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Abstract
We show that the Kakutani and Brouwer fixed point theorems can be obtained by
directly using the Nash equilibrium theorem. The corresponding set-valued problems,
such as the Kakutani fixed point theorem, Walras equilibrium theorem (set-valued
excess demand function), and generalized variational inequality, can be derived from
the Nash equilibrium theorem, with the aid of an inverse of the Berge maximum
theorem. For the single-valued situation, we derive the Brouwer fixed point theorem,
Walras equilibrium theorem (single-valued excess demand function), KKM lemma,
and variational inequality from the Nash equilibrium theorem directly, without any
recourse.
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1 Introduction
It is well known that fixed point theorems play an important role in game theory and math-
ematical economics [–]. Nash [] firstly defined the best response correspondence and
applied the Berge maximum theorem and Kakutani fixed point theorem to prove the exis-
tence of Nash equilibrium points in finite games, where finitely many players may choose
from a finite number of pure strategies in finite-dimensional Euclidean spaces. Later, De-
breu [] extended finite games to noncooperative games with nonlinear payoff functions
and obtained the following equilibrium theorem.

Theorem . (see [, ]) Let N = {, . . . , n} be a finite set of players. For each i ∈ N , Xi is
a nonempty, convex, and compact subset of the ni-dimensional Euclidean space, fi : X :=
∏

i∈N Xi −→ R is continuous, and fi(xi, x–i) is quasi-concave in xi for any x–i, where –i =
N\{i}. Then, there exists x∗ ∈ X such that

fi
(
x∗

i , x∗
–i

)
= max

ui∈Xi
fi
(
ui, x∗

–i
)
, ∀i ∈ N .

Such x∗ is called an equilibrium of the game � = (X, . . . , Xn; f, . . . , fn).
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In recent years, a great deal of mathematical effort has been devoted to prove the equiv-
alence between the KKM principle and several fixed point theorems or minimax inequal-
ities. Park [] showed a sequence of equivalent formulations for the KKM principle in
abstract convex spaces. From the statements of [, ] we know that the fixed point the-
orem, minimax inequility, and Nash equilibrium theorem can be derived from the KKM
principle. However, to the best of our knowledge, there is no proof for the Kakutani and
Brouwer fixed point theorems via the Nash equilibrium theorem, although we can find
in the previous literature many proofs or equivalent results for these two theorems [, ,
]. In this paper, we fill these gaps. In Section , we show that the Kakutani fixed point
theorem, Walras equilibrium theorem (set-valued excess demand function), and general-
ized variational inequality can be derived from the Nash equilibrium theorem with the aid
of an inverse of the Berge maximum theorem [, ]. In Section , for the single-valued
situation, we derive the Brouwer fixed point theorem, Walras equilibrium theorem (single-
valued excess demand function), KKM lemma, and variational inequality from the Nash
equilibrium theorem directly, without any recourse.

2 Kakutani fixed point theorem via Nash equilibrium theorem
To obtain the Kakutani fixed point theorem from the Nash equilibrium theorem, we need
an inverse of the Berge maximum theorem.

Theorem . (Berge maximum theorem) (see [, ]) Let X be a subset of the n-dimensional
Euclidean space R

n, and Y be a subset of the m-dimensional Euclidean space R
m. Let

u : X × Y −→ R be continuous, and let S : X ⇒ Y be continuous and nonempty compact-
valued. Then, the correspondence K : X ⇒ Y defined by

K(x) =
{

y ∈ S(x) : u(x, y) = max
z∈S(x)

u(x, z)
}

, ∀x ∈ X,

is upper semicontinuous and compact-valued.

In , Komiya [] considered an inverse of the Berge maximum theorem, and Zhou
[] gave a simple alternative proof.

Theorem . (Inverse of Berge maximum theorem) Let X be a subset of the n-dimensional
Euclidean space R

n, and K : X ⇒ R
m be a nonempty convex compact-valued and upper

semicontinuous correspondence. Then there exists a continuous function v : X × R
m −→

[, ] such that
(i) K(x) = {y ∈R

m : v(x, y) = maxz∈Rm v(x, z)}, ∀x ∈ X ;
(ii) v(x, y) is quasi-concave in y for any x ∈ X .

We begin by proving the following results.

2.1 Kakutani fixed point theorem
Komiya [] showed that the Kakutani fixed point theorem can be derived from the exis-
tence theorem of maximal elements with the aid of Theorem .. However, in this section,
by using different methods, we derive the Kakutani fixed point theorem.
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Theorem . (Kakutani fixed point theorem) Let X be a nonempty, convex, bounded, and
closed subset of Rn, and F : X ⇒ X be a nonempty convex compact-valued and upper semi-
continuous correspondence. Then, there exists x∗ ∈ X such that x∗ ∈ F(x∗).

Proof We apply Theorem . to find a continuous function f : X ×R
n −→ [, ] such that

F(x) =
{

y ∈R
n : f (x, y) = max

z∈Rn
f (x, z)

}
, ∀x ∈ X,

and f (x, y) is quasi-concave in y for any x ∈ X. Since F(x) ⊂ X,

F(x) =
{

y ∈ X : f (x, y) = max
z∈X

f (x, z)
}

.

Next, define the mapping g : X × X −→ R by

g(x, y) = –‖x – y‖.

Obviously, g is continuous on X × X, and g(x, ·) is concave on X for any x ∈ X.
For the game � = (X, X; f , g), by Theorem . there exists (x∗, y∗) ∈ X × X such that

f
(
x∗, y∗) = max

y∈X
f
(
x∗, y

)
,

g
(
x∗, y∗) = –

∥
∥x∗ – y∗∥∥ = max

x∈X

[
–
∥
∥x – y∗∥∥]

= – min
x∈X

∥
∥x – y∗∥∥ = .

Therefore, y∗ ∈ F(x∗) and x∗ = y∗, which implies x∗ ∈ F(x∗). This completes the proof. �

2.2 Walras equilibrium theorem (set-valued excess demand function)
Walras equilibrium may be formulated as follows. Let there be n commodities, and P ⊂R

n

be the set of all price vectors,

P =

{

(p, . . . , pn) ∈ R
n : pi ≥ ,

n∑

i=

pi = 

}

.

The excess demand function ζ (p) = (ζ(p), . . . , ζn(p)) is a correspondence from P to R
n.

A price vector p∗ ∈ P is an equilibrium if there exists z∗ ∈ ζ (p∗) such that

z∗
i ≤ , ∀i = , . . . , n.

Theorem . (Walras equilibrium theorem) Let an excess demand function ζ (p) satisfy
the following conditions:

(i) ζ : P ⇒R
n is a nonempty convex compact-valued and upper semicontinuous

correspondence;
(ii) the weak Walras law holds:

〈p, z〉 ≤ , ∀p ∈ P,∀z ∈ ζ (p).

Then there exists at least one equilibrium p∗, that is, there exists z∗ ∈ ζ (p∗) such that

z∗
i ≤ , ∀i = , . . . , n.
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Proof Let Z = coζ (P), where coζ (P) is the convex hull. Corollary . and Lemma . of
[] yield that Z is a nonempty, convex, and compact subset of Rn. We apply Theorem .
to find a continuous function f : P × Z −→ [, ] such that

ζ (p) =
{

z ∈ Z : f (p, z) = max
y∈Z

f (p, y)
}

, ∀p ∈ P,

and f (p, z) is quasi-concave in z for any p ∈ P.
Next, define the mapping g : P × Z −→R by

g(p, z) = 〈p, z〉.

Obviously, g is continuous on P × Z, and g(p, ·) is concave for any p ∈ P.
For the game � = (Z, P; f , g), by Theorem . there exists (z∗, p∗) ∈ Z × P such that

f
(
p∗, z∗) = max

z∈Z
f
(
p∗, z

)
,

g
(
p∗, z∗) =

〈
p∗, z∗〉 = max

p∈P

〈
p, z∗〉.

Therefore, z∗ ∈ ζ (p∗). From the weak Walras law we have

 ≥ 〈
p∗, z∗〉 = max

p∈P

〈
p, z∗〉,

that is,

〈
p, z∗〉 ≤ , ∀p ∈ P.

We conclude that

z∗
i ≤ , ∀i = , . . . , n.

Otherwise, there is i ∈ {, . . . , n} such that z∗
i > . Let q ∈ P with qi =  and qi =  for any

i �= i. Then

〈
q, z∗〉 = z∗

i > ,

which is a contradiction. �

2.3 Generalized variational inequality
In , Browder [] first gave the generalized variational inequality, which plays a very
important role in game theory and nonlinear analysis (see, for example, [] and the ref-
erences therein). Here we show that the generalized variational inequality can be derived
from the Nash equilibrium theorem with the aid of Theorem . as follows.

Theorem . (Generalized variational inequality) Let X be a nonempty, convex, bounded,
and closed subset of Rn, and F : X ⇒R

n be a nonempty convex compact-valued and upper
semicontinuous correspondence. Then, there exist x∗ ∈ X and u∗ ∈ F(x∗) such that

〈
u∗, y – x∗〉 ≥ , ∀y ∈ X.
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Proof Let U = coF(X), where coF(X) is the convex hull. Corollary . and Lemma . of
[] yield that U is a nonempty, convex, and compact subset of Rn. We apply Theorem .
to find a continuous function f : X × U −→ [, ] such that

F(x) =
{

u ∈ U : f (x, u) = max
z∈U

f (x, z)
}

, ∀x ∈ X,

and f (x, u) is quasi-concave in u for any x ∈ X.
Next, define two mappings g, h : U × X × X −→R by

g(x, y) = –‖x – y‖, ∀(x, y) ∈ X × X,

h(u, x, y) = 〈u, x – y〉, ∀(u, x, y) ∈ U × X × X.

Obviously, g , h are continuous on U × X × X, and g(·, y) and h(u, x, ·) are concave for any
x ∈ X and any u ∈ U .

For the game � = (U , X, X; f , g, h), by Theorem . there exists (u∗, x∗, y∗) ∈ U × X × X
such that

f
(
x∗, u∗) = max

z∈U
f
(
x∗, z

)
,

g
(
x∗, y∗) = –

∥
∥x∗ – y∗∥∥ = max

x∈X

[
–
∥
∥x – y∗∥∥]

= – min
x∈X

∥
∥x – y∗∥∥ = ,

h
(
u∗, x∗, y∗) =

〈
u∗, x∗ – y∗〉 = max

y∈X

〈
u∗, x∗ – y

〉
.

Therefore, u∗ ∈ F(x∗), x∗ = y∗ and

 =
〈
u∗, x∗ – x∗〉 =

〈
u∗, x∗ – y∗〉 = max

y∈X

〈
u∗, x∗ – y

〉
,

that is, u∗ ∈ F(x∗) and

〈
u∗, y – x∗〉 ≥ , ∀y ∈ X.

This completes the proof. �

3 Brouwer fixed point theorem via Nash equilibrium theorem
In this section, we apply only the Nash equilibrium theorem to conclude the Brouwer
fixed point theorem and related problems, without recourse to the inverse of the Berge
maximum theorem.

3.1 Brouwer fixed point theorem
Theorem . (Brouwer fixed point theorem) Let X be a nonempty, convex, bounded, and
closed subset ofRn, and ϕ be a continuous function from X to itself. Then, there exists x∗ ∈ X
such that x∗ = ϕ(x∗).

Proof Define two mappings f , g : X × X −→R by

f (x, y) = –‖x – y‖,
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g(x, y) = –
∥
∥y – ϕ(x)

∥
∥.

Obviously, f , g are continuous on X × X, and f (·, y) and g(x, ·) are concave for any x ∈ X
and any y ∈ X.

For the game � = (X, X; f , g), by Theorem . there exists (x∗, y∗) ∈ X × X such that

f
(
x∗, y∗) = –

∥
∥x∗ – y∗∥∥ = max

x∈X

[
–
∥
∥x – y∗∥∥]

= – min
x∈X

∥
∥x – y∗∥∥ = ,

g
(
x∗, y∗) = –

∥
∥y∗ – ϕ

(
x∗)∥∥ = max

y∈X

[
–
∥
∥y – ϕ

(
x∗)∥∥]

= – min
y∈X

∥
∥y – ϕ

(
x∗)∥∥ = .

Therefore, x∗ = y∗ and y∗ = ϕ(x∗), that is, x∗ = ϕ(x∗). This completes the proof. �

3.2 Walras equilibrium theorem (single-valued excess demand function)
Following the statement of Section ., the Walras equilibrium theorem for a single-valued
excess demand function can be obtained from the Nash equilibrium theorem. The excess
demand function ζ (p) = (ζ(p), . . . , ζn(p)) is a function from P to Rn. A price vector p∗ ∈ P
is an equilibrium if

ζi
(
p∗) ≤ , ∀i = , . . . , n.

Theorem . (Walras equilibrium theorem) Let an excess demand function ζ (p) satisfy
the following conditions:

(i) ζ (p) is a continuous function from P to Rn;
(ii) The Weak Walras law holds:

〈
ζ (p), p

〉 ≤ , ∀p ∈ P.

Then there exists at least one equilibrium p∗, that is, there exists p∗ ∈ P such that

ζi
(
p∗) ≤ , ∀i = , . . . , n.

Proof Define two mappings f , g : P × P −→R by

f (p, q) = –‖p – q‖,

g(p, q) =
〈
q, ζ (p)

〉
.

Obviously, f , g are continuous on P × P, and f (·, q) and g(p, ·) are concave for any p ∈ P
and any q ∈ P.

For the game � = (P, P; f , g), by Theorem . there exists (p∗, q∗) ∈ P × P such that

f
(
p∗, q∗) = –

∥
∥p∗ – q∗∥∥ = max

p∈P

[
–
∥
∥p – q∗∥∥]

= – min
p∈P

∥
∥p – q∗∥∥ = ,

g
(
p∗, q∗) =

〈
q∗, ζ

(
p∗)〉 = max

q∈P

〈
q, ζ

(
p∗)〉.

Therefore, p∗ = q∗, and by the weak Walras law we have

 ≥ 〈
p∗, ζ

(
p∗)〉 =

〈
q∗, ζ

(
p∗)〉 = max

q∈P

〈
q, ζ

(
p∗)〉,
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that is,

〈
q, ζ

(
p∗)〉 ≤ , ∀q ∈ P.

We conclude

ζi
(
p∗) ≤ , ∀i = , . . . , n.

Otherwise, there is i ∈ {, . . . , n} such that ζi (p∗) > . Let q ∈ P with qi =  and qi =  for
any i �= i. Then

〈
q, ζ

(
p∗)〉 = ζi

(
p∗) > ,

which is a contradiction. �

3.3 KKM lemma
The KKM lemma is a very basic theorem, and the Brouwer fixed point theorem can be
obtained by this lemma. The proof can be found in [, ]. We still derive the KKM lemma
from the Nash equilibrium theorem.

Theorem . (KKM lemma) Let

� = co
{

e, . . . , em} ⊂R
m+,

and let {F, . . . , Fm} be a family of closed subsets of � such that, for any A ⊂ {, . . . , m},

co
{

ei : i ∈ A
} ⊂

⋃

i∈A

Fi.

Then

m⋂

i=

Fi �= ∅.

Proof For any x =
∑m

i= xiei ∈ �, y =
∑m

i= yiei ∈ �, where xi ≥ ,
∑m

i= xi = , yi ≥ ,
∑m

i= yi = , define two mappings f , g : � × � −→R by

f (x, y) = –‖x – y‖,

g(x, y) =
m∑

i=

yid(x, Fi),

where d(x, Fi) is the distance from a point x to the set Fi. Obviously, f , g are continuous on
� × �, and f (·, y) and g(x, ·) are concave for any x ∈ � and any y ∈ �.

For the game � = (�,�; f , g), by Theorem . there exists (x∗, y∗) ∈ � × � such that

f
(
x∗, y∗) = –

∥
∥x∗ – y∗∥∥ = max

x∈X

[
–
∥
∥x – y∗∥∥]

= – min
x∈X

∥
∥x – y∗∥∥ = ,
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g
(
x∗, y∗) =

m∑

i=

y∗
i d

(
x∗, Fi

)
= max

y∈�

m∑

i=

yid
(
x∗, Fi

)
= max

i=,...,m
d
(
x∗, Fi

)
.

Therefore, x∗ = y∗ and

m∑

i=

x∗
i d

(
x∗, Fi

)
=

m∑

i=

y∗
i d

(
x∗, Fi

)
= max

i=,...,m
d
(
x∗, Fi

)
.

Let I(x∗) = {i : x∗
i > }. Then I(x∗) �= ∅ and

∑

i∈I(x∗)

x∗
i d

(
x∗, Fi

)
=

m∑

i=

x∗
i d

(
x∗, Fi

)
= max

i=,...,m
d
(
x∗, Fi

)
.

It must be

d
(
x∗, Fi

)
= max

i=,...,m
d
(
x∗, Fi

)
, ∀i ∈ I

(
x∗).

Additionally, since

x∗ ∈ co
{

ei : i ∈ I
(
x∗)} ⊂

⋃

i∈I(x∗)

Fi,

there exists i ∈ I(x∗) such that x∗ ∈ Fi , which implies

max
i=,...,m

d
(
x∗, Fi

)
= d

(
x∗, Fi

)
= ,

that is, d(x∗, Fi) =  for all i = , . . . , m. Since Fi is a closed set, it follows that x∗ ∈ Fi. There-
fore,

x∗ ∈
m⋂

i=

Fi.

This completes the proof. �

3.4 Variational inequality
The variational inequality is an important tool in the study of optimization theory and
game theory []; we also refer to early celebrated works [] and []. Here, we deduced
the variational inequality by Nash equilibrium theorem directly.

Theorem . (Variational inequality) Let X be a nonempty, convex, bounded, and closed
subset of Rn, and ϕ : X −→ R

n be a continuous function. Then, there exists x∗ ∈ X such that

〈
ϕ
(
x∗), y – x∗〉 ≥ , ∀y ∈ X.

Proof Define two mappings f , g : X × X −→R by

f (x, y) = –‖x – y‖,
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g(x, y) =
〈
ϕ(x), x – y

〉
.

Obviously, f , g are continuous on X × X, and f (·, y) and g(x, ·) are concave for any x ∈ X
and any y ∈ X.

For the game � = (X, X; f , g), by Theorem . there exists (x∗, y∗) ∈ X × X such that

f
(
x∗, y∗) = –

∥
∥x∗ – y∗∥∥ = max

x∈X

[
–
∥
∥x – y∗∥∥]

= – min
x∈X

∥
∥x – y∗∥∥ = ,

g
(
x∗, y∗) =

〈
ϕ
(
x∗), x∗ – y∗〉 = max

y∈X

〈
ϕ
(
x∗), x∗ – y

〉
.

Therefore, x∗ = y∗ and

 =
〈
ϕ
(
x∗), x∗ – x∗〉 =

〈
ϕ
(
x∗), x∗ – y∗〉 = max

y∈X

〈
ϕ
(
x∗), x∗ – y

〉
,

which implies

〈
ϕ
(
x∗), x∗ – y

〉 ≤ , ∀y ∈ X,

that is,

〈
ϕ
(
x∗), y – x∗〉 ≥ , ∀y ∈ X.

This completes the proof. �

4 Concluding remarks
Nash equilibrium is a very important notion in the game theory. In general, the Nash equi-
librium theorem can be derived from the Brouwer and Kakutani fixed point theorems.
However, there is no proof for the Kakutani and Brouwer fixed point theorems via the
Nash equilibrium theorem. In this paper, we fill these gaps. We show that the Kakutani
fixed point theorem, Walras equilibrium theorem (set-valued excess demand function),
and generalized variational inequality can be derived from the Nash equilibrium theorem
with the aid of an inverse of the Berge maximum theorem. For the single-valued situation,
we derive the Brouwer fixed point theorem, Walras equilibrium theorem (single-valued
excess demand function), KKM lemma, and variational inequality from the Nash equilib-
rium theorem directly, without any recourse.

Moreover, it is known that the Nash equilibrium theorem has been extended by Ky Fan
to Hausdorff topological vector spaces (see Theorem  in []). We next apply the Fan
extension of the Nash equilibrium theorem to give an infinite-dimensional extension of
the Brouwer fixed point theorem (i.e., the Tychonoff fixed point theorem).

Theorem . (see Theorem  in []) Let N = {, . . . , n} be a finite set of players. Suppose
that, for each i ∈ N , Xi is a nonempty, convex, and compact set in a locally convex Hausdorff
topological vector space Ei, fi : X :=

∏
i∈N Xi −→ R is continuous, and fi(xi, x–i) is quasi-

concave in xi for any x–i, where –i = N\{i}. Then, there exists x∗ ∈ X such that

fi
(
x∗

i , x∗
–i

)
= max

ui∈Xi
fi
(
ui, x∗

–i
)
, ∀i ∈ N .
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Theorem . (Tychonoff fixed point theorem)a Let X be a compact convex subset of a lo-
cally convex Hausdorff topological vector space E, and ϕ : X → X be a continuous function.
Then, there exists x∗ ∈ X such that x∗ = ϕ(x∗).

Proof Let X be a compact convex subset of a locally convex Hausdorff topological vec-
tor space E, ϕ : X → X be a continuous function, and P be a separating family of semi-
norms that generates the topology of E. For every p ∈ P, set Fp = {x ∈ X : p(x – ϕ(x)) = }.
We have to prove that

⋂
p∈P Fp �= ∅. Since X is compact and the sets Fp are closed, it suf-

fices to show that, for any finite set {p, . . . , pn} ⊆ P,
⋂n

i= F(pi) �= ∅. To this end, apply the
Nash equilibrium theorem (Ky Fan’s version) to the functions f (x, y) = –

∑n
i= pi(x – y) and

g(x, y) = –
∑n

i= pi(ϕ(x) – y). The following proof is similar to that given in Theorem ..
�
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Endnote
a This result and its proof has been suggested by an anonymous referee.
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