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Abstract

Based on the notions of both contractibility and local contractibility, many works
were done in fixed point theory. The present paper concerns a relation between
digital contractibility and the existence of fixed points of digitally continuous maps. In
this paper, establishing a new digital homotopy named by a K-homotopy in the
category of Khalimsky topological spaces, we prove that in digital topology, whereas
contractibility implies local contractibility, the converse does not hold. Furthermore,
we address the following problem, which remains open. Let X be a Khalimsky (K- for
short) topological space with K-contractibility. Then we may pose the following
question: does the space X have the fixed point property (FPP)? In this paper, we
prove that not every K-topological space with K-contractibility has the FPP.
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1 Introduction

It is well known that Schauder’s fixed point theorem [1] implies that a nonempty compact
convex subset X of a Banach space has a fixed point for any continuous self-map of X.
Before referring to the work, first of all, we need to recall that a topological space X has
the FPP if every continuous self-map f of X has a point x € X such that f(x) = x. Since
every singleton obviously has the FPP, in studying the FPP of spaces, all spaces X (resp.
digital images (X, k)) are assumed to be connected (resp. k-connected) with |X| > 2. In
relation to the Lefschetz and Borsuk fixed point theorems [2, 3], there was the following
conjecture [3]: let X be a contractible and locally contractible space.

Then it has the FPP for compact mappings. (1.1)

Borsuk [2] proved that this conjecture is true in finite-dimensional metric spaces. Besides,
various cases of the conjecture were proved by Cellina [4] and Fryszkowski [5]. As referred
in (1.1), the contractibility of a space X plays an important role in studying the FPP of X
and its applications. Thus, many works [2, 4—8] associated with contractibility are well
developed.

Digital topology has a focus on studying digital topological properties of nD digital
spaces, whereas Euclidean topology deals with topological properties of subspaces of the
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nD real space, which has contributed to the study of some areas of computer sciences
such as computer graphics, image processing, approximation theory, mathematical mor-
phology, optimization theory, and so forth [9-13]. To study digital spaces (see Defini-
tion 1), first of all, we have often followed the method established by Rosenfeld [14], the so-
called graph theoretical approach (i.e., the Rosenfeld model) [9, 11-15], which is proceeded
in many works. Second, one of the well-studied areas is a K-topological space [16-18].
A number of properties of the Khalimsky #D space have been also used to study digital
spaces [15, 16, 19]. Finally, we have used Marcus-Wyse (M- for short) topology [20—22] to
study only 2D digital images.

The present paper develops a K-topological version of the conjecture (1.1) and some
related works posed by Borsuk. At this moment, we need to recall the following differ-
ences between metric-based fixed point theory and K-topology-based fixed point theory.
A K-topological space is not a metric space (see Remark 2.3), contrary to the assumption
required by Borsuk. Furthermore, unlike the difference between contractibility and local
contractibility in classical mathematics, the present paper proves that their digital versions
have their own features (see Theorem 4.6).

In digital topology, there are several types of contractibilities associated with the corre-
sponding digital homotopies [9, 11, 17, 21, 23]. After developing a K-homotopy, we prove
that whereas in K-topology contractibility implies local contractibility, the converse does
not hold. Similarly, we prove that whereas k-contractibility of a digital image (X, k) implies
local k-contractibility, the converse does not hold.

Rosenfeld (see Theorems 3.3 and 4.1 of [14]) first proved that (for more details, see
[24-26])

a digital image (X, k) with |X| > 2 does not have the FPP. (1.2)

This means that only a singleton has the FPP in digital topology in a graph-theoretical ap-
proach. Nevertheless, Ege and Karaca [27] recently studied the property (1.2) in a graph-
theoretical approach (see Theorem 3.8 of [27]). However, the result is proved invalid [25,
26, 28] (see Remark 5.2). Furthermore, to formulate a digital version of the ordinary Lef-
schetz fixed point theorem in [27], the authors of [27] used digital homology groups of
digital images in [27]. However, it turns out that almost of the assertions in [27] are in-
correct [24, 26] because the digital version of the Lefschetz number in [27] is not a digital
homotopy invariant [26]. Besides, Han [25, 26, 28] recently gave counterexamples to re-
fute this assertion (see Remark 5.2).

Hence, in this paper, we will mainly focus ourselves on studying the FPP of K -topological
spaces instead of digital images (X, k). Besides, we deal only with finite K-topological
spaces (or compact spaces), and we can propose a digital version of (1.1) as a conjecture
because contractibility implies local contractibility in digital topology (see Theorem 4.6)
as follows: let X be a K-topological space with K-contractibility.

Then it has the FPP for K-continuous mappings. 1.3)
To address the conjecture (1.3), the present paper proves that K-contractibility of a finite

K-topological space need not imply the existence of fixed points of K-continuous maps
(see Theorems 5.4 and 5.8).
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The rest of the paper is organized as follows. Section 2 provides basic notions and ter-
minology from digital topology. Section 3 develops a new digital homotopy named by a
K-homotopy to study K-contractibility. Section 4 investigates various properties of con-
tractibilities in digital topology and compares them. Besides, we develop a digital version
of local contractibility and prove that whereas contractibility implies local contractibil-
ity, the converse does not hold. Section 5 proves that not every K-topological space with
K-contractibility has the FPP, which is negative to the conjecture (1.3). But a simple K-path
has the FPP satisfying the property (1.3). Section 6 concludes the paper with summary and
further works.

2 Preliminaries
Let Z, N, and Z" represent the sets of integers, natural numbers, and points in the Eu-
clidean nD space with integer coordinates, respectively. Herman [29] gave the following:

Definition 1 [29] A digital space is a pair (X, ), where X is a nonempty set, and 7 is a
binary symmetric relation on X such that X is 7 -connected.

In Definition 1, we say that X is w-connected if for any two elements x and y of X, there
is a finite sequence (x;)c[0,, of elements in X such that x = xo, y = x;, and (x,%;,1) € 7 for
jel0,-1]z.

Remark 2.1 In Definition 1, we can consider the relation 7 according to the situation such
as the digital k-adjacency relation of (2.1) below and the K-adjacency relation of Defini-
tion 2, which are both symmetric relations.

As referred in (1.3), owing to the property (1.2), the present paper mainly studies the
FPP from the viewpoint of K-topology. First, to study the property (1.3), let us recall basic
notions and terminology from digital topology such as k-adjacency relations of nD integer
grids, a digital k-neighborhood, digital continuity, and so forth [11-15]. As a generalization
of digital k-connectivity of Z", n € {1,2,3} [12, 13], we will say that two distinct points
p,q € Z" are k-adjacent (or k(m,n)-adjacent) if they satisfy the following property [11]
(see also [20, 30]):

For a natural number m, 1 < m < n, two distinct points

p=Pups....pn) and q=(q1,q,...,q9,) €Z",
are k(m, n)-adjacent (k-adjacent for brevity) if
at most m of their coordinates differ by =+ 1,and the other coincide. (2.1)

Concretely, these k(m, n)-adjacency relations of Z" are determined according to the num-
ber m € N [11] (see also [30]).

In terms of the operator (2.1), the k-adjacency relations of Z” are obtained [11] (see also
[17, 30]) as follows:

n-1

k:=k(m,n) = Z i, (2.2)

where C}' = T
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For a k-adjacency relation of Z", a simple k-path with / + 1 elements in Z" is assumed
to be an injective sequence (x;)ic[0,1, C Z" such that x; and x; are k-adjacent if and only if
li —j| =1 [12]. If xy = x and x; = y, then the length of the simple k-path, denoted by i (x, y),
is the number /. We say that a digital image (X, k) is k-connected if for any two points in X,
thereis a k-path in X connecting these two points. A simple closed k-curve with / elements
in Z", denoted by SCZ'I [11, 12] (see Figure 1(a)), is the simple k-path (x;);c[o,-1),, Where x;
and x; are k-adjacent if and only if |i — j| =1 (mod /) [12] (see Figure 1).

Rosenfeld [13] called a set X C Z” with a k-adjacency a digital image and denoted it by
(X, k). By using the k-adjacency relations of Z" of (2.2) we say that a digital k-neighborhood
of p in Z" is the set [13] Ni(p) := {q | p is k-adjacent to g}. Furthermore, we often use the
notation [12]

Ni(p) := Ni(p) U {p}.

For a digital image (X, k), as a generalization of N} (p) [12], the digital k-neighborhood
of xyp € X with radius ¢ is defined in X to be the following subset [11] of X:

Ni(xg,€) := {x € X | Ix(xg,x) < e} U {x0}, (2.3)

where [i(x9,x) is the length of the shortest simple k-path in X from x, to x, and ¢ € N.
Concretely, for X C Z", we obtain [11]

Ni(x,1) = Ni (%) N X. (2.4)

Second, let us now briefly recall some basic facts and terms related to K-topology. Mo-
tivated by the Alexandroft space [31], the Khalimsky line topology on Z is induced by the
set {[2n — 1,2n + 1]z : n € Z} as a subbase [31], where for two distinct points @ and b in
Z,[a,blz={ne€Z|a<n<=<b}[9,12]. Furthermore, the product topology on Z" induced
by (Z, k) is called the Khalimsky product topology on Z" (or Khalimsky nD space), which
is denoted by (Z",x"). A point x = (x1,%2,...,%,) € Z" is pure open if all coordinates are
odd; and it is pure closed if each of the coordinates is even [16]. The other points in Z” are
called mixed [16].

For a point p := (p1,p2) in (Z2,«?), its smallest open neighborhood SN (p) is obtained
[16]:

{p} if p is pure open,

{(p1 = Lp2),p, (p1 + 1, p2)} if p is closed-open,
{(p1,p2 — 1), p, (p1,p2 + 1)} if p is open-closed,
N¢ (p) if p is pure closed,

SNk (p) := (2.5)

where the point p := (p1, p2) is called closed-open (resp. open-closed) if p; is even (resp.
odd) and p, is odd (resp. even).

In this paper, each space X C Z" related to K-topology is considered to be a subspace
(X, k%) induced by (Z",«") [16, 20].

Let us now recall the structure of (Z",x"). In each of the spaces of Figures 1-9, a black
jumbo dot means a pure open point, and further, the symbols B and e mean a pure closed
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Figure 1 Simple closed curves. (a) SC;” [27], SC3* [9], and SCZ® [11]; (b) SC2* and SCZ® [30].

point and a mixed point, respectively. In relation to the further statement of a pure point
and a mixed point, we can say that a point x is open if SN (x) = {x}, where SN (x) means
the smallest neighborhood of x € Z". Many studies have examined various properties of a
K-continuous map, connectedness, K -adjacency, a K-homeomorphism [16, 17, 20].

Let us recall the following notions for studying K-topological spaces.

Definition 2 [20] Let (X,«%) := X be a K-topological space. We say that two distinct
points x,y € X are K-adjacent if x € SN (y) or y € SNk (x). Then we define the following:

We say that a K-path from x to y in X is a sequence (x)c[o,,, { > 2, in X such that x = x,
x; = y and each point x; is K-adjacent to x;,; and i € [0,/]z. The number [ is called the
length of this path. A simple K-path in X is the injective sequence (x;);c[0,, such that x;
and x; are K-adjacent if and only if |i - j| = 1.

Furthermore, we say that a simple closed K-curve with / elements in Z”, denoted by
SC;’gl, [ > 4, is a simple K-path (x;);e[0,-1],, where x; and x; are K-adjacent if and only if
li —j| =1 (modl).

Example 2.2 In Figure 1(a), SCi’4, SC§’4, and SCZ’8 are shown. In Figure 1(b), we have
SC¥* and SC3°.

Remark 2.3 Each K-topological space is not a metric space because it is neither a
T1-space nor a regular space although it has a countable basis (see the property (2.5)).
Besides, in case we follow a graph-theoretical approach for studying digital spaces (or
digital images), a mapping between digital spaces is a graph homomorphism instead of a

topological (compact) mapping.

3 Development of a Khalimsky homotopy and its properties

This section firstly develops the notion of a K-homotopy and investigates various prop-
erties of a K-homotopy, which will be used to study both contractibility and local con-
tractibility from the viewpoint of digital topology in Sections 3 and 4. Let us now
recall some properties of digital spaces in a graph-theoretical approach. To map every
ko-connected subset of (X, kg) into a k;-connected subset of (Y, k), the paper [13] estab-
lished the notion of digital continuity of maps between digital images. Motivated by this
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approach, the digital continuity of maps between digital images was represented as fol-

lows.

Proposition 3.1 [11, 15] Let (X;, k;) be digital images in Z" with the k;-adjacency rela-
tions of (2.2), i € {0,1}. A function f : (Xo, ko) — (X1, k1) is (ko, k1)-continuous if and only if
f (N, (%,1)) C Ni, (f(x),1) for every x € X.

In Proposition 3.1, in case k; = ky, the map f is called a k;-continuous map. By using this
concept we establish a digital topological category, denoted by DTC, consisting of two sets
[11] (see also [30]):

e for any set X C Z", the set of (X, k) in Z" as objects of DTC;
e for every ordered pair of objects (Xj, k;), i € {1,2}, the set of all (ko, k1)-continuous maps

as morphisms of DTC.

In DTG, in case ko = k; := k, we will particularly use the notation DTC(k) [21].

Based on the pointed digital homotopy in [9, 16], the following notion of a k-homotopy
relative to a subset A C X is often used to study a k-homotopic thinning and to classify
digital images (X, k) in Z" [17, 30].

Definition 3 [11] (see also [15]) Let ((X,A), ko) and (Y, k) be a digital image pair and a
digital image, respectively. Let f,g: X — Y be (ko, k1)-continuous functions. Suppose that
there exist m € N and a function F : X x [0,m]z — Y such that

(e1) forallx € X, F(x,0) = f(x) and F(x, m) = g(x);

(e2) for all x € X, the induced function F; : [0,m]z — Y given by F,(¢) = F(,t) for all
t € [0, m]z is (2, k1)-continuous;

(e3) forall ¢ € [0,m]z, the induced function F; : X — Y given by Fy(x) = F(x,t) forallx € X

is (ko, k1)-continuous.
Then we say that F is a (ko, k1)-homotopy between f and g [9], denoted by f >, 1) &-
(e4) Furthermore, for all ¢ € [0, m]z, Fi(x) = f(x) = g(x) for all x € A.

Then we call F a (ky, k1)-homotopy relative to A between f and g and we say that f and g
are (ko, k)-homotopic relative to A in Y, denoted f >~ x,)re14 &-

In Definition 3, if A = {x¢} C X, then we say that F is a pointed (ko, k1)-homotopy at {x,}
[9]. In addition, if ko = k; and ny = 3, then we say that f and g are pointed ko-homotopic
in Y. If, for some x € X, 1x is k-homotopic to the constant map in the space {x(} relative
to {xo}, then we say that (X, x) is pointed k-contractible [9, 11].

Remark 3.2 As for the function F : X x [0, m]z — Y of Definition 3, the Cartesian product
X x [0,m]z is just a set without any consideration of a digital adjacency for a Cartesian
product. In other words, the set X x [0,m]z is assumed to be a disjoint union X x {i},
i€[0,m]z.

The following notion of a digital homotopy equivalence was firstly introduced in [10, 32]
to classify digital images in DTC.
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Definition 4 [10, 32] In DTC, for two digital images (X, k) and (Y, k), if there are a
(ko, k1)-continuous map 4 : X — Y and a (ky, kg)-continuous map /: Y — X such that o &
is ko-homotopic to 1y and /4 o [ is k;-homotopic to 1y, then the map #: X — Y is called
a (ko, k1)-homotopy equivalence. In this case, we use the notation X >~ x).s.. Y. Further-
more, if kg = k; and ng = ny, then we call /1 a kp-homotopy equivalence, and we use the
notation X >~ ;.. Y.

We say that a digital image (X, k) is k-contractible if X ~.j.. {xo} for some point xy € X.

Motivated by both the k-homotopy in Definition 3 and the k-homotopy equivalence
in Definition 4, their K-topological versions are obtained (see Definitions 6 and 7) in
K-topology. Let us now recall the K-continuity of maps between K-topological spaces.
As usual, for two K-topological spaces (X, ky’) := X and (Y,ky!):=Y,amap f: X — Y is
called continuous at a point x € X if for any open set Oy(,) C Y containing the point f(x),
there is an open set O, C X containing the point x such that f(O,) C Of(). Namely, we can
represent it as

£ (SNk(x)) € SNk (f(x))

because each point x in a K-topological space X always has SNk (x) C X.
By using spaces (X, «¥) := X and K-continuous maps, we have a topological category,
denoted by KTC, consisting of the following two sets [20]:
(1) for any set X C Z”, the set of spaces (X, k%) as objects of KTC denoted by Ob(KTC);
(2) for all pairs of elements in Ob(KTC), the set of all K-continuous maps between
them as morphisms.

To study K -topological spaces in Z”, we need to recall a K-homeomorphism as follows:

Definition 5 [16, 20] For two spaces (X,xy°) := X and (Y,«y') := Y, amap h: X —
Y is called a K-homeomorphism if % is a K-continuous bijection and 4™ : Y — X is
K-continuous.

In (Z",T"), we say that a simple closed K-curve with / elements in Z" is a path
(%i)ico,-11, C Z", | > 4, that is K-homeomorphic to a quotient space of a Khalimsky line
interval [a, b]z in terms of the identification of the only two end points a and b [20], where
both of the numbers a and b in [a, b]z are even or odd.

Since the Khalimsky #D topological space is a box product of the Khalimsky line space

(Z, «), we obviously obtain the following:

Lemma 3.3
(1) PutZ" x {i}:=Z7, i € Z. Assume L} to be the topological space (Zf,/c;:',l). Then for

any i,j € 2Z or {2n + 1| n € Z}, we see that (Z?,K;,_Tl) is K-homeomorphic to

1 1
(Z]’?,K;];I .

(2) (Z",k™) is assumed to be a proper subspace of (2™, k1)

on Z" induced by (2", k™), n € N.

with the relative topology

Proof (1) Consider the map / : (Zf’,xg,ﬁl) — (Z]’?,K;,_,”) given by h(x,i) = (x,/), where x €
i j

(z?, /c;l;rl). Then / is obviously a K-homeomorphism.
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(2) Considering Z" to be Z" x {0} C Z"*!, (Z",k") is assumed to be a proper subspace
of (21, k™*1) with the relative topology on Z” induced by (Z"*!,x"*!), n € N. O

By Lemma 3.3, we obtain the following:

Proposition 3.4

(1) Any K-interval ([a, blz, k(ap),) can be embedded into a simple K-path in (Z",«").

(2) (X,«%) is equivalent to the subspace X x {0} of (Z"", k™) up to K-homeomorphism.

(3) SC;’gl is equivalent to the subspace SC;’gl x {0} of (Z"*L, k™) up to
K-homeomorphism.

(4) SC;'(I‘I is K-homeomorphic to SCI"(Z'I even if my # ny.

(5) Let X and Y be simple K-paths with the same elements. Then (X, kx) need not be
K-homeomorphic to (Y, ky).

Proof (1) It suffices to prove that any K-interval ([a, b]z, k[44),) is K-homeomorphic to a
certain simple K-path, denoted by (x;)c[0,1,, in (Z", k") such that |b—a| = /. Indeed, we can
take a subspace (x;)icjo,1, C (Z", k") that is K-homeomorphic to ([a, b]z, k[44],) in terms
of the mapping of f : ([a, ]z, K[ap),) = (%i)iefo,n, C (Z", k") given by

f(a):xO’ f(a+i):xir 56[1,1—1]2, f(b):xl
such that for i,j € [0, ]z (see Figure 2(a)),
x; € SNk(x;) or x€SNk(x;) in(Z"«") ifandonlyif [i—jl=1,

X, % € (%) ief0.15 = |a, blz.

(2) By Lemma 3.3 the proof is completed (see Figures 2(b-1), 2(b-2), and 2(c)). For
instance, consider the space (X,«%) in Figure 2(c-1). Furthermore, consider the space
(X x {0} := Xo,K)g(O) in Figure 2(c-2). Then we see that (X,«%) is K-homeomorphic to
(X(),K;O).

(3) By Proposition 3.4(2) the proof is completed.

(4) Owing to the property of SC,";Z, there is an embedding i : SC;Q’I — SCI'QZ x {0} C Z"L.
More precisely, take any two K-adjacent points x,y € SCZ’I. If SNk (x) > y, then we see that
SNk (») = {y} and, further, #(SNg(x)) = 3. Since the cardinalities of SC;’(I’Z = (%)iefo, and
SC;?’[ := (¥:)iclo., are equal to each other, owing to the properties of scitie {1,2}, we
obtain

{ #{x; € SCI' |4 SNk (x:) = 3} = t{y; € SC'2" |2 SNk (3:) = 3}, )

£ € SC |5 SNk () = 1) = #{y; € SC21# SNk (y) = 1},

where the symbol f means the cardinality of a given set. Then we establish a K-homeo-
morphism between SC;'{’I, i € {1,2}, as follows: for the points x;, x;, y;, and y; in (3.1), con-
sider the mapping

x—>y and x5 — (3.2)

where x; € SN (x;) and y; € SNg(y;) if and only if |i — j| =1 and i,j € [0,/]z. Then it is
obvious that the mapping of (3.2) is a K-homeomorphism.
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Figure 2 Explanation of a K-homotopy. (a) Explanation of embedding a K-interval into (Z"«");
(b)-(c) a process of a K-homotopy; (d) comparison between two simple K-paths.

(5) Consider two simple K-paths (X = [0,2]z,«x) and (Y = [1,3]z,«ky) (see Figure 2(d)).
Whereas (X = [0,2]z, kx) has only one singleton as a smallest open set, (Y = [1, 3]z, xy) has
two singletons as smallest open sets, which cannot be K-homeomorphic to each other.

O

To develop the notion of a K-homotopy in KT'C (see Definition 6), consider two K-topo-
logical spaces X := (X, k%) and a Khalimsky interval (K-interval for short) ([a, blz, k{4,p),)-
Then, depending on the given space X, we may consider the product space (X x
[0,m]z = X/,K)'é,"l) or (X x [1,m+ 1]z := X’,K)’}Tl), that is, [a, bz € {[0,m]z,[1,m + 1]z}
(see Lemma 3.3).

Let us now establish the notion of a K-homotopy. Furthermore, consider any (X,«¥)
and ([a, blz, (4,b1,), where [a, b]z € {[0,m]z, [1,m + 1]z}. Then, by Lemma 3.3 and Propo-
sition 3.4(2) we see that (X, k) is equivalent to (X x {0} := Xo,«%:") or (X x {1} := X1, k%)
up to K-homeomorphism (see Figure 2(c)) or Figure 2(c-2)). Thus, we can now establish
the notion of a K-homotopy.

Definition 6 In KTC, for two spaces X := (X, ky”) and Y := (Y, ky'), let f,g: X — Y be K-
continuous functions. Suppose that there exist a K-interval ([a, b]z, k[4,],) and a function
F:X x [a,b]z — Y such that

(1) forallx € X, F(x,a) =f(x) and F(x, b) = g(x);

Page 9 of 20
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(x2) for all x € X, the induced function F; : ([, blz, k[45),) = Y defined by Fi(t) = F(x,t)
for all t € ([a, blz, k{ap),) is K-continuous;

(x3) for all t € [a,b]z, the induced function F; : X — Y defined by F,(x) = F(x,¢) for all
x € X is K-continuous.

Then we say that F is a K-homotopy between f and g, and f and g are K-homotopic in
Y, denoted f >~ g.

In KTC, we say that a K-topological space X is K-contractible if the identity map 1y is
K-homotopic in X to a constant map with the space consisting of some point xy € X.

Remark 3.5 (Comparison between a k-homotopy in DT'C and a K-homotopy in KTC)

(1) Comparing the K-homotopy in Definition 6 with the k-homotopy in DTC (see Def-
inition 3), we find some differences between them (see Remark 3.2).

Owing to the K-topological structure of X := (X, k"), first of all, the set X x [0, m]z of
Definition 3 and that of Definition 6 are different from each other because the latter has
the K-topological structure. Second, depending on the situation of X in Definition 6, we
need to take the number m of ([0, ]z, kj0,m,) even or odd, so that we do the required
process under a K-homotopy as in Definition 6.

For instance, let us assume (X,k’) of Definition 6 to be either ([0,3]z,k[o3),) or
(11,417, kp,41,)- In case (X, «y°) := ([0,3]z, k0,31, ), We see that the space [0,3]z x {0} := X
(see Figure 2(b-1)) as a subspace of (Z2,«2) is K-homeomorphic to ([0,3]z,k10,31,) (see
Figure 2(b-1)). Besides, we see that (Xo,/c)z(o) is K-homeomorphic to (Xl,K)z(l) (see Fig-
ure 2(b-1)).

In case (X,ky") := ([1,4]z k1,41,), we see that the space [1,4]z x {0} := Y (see Fig-
ure 2(b-2)) as a subspace of (Z2,«2) is K-homeomorphic to ([1,4]z, K,4l,) (see Fig-
ure 2(b-2)). Besides, we see that (Y, "12/0) is K-homeomorphic to (Yl,xlz,l) (see Fig-
ure 2(b-2)).

(2) Consider the space (X,«%) in Figure 2(c-1). Then, for X x {i} := X;, i € [0,2]z, it is
clear that each of the subspaces (X;, K)s(l_) is K-homeomorphic to (X, k%) (see Figure 2(c-2)).

Furthermore, owing to the current version of a K-homotopy, the K-continuity of the
map F,(t) = F(x, t) of the property (x2) holds.

(3) Consider the space (X, %) in Figure 3(c), where X := {(0,0),(1,1),(2,1),(3,1)}. Then
consider the transformation from (X,«%) to (Y, k%) as shown in Figure 3(c), where Y :=
{(1,2),(2,3),(3,3),(4,3)}. Whereas the mapping cannot be a K-homotopy that transforms
(X, k%) onto (Y, k%), it can be an 8-homotopy without the K-topological structure.

To classify K-topological spaces in terms of a certain homotopy equivalence in KT'C, we
use the following:

Definition 7 In KTC, for two spaces (X,«y°) := X and (Y, ky") := Y, if there are K-con-
tinuous maps #: X — Y and /: Y — X such that [ o /1 is K-homotopic to 1x and # o[ is
K-homotopic to 1y, then the map /1 : X — Y is called a K-homotopy equivalence, denoted
X XK he Y.

We say that a digital space (X, ) is K-contractible if X ~y.;,.. {xo} for some point xy € X.
Up to now, we have studied the notions of a K-homotopy and a K-homotopy equivalence
and their properties.
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Figure 3 Explanation of both 4- and K-homotopies in digital topology. (a) A 4-homotopy in DTC;
(b) a K-homotopy in KTC; (c) comparison between an 8-homotopy in DTC and a K-homotopy in KTC.

Proposition 3.6 The k-homotopy equivalence in DTC and the K-homotopy equivalence

in KTC have their own features, where the k-adjacency relation is taken from (2.2).

Proof Let us compare among two homotopies in terms of the pictures in Figure 3. We can

see some intrinsic processes depending on the corresponding homotopies.

(1) In Figure 3(a), consider the digital image (X, 4). By using the 4-homotopy, we see that

(X,4) is 4-homotopy equivalent to SCi’S.

(2) In Figure 3(b), consider the K-topological space (Y, «%). By using the K-homotopy

we see that (Y, «2) is K-homotopy equivalent to SC®.

4 Arelation between digital contractibilities and local contractibilities

O

The notions of contractibility and locally contractibility play an important role in many

areas of mathematics [2, 4, 5, 33]. We say that a contractible space is precisely one with

the same homotopy type of a singleton [33]. Furthermore, its digital versions have been

developed in Definitions 4 and 7 in DT'C and KTC, respectively. In relation to the study of

the conjecture (1.3), we need the following:

Definition 8 [7] A topological space X is said to be locally contractible if it satisfies the

following equivalent conditions:

(1) It has a basis of open subsets each of which is a contractible space under the

subspace topology.

(2) For everyx € X and every open subset V (3 x) of X, there exists an open subset U

(> x) of X such that & C V and U is a contractible space in the subspace topology

derived from V.

In classical mathematics, it is well known that contractible spaces are not necessarily

locally contractible nor vice versa [7]. For instance, whereas any CW-complex is locally
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contractible and any paracompact manifold is locally contractible [7], they need not be
contractible,for example, the nD sphere S”, n € N. Although the comb space [34] is con-
tractible, it cannot be a locally contractible space. Besides, the cone on the Hawaiian ear-
ring space [34] is contractible, but it is not locally contractible.

To deal with the conjecture (1.3), we need to establish digital versions of local con-
tractibilities in DTC and KTC. Motivated by the notion of local contractibility in Defi-
nition 8, let us establish their digital versions in DTC and KTC.

Definition 9
(1) In DTC, a digital image (X, k) is said to be locally k-contractible if every point x € X
has an N (x,1) that is k-contractible.
(2) InKTC, a K-topological space (X, ky) is said to be locally K-contractible if it has a
basis of open subsets each of which is a K-contractible space under the subspace

K-topology.

Let us recall the digital contractibility from the viewpoint of digital topology in a graph-
theoretical approach. In [9, 11], the k-contractibility of some simple closed k-curves (see
Figure 4) is proved. Namely, it turns out that SC3”* is 2n-contractible [25] and, further,
SC;;,{I is (3" — 1)-contractible (in case n = 2, see [9, 11], and in case n > 3, see [30]); see

Figure 4.
Proposition 4.1 Every digital space in DTC or KTC is locally contractible.

Proof (1) In DTG, since each point x of a digital image (X, k) has Ni(x,1) (see (2.4)) which
is always k-contractible, the proof is completed.

(2) In KTC, each point x of a K-topological space (X, k%) has SN (x) (see (2.5)) which is
K-contractible. To be specific, depending on the point x € Z", we have its smallest open
neighborhood SNi (x) (see (2.5) for the case of (Z2,«?)) that is K-contractible (see Fig-

ure 5). More precisely, based on Figure 5, consider the maps on SNk (p) for the cases of

1,1
G & oL & G )
I
I
D 5 ik
v
o cy Co <----- cy c < c
2,4
0, 0) ey
o, 1) , 1) , 1)
Cy ) c, . )
P v
C C C C C C
(2) 3 3 3
(130) N
CO CO & 2 CO r
2,4
SC,
Figure 4 Explanation of digital k-contractibility. (1) 4-contractibility of SCﬁ'4 [26]; (2) 8-contractibility of
SC2* 9, 111.
8 ’
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Figure 5 Examples for explaining local contractibility of the given two K-topological spaces (1)
and (2).

(Z2,k?):

F : SN (xo) x [0,3]z — SNk(xp) shown in Figure 5(1) and

G :SNk(¥o) x [0,1]z = SNg(yo) shown in Figure 5(2).

Then it is clear to see that the maps F and G are K-homotopies on SN (x) and SN (yo),
respectively. Furthermore, it is obvious that they make both SN (o) and SN (yo) K-con-
tractible.

By using the method similar to the case of (Z?, k*) we can prove the K-contractibility of
SNk (p) in (Z", k™). O

Let us investigate some properties of K-contractibility in KTC.
Lemma 4.2 Any K-path in (Z",«") is K-contractible.

Proof We will proceed in two steps.

Step 1. Let us consider a K-path in Z", denoted by X := (x;);c[0,1),, s a subspace induced
by (Z”,«"). Then it is obvious that X contains a simple K-path (x});cj0,r], := X' C X with
I' < 1.If X\ X’ is nonempty, then take x; € X \ X’ such that x; € SNg(x;), where x; € X/,
that is, x; and x; are K-adjacent to each other. Then consider the map

F:(X x[a,a+ l]Z’K)ré:}[a,ﬂﬂ]z) — (X, k%)
given by
(1) Fx,a) = 1x,x € X;
(2) F@',a+1)=1y,x € X',;and (4.1)

if x; € X \ X" and x; € SN («;), then x; — x;.

Then this map F is a K-homotopy (see the process of F(x,1) in Figure 7).
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Figure 6 Explanation of K-contractibility of a K-path.

Step 2. Since X’ is a simple K-path, by Proposition 3.4 we have a K-interval ([a, b]z,
Kla,b),) that is K-homeomorphic to X' := (x});c[o,1),, Where ([a, D]z, k[4),) is K-homeomor-
phic to the subspace ([0, ]z, k{0,,) or ([1,! + 1]z, k[1,1:1),) Where the cardinality of [a, b]z
is equal to that of [0,[]z or [1,] + 1]z, that is, b — a = . It is obvious that the K-con-
tractibility of a simple K-path is equivalent to the K-contractibility of ([0, ]z, ,5,) or
([1,1+1]z, kp1,1411,)- Hence, it suffices to prove that the identity map 1jo,5, on ([0, ]z, «[0,1,)
is K-homotopic to the constant function Cjgy given by Cig(x) = 0 for all x € [0, []z because
the proof of the K-contractibility of ([1,/ + 1]z, k{1,1:11,,) is similar to that of ([0, []z, [0,1,)-

Since the number / is finite, for some m € N and any s € [0,/]z, define the map (see
Figures 6(a) and 6(b))

H: ([Or l]Z X [07 m]Z’K[ZO,l]ZX[O,m]Z) g ([O! l]Z’K[O,l]Z)
given by

1jo,7(s), £ =0;
H(s,t)=1{0,t>0and H(s,t-1) = 0; (4.2)
H(s,t—1)-1,t > 0and H(s,t - 1) > 0.

It is clear that H is a K-homotopy between 19, and the constant map Cjo;, which is
the trivial identity map on the singleton {0}.

For instance, let us consider the K-intervals ([0, 3]z, «[0,31,) and ([0, 4]z, x[0,4],) (see Fig-
ure 6(a)). Then, in terms of the process from (1) to (4) shown in Figures 6(a) and 6(b), the
K-intervals ([0, 3]z, xj0,3),) and ([0, 4]z, k[0,41,) are proved to be K-contractible.

Concretely, combining Steps 1 and 2, for some m € N, we obtain the map

G: (X x [0,mlz, 150 s,) = (X k%)
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Figure 8 Explanation of K-contractibility of SC;".

given by (see the process with combined F(x,1) and H(x, i), i € [1,4]z, in Figure 7)

G(x,t) = F(x,t),t € {0,1} and
G(x, t) K H(x, t), te [2, WI]Z.

Then we see that G is a K-homotopy between 1x,.z) and Ciy,), which implies the K-con-
tractibility of a K-path. a

Lemma 4.3 SC,Z(’4 is K-contractible.

Proof The process presented in Figures 8(a) and 8(b) explains the following K-contract-
ibility of SC?{L. Motivated by Proposition 3.4(3), let us consider the map (see Figures 8(a)
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and 8(b)(2))
F:5Cx* % [0,2]z — SC¥*
such that

for all x € SC¥*, F(x,0) = lsclzé‘“
F(x,1) = {c1},x € {c1, ¢2,¢3}, F(co,1) = {co};and (4.3)
F(x,2) = {co},x € SC¥*.

At this moment, in Figure 8(b)(1), we see that SC?{L x {0} ~g SC?{L x {1} ~x SC?{L X
{2}. Then it is obvious that the map F (see (4.3)) is a K-homotopy supporting the
K-homotopy equivalence between SC,2<’4 and the singleton {co}, which implies that SC?(’4
is K-contractible. d

By using the method given by (4.2) we obtain the following:
Corollary 4.4 A K-connected proper subset of SCfgl is K-contractible.

Proof By using the method similar to (4.2), we see that a K-connected proper subset of
SC% is K-contractible. O

Motivated by non-k-contractibility of SCZ’I, [ > 4 [11], we obtain the following:
Lemma 4.5 SC;Q’I is not K-contractible if | > 4.

Proof Let us consider SC%gl, [ > 4 (see the spaces W and Z in Figure 9(b) as SC12<‘8).
Then there is at least a part inside of SC%(’Z consisting of two points, a pure point and a
mixed point, which are K-adjacent. Due to the part, there is no K-homotopy making SC?gl
K-contractible.

By using the method similar to non-K-contractibility of SCfgl, | > 4, we prove the non-
K-contractibility of SC%', 1 > 4. O

Theorem 4.6 Thedigital contractibility implies the local contractibility. The converse does
not hold.

Proof Owing to Proposition 4.1, since every digital space is locally contractible, it suffices
to prove that the local contractibility does not imply contractibility in DT'C and KTC.

(a) w (b) Z

3 Z6 Zs Z4
/4\\ z
¢ Lr TN PN ®
o]0 ‘,\ efo 3
Vi Zg Z1 Z2

(b-1) (b-2)

Figure 9 Explanation of the nonexistence of the FPP of a K-topological space.
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(1) In DTC, consider SCZ’I such as SCé’6 that is not k-contractible. By Proposition 4.1,
whereas it is locally k-contractible, it is not k-contractible.

(2) In KTC, consider SCIVQZ such as SCI2<’8 (see Figure 9(b)) that is not K-contractible. By
Proposition 4.1, whereas it is locally K-contractible, it is not K-contractible. O

5 Contractibility and fixed point property: the case of Khalimsky topological
spaces

To study the FPP of digital spaces, we need to recall again that a digital space X (resp.

digital image (X, k)) is connected (resp. k-connected) and |X| > 2.

Rosenfeld [14] was the first to come up with a fixed point theorem of a digitally continu-
ous self-map of a digital image (X, k) in Z" with the familiar Euclidean and city block dis-
tances. Besides, it was proved in [14] that any digital line segment ([, b]z, 2) does not have
the FPP from the viewpoint of digital topology in a graph-theoretical approach, where the
cardinality of [a,b]z is greater than 1, that is, |[4, b]z| > 2. This property can be proved
as follows. Take two distinct 2-adjacent points such as x; and «; in ([, b]z,2). Then, for
convenience, we may assume that x; is even and x; is odd. Consider the self-map f of
([a,b]z,2), as follows: for any even numbers x € [a, blz, f(x) = xj, and the other odd num-
bers in [a, b]z are mapped by the map f into the set {x;}. Namely, the image f([a, b]z) has
the cardinality 2. Then it is clear that the given map f is a 2-continuous map that has no
fixed points.

For the case of digital image (X, 2#) in Z" with |X| > 2, using the method similar to the
above approach, let us consider a 2n-continuous self-map f of a digital image (X, 2#). Take
two distinct points x; and «; that are 2x-adjacent in X. Let f(x) = x;, ¥ # x;, and f(x;) = x;
[14]. Then we see that whereas the given map f is a 2un-continuous map, it cannot have
any fixed point. Similarly, Rosenfeld [14] proved that any digital image (X, k) with |X| > 2
does not have the FPP either (see Proposition 5.1) as follows: take two k-adjacent points
x,7 € X in Z" and consider a self-map f of (X, k) such that, for all x; € X such that x; # x,

Sf)=x and f(x)=y. (5.1)

Then, it is obvious that whereas the given map f is a k-continuous mayp, it has no fixed
points (for more details, see [24—26]).

Proposition 5.1 [14] (see Theorems 3.3 and 4.1 of [14]) A digital image (X, k) in Z" does
not have the FPP if X is k-connected and | X| > 2.

Motivated by the Lefschetz fixed point theorem in [3], Ege and Karaca [27] (Theorem 3.8
of [27]) studied a fixed point theorem of a k-continuous map on a k-contractible digital
image in DTC as follows. Let (X, k) be a digital image, and let f : (X, k) — (X, k) be any
k-continuous map. If (X, k) is k-contractible, then f has a fixed point. However, by Propo-
sition 5.1 it is clear that this assertion is incorrect [24—26]. Thus, by Proposition 5.1 we
conclude the following:

Remark 5.2 [26] (see also [24—26]) The conjecture (1.3) is invalid in DTC.

To make the paper self-contained and to guarantee Remark 5.2, we have a very simple
example: consider a bijective self-map of ([0,1]z,2) in DTC such that f(0) =1 and f(1) =0
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[25, 26]; whereas ([0,1]z,2) is 2-contractible in terms of the property (4.2), from the view-
point of DTC and further, the map f is a 2-continuous map, which implies that f cannot
have any fixed point [25, 26].

Let us now move to the conjecture posed in (1.3).

Question In KTC, is the conjecture (1.3) valid?

We say that a K-topological space (X, k) has the FPP if every K-continuous self-map f
of X has a point x € X such that f(x) = x.

Let us now study some properties of K-topological spaces from the viewpoint of fixed
point theory.

In KTC, we say that a K-topological invariant is a property of a K-topological space that

is invariant under K-homeomorphisms.
Proposition 5.3 In KTC, the FPP is a K-topological invariant.

Proof Suppose that (X,«y°) has the FPP and there exists a K-homeomorphism 7 :
(X, ky") = (Y,«y'). Then we prove that (Y, ky') has the FPP. To this end, let g be any
K-continuous self-map of (Y,ky'). Then consider the composition 4 o f o h! := g :
(Y,ky') = (Y,ky'), where f is a K-continuous self-map of (X, xy°). Owing to the hypothe-
sis, assume that x € X is a fixed point for a K-continuous self-map f of (X, ky°). Since & is a

K-homeomorphism, there is a point y € Y such that 4(x) = y. Let us consider the mapping

f6) = h o g o h(x) = ™ (g(h))) = h (g)). (5.2)

Then, from (5.2) we obtain /(f(x)) = g(y). Further, by the hypothesis of the FPP of (X, ky°)
and the K-homeomorphism between (X, «°) and (Y, k'), we have

h(f (@) = hix) =y = g(y),

which implies that the point /(x) is a fixed point of the map g, which implies that (Y, k")
has the FPP. 0

Theorem 5.4 Let X be a simple K-path in the nD Khalimsky space. Then it has the FPP.

Proof In [35], it is proved that any bounded K-interval ([, b]z, k[44),) has the FPP. Be-
sides, by Proposition 3.4(1) it is obvious that any simple K -path in the nD Khalimsky space
is K-homeomorphic to a certain K-interval ([a, b]z, k[4,5],). By Proposition 5.3 we obtain

the assertion. O

Example 5.5 Consider the K-interval ([0, 2]z, k[0,2},) and any K-continuous self-maps of
([0,2]z,k[0,2),)- Then there are only seven types of K-continuous self-maps of ([0,2]z,
K[02],) among nine self-mappings. It is obvious that each of them has at least one fixed

point.

Corollary 5.6 SCY' does not have the FPP.
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Proof By the property of SC;Q’I := (%i)iefo,-1], We obtain that any two K-adjacent points

such as &, %41 (mods), i € [0, — 1]z, have the following property:

%; € SN (%41 (mody)) OF (5.3)
Xis1 (modl) € SN (x;).

In (5.3), in case x; € SNk (®41 (mods)), it is obvious that the cardinality of SNg (%41 (mods))
is three, and in case %1 mods) € SNi(#;), we see that the cardinality of SNk (x;) is three.
Thus, the number [ should be even and greater than or equal to 4 because these kinds of
alternative arrangement of x;, %41 (mods), i € [0, — 1]z, are consecutive. Then consider the
self-map f of SC;Q’I given by f(x;) = Xi42 mods)- Then it is clear that f is a K-continuous map
without any fixed point. O

Example 5.7 Consider two types of SC%gs in Figures 9(b-1) and 9(b-2). Take the space
SC?gS := Z in Figure 9(b-2). Next, consider the self-map f of SC?gB := Z given by f(z;) =
Zir2 (mods). Whereas this map f is obviously a K-continuous map, it has no fixed points
(see SC12<’8 in Figures 9(b-1) and 9(b-2)).

Theorem 5.8 [n KTC, the conjecture (1.3) is not valid.

Proof Tt suffices to propose a counterexample supporting this assertion. Let us con-
sider SC;?*, n > 2, such as SC%g4 (see Figure 9(a)), Then we see that SCI'24, n>2,is
K-homeomorphic to SC?<’4. Then, by Lemma 4.3 it is obvious that SC;’g4 is K-contractible.
Consider the self-map f of SC;QA given by

fle)=c,  flea)=co,  fla)=c3,  flez)=ar
Whereas the map f is obviously K-continuous map, it has no fixed points. d

6 Summary and further works
Developing the notion of K-homotopy in the category of Khalimsky topological spaces,
we have developed the notions of contractibility and local contractibility induced by the
K-homotopy. Besides, proving that digital contractibilities imply local contractibilities for
a K-contractible space X, we wondered if the space X has the FPP. In this paper, we proved
that not every K-topological space with K-contractibility has the FPP. More precisely, for
SC%!, we proved that SC%' does not have the FPP. For instance, we proved that whereas
SCZ’4 is K-contractible, it cannot have the FPP. However, we proved that a simple K-path
has the FPP. In addition, we proved that in K7TC the FPP is a K-topological invariant.

As a further work, we need to study the FPP of the product of two simple K-paths.
Besides, we need to study the FPP for other digital topological spaces.
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