)
21. Lewis, AS, Overton, ML: Nonsmooth optimization via quasi-Newton methods. Math. Program. 141, 135-163 (2013)
22. Iiduka, H: Iterative algorithm for solving triple-hierarchical constrained optimization problem. J. Optim. Theory Appl.

148, 580-592 (2011)
23. Hager, WW, Zhang, H: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35-58 (2006)
24. Hestenes, MR, Stiefel, EL: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49,

409-436 (1952)
25. Fletcher, R, Reeves, C: Function minimization by conjugate gradients. Comput. J. 7, 149-154 (1964)
26. Polak, E, Ribière, G: Note sur la convergence de directions conjugées. Rev. Fr. Autom. Inform. Rech. Opér., Anal. Numér.

3, 35-43 (1969)
27. Polyak, BT: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9, 94-112 (1969)
28. Dai, YH, Yuan, Y: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim.

10, 177-182 (1999)
29. Hager, WW, Zhang, H: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM

J. Optim. 16, 170-192 (2005)
30. Al-Baali, M: Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J.

Numer. Anal. 5, 121-124 (1985)
31. Gilbert, JC, Nocedal, J: Global convergence properties of conjugate gradient methods for optimization. SIAM J.

Optim. 2, 21-42 (1992)
32. Zoutendijk, G: Nonlinear programming, computational methods. In: Abadie, J (ed.) Integer and Nonlinear

Programming, pp. 37-38. North-Holland, Amsterdam (1970)
33. Combettes, PL, Bondon, P: Hard-constrained inconsistent signal feasibility problems. IEEE Trans. Signal Process. 47,

2460-2468 (1999)

http://dx.doi.org/10.1007/s10884-015-9438-x

Iiduka Fixed Point Theory and Applications (2016) 2016:77 Page 32 of 32

34. Opial, Z: Weak convergence of the sequence of successive approximation for nonexpansive mappings. Bull. Am.
Math. Soc. 73, 591-597 (1967)

35. Powell, MJD: Nonconvex minimization calculations and the conjugate gradient method. In: Numerical Analysis
(Dundee, 1983). Lecture Notes in Mathematics, vol. 1066, pp. 122-141. Springer, Berlin (1984)

36. Hager, WW, Zhang, H: Algorithm 851: CG_DESCENT: a conjugate gradient method with guaranteed descent. ACM
Trans. Math. Softw. 32, 113-137 (2006)

37. Iiduka, H: Iterative algorithm for triple-hierarchical constrained nonconvex optimization problem and its application
to network bandwidth allocation. SIAM J. Optim. 22, 862-878 (2012)

38. Iiduka, H: Acceleration method for convex optimization over the fixed point set of a nonexpansive mapping. Math.
Program. 149, 131-165 (2015)

	Line search ﬁxed point algorithms based on nonlinear conjugate gradient directions: application to constrained smooth convex optimization
	Abstract
	MSC
	Keywords

	Introduction
	Line search ﬁxed point algorithms based on nonlinear conjugate gradient directions
	Algorithm 2.1 with betan = betanSD
	Proof of Theorem 2.1

	Algorithm 2.1 with betan = betanDY
	Proof of Theorem 2.2

	Algorithm 2.1 with betan = betanFR
	Proof of Theorem 2.3

	Algorithm 2.1 with betan = betanPRP+
	Proof of Theorem 2.4

	Algorithm 2.1 with betan = betanHS+
	Convergence rate analyses of Algorithm 2.1

	Application of Algorithm 2.1 to constrained smooth convex optimization
	Experimental conditions and ﬁxed point and line search algorithms used in the experiment
	Constrained quadratic programming problem
	Generalized convex feasibility problem

	Conclusion and future work
	Competing interests
	Acknowledgements
	Endnotes
	References

