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1 Introduction
Over the last decades, a lot of research has been devoted to the study of the existence
of common fixed points for pairs of single-valued and multivalued mappings in ordered
Banach spaces [–]. In a recent paper, Dhage [] proved some common fixed point the-
orems for pairs of weakly isotone condensing mappings in an ordered Banach space. Due
in part to the immediate application of this interesting result to differential and integral
equations, many researchers tried to obtain the conclusion of [] under weaker assump-
tions; for example, see [, ], and []. However, all results so far obtained in this direction
need to assume some compactness conditions relative to the strong topology (Monch-type
conditions, contractiveness, or condensiveness with respect to a measure of noncompact-
ness). In the present work, we show that some compactness conditions relative to the
weak topology are sufficient and reasonably convenient to get the same conclusion as in
[]. More precisely, we combine the advantages of the strong topology (i.e. the involved
mappings will be closed with respect to the strong topology) with the advantages of the
weak topology (i.e. the maps will satisfy some compactness conditions relative to the weak
topology) to draw new conclusions about common fixed point for a pair of multivalued
mappings. Our results furnish an efficient tool to develop an existence theory for a system
of integral inclusions (see Section ).

The article is arranged as follows. Firstly, new applicable common fixed point results are
presented in Section . In Section , we prove the existence of continuous solutions to a
system of integral inclusions under appropriate assumptions. In particular, we illustrate
how the compactness requirements used in the literature for such a class of integral in-
clusions may be relaxed. In the remainder of this section, we gather some notation and
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preliminary facts. Let X be a real Banach space, and let P be a subset of X. The set P is
called an order cone if:

(i) P is closed, nonempty, and P �= {},
(ii) a, b ∈R, a, b ≥ , x, y ∈ P ⇒ ax + by ∈ P,

(iii) x ∈ P and –x ∈ P ⇒ x = .
An order cone permits to define a partial order in X by x ≤ y iff y – x ∈ P. The positive cone
of X is defined by X+ = {x ∈ X :  ≤ x}. The order cone P is called normal if there is N > 
such that, for all x, y ∈ X, we have

 ≤ x ≤ y ⇒ ‖x‖ ≤ N‖y‖.

Remark .
(i) Let K be a compact Hausdorff space, and E be an ordered Banach space with

normal positive cone. We denote by C(K , E) the Banach space of all continuous
E-valued functions on K with the usual maximum norm. C(K , E) is an ordered
Banach space with natural ordering whose positive cone is given by

C+(K , E) =
{

f ∈ C(K , E) : f (x) ∈ E+,∀x ∈ K
}

.

Since E+ is normal, so is C+(K , E).
(ii) Let � be a Lebesgue-measurable subset of Rn. Each of the Banach spaces Lp(�),

 ≤ p ≤ ∞, is an ordered Banach space with respect to the natural ordering, whose
positive cone is normal [].

The following definitions are frequently used in the subsequent part of this paper.

Definition . [] Let M be a nonempty subset of an ordered Banach space X, and let
S, T : M → M be two mappings. We say that S is T-weakly isotone increasing (resp. T-
weakly isotone decreasing) if for all x ∈ M, y ∈ S(x), and z ∈ T(y), we have S(x) ≤ T(y) ≤
S(z) (resp. S(x) ≥ T(y) ≥ S(z)). We say that S is T-weakly isotone if it is either T-weakly
isotone increasing or T-weakly isotone decreasing.

Definition . [] Let M be a nonempty subset of an ordered Banach space X. A mapping
T : M → M is said to be monotone-closed (resp. weakly monotone-closed) if for each
monotone sequence {xn} in M with xn → x (resp. xn ⇀ x) and for each sequence {yn}
with yn ∈ T(xn) and yn → y (resp. yn ⇀ y), we have y ∈ T(x).

Let M be a nonempty subset of an ordered Banach space X, and let a ∈ M. Let S, T : M →
M be two mappings. For later use, we introduce the following conditions.

(A) If {xn} is a monotone sequence of M such that

{xn} ⊂ {a} ∪ S
({xn}

) ∪ T
({xn}

)
,

then {xn} has a weakly convergent subsequence.
(A) If {xn} is a monotone sequence of M such that

{xn} ⊂ {a} ∪ S
(
T

({xn}
))

,

then {xn} has a weakly convergent subsequence.
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Remark . Note that hypothesis (A) holds for every pair (S, T) satisfying condition DM

or weak condition DM (see []).

In what follows, by ψ we denote a measure of weak noncompactness (MWNC) on the
Banach space X. We refer the reader to [] for the axiomatic definition of such a measure.
One of the most frequently exploited measures of weak noncompactness was defined by
De Blasi [] as follows:

w(M) = inf{r >  : there exists W weakly compact such that M ⊆ W + Br},

for each bounded subset M of X; here, Br stands for the closed ball of X centered at origin
with radius r.

Let M be a closed convex subset of X, and let T , S : M ⊆ X → X be two mappings.
The pair (S, T) is said to be weakly condensing (resp. weakly countably condensing) if
T(M) and S(T(M)) are bounded and there is an MWNC ψ on X such that for every
bounded (resp. countable bounded) subset A of M such that ψ(A) >  and ψ(T(A)) > ,
we have ψ(S(T(A))) < ψ(A). The pair (S, T) is said to be weakly monotone-condensing
if T(M) and S(T(M)) are bounded and there is an MWNC ψ on X such that for ev-
ery bounded monotone sequence {xn} such that ψ({xn}) >  and ψ(T({xn})) > , we have
ψ(S(T({xn}))) < ψ({xn}).

Remark . It is worth mentioning that if (S, T) is weakly monotone-condensing, then
(S, T) satisfies (A).

2 Common fixed point theorems
Before proceeding with the main results, we give a useful technical lemma, which we will
employ in the sequel. This result is really interesting and may have several applications. It
says that every monotone sequence that has a weakly convergent subsequent is strongly
convergent. The proof can be adapted from [], Theorem .(c). However, we provide
here a different proof.

Lemma . Let X be an ordered real Banach space with a normal order cone. Suppose that
{xn} is a monotone sequence that has a subsequence {xnk } converging weakly to x∞. Then
{xn} converges strongly to x∞. Moreover, if {xn} is an increasing sequence, then xn ≤ x∞
(n = , , , . . .); if {xn} is a decreasing sequence, then x∞ ≤ xn (n = , , , . . .).

Proof Suppose that {xn}n is increasing. Let {xnk }k be a subsequence of {xn}n that converges
weakly to x∞, and let

F = conv{xnk : k ≥ }

be the closed convex hull of {xnk : k ≥ }. Since the norm-closure of F coincides with the
weak closure, it follows that x∞ ∈F . Hence, for each ε > , there exist

y = αxn + · · · + αpxnp ∈F , α ≥ , . . . ,αn ≥ ,α + · · · + αp = , (.)
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such that ‖y – x∞‖ < ε
N . Now (.) and xnk ≤ x∞ imply  ≤ x∞ – xnk ≤ x∞ – y for all k ≥ p.

Keeping in mind that the cone is normal with constant N , we infer that ‖xnk – x∞‖ ≤
N‖y – x∞‖ < ε for all k ≥ p. As a result, xnk → x∞, and so

 ≤ x∞ – xm ≤ x∞ – xnk

for m ≥ nk . Using once again the fact that the cone is normal with constant N , we get
‖xm – x∞‖ ≤ N‖xnk – x∞‖. Consequently, {xn} converges strongly to x∞, as desired. The
case where {xn} is decreasing is similar. This completes the proof. �

Now we are in a position to state the main result of this section.

Theorem . Let X be an ordered Banach space with a normal order cone. Let M be a
nonempty closed convex subset of X, and S, T : M → M be two monotone-closed (or weakly
monotone-closed) mappings satisfying:

(i) The pair (S, T) verifies (A) or (A);
(ii) S is T-weakly isotone.

Then T and S have a common fixed point.

Proof Let x ∈ M be fixed. Consider the sequence {xn} defined by

x = x, xn+ ∈ Sxn, xn+ ∈ Txn+, n = , , , . . . . (.)

Suppose first that S is T-weakly isotone increasing on M. Notice that x ∈ Sx and x ∈ Tx.
Since Sx ≤ Ty ≤ Sz for all y ∈ Sx and z ∈ Ty, it follows that Sx ≤ Tx ≤ Sx. In particular,
x ≤ x ≤ x. Similar arguments yield

x ≤ x ≤ · · · ≤ xn ≤ · · · . (.)

Now, it is a simple matter to check that

{x, x, . . .} ⊆ {x} ∪ S
(
T

({x, x, . . .})) (.)

and

{x, x, . . .} ⊆ {x} ∪ S
({x, x, . . .}) ∪ T

({x, x, . . .}). (.)

From our assumptions we know that {xn} has a weakly convergent subsequence. Re-
ferring to Lemma ., we see that {xn} is strongly convergent. Let x∗ be its strong limit.
Now since xn+ ∈ Sxn and S is monotone-closed (or weakly monotone-closed), we have
x∗ ∈ Sx∗. Similar arguments yield x∗ ∈ Tx∗. To complete the proof, we consider the case
where S is T-weakly isotone decreasing on M. In this case, the sequence {xn} is monotone
decreasing. Following the previous reasoning, we show that {xn} converges strongly to a
common fixed point of S and T . �

Remark .
(i) If X is a reflexive Banach space and M is bounded, then in Theorem ., we assume

only (ii) (since the closed unit ball is weakly compact).
(ii) If S and T are only weakly monotone closed, then we can draw the same conclusion.
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From Theorem . we can derive several important corollaries. We present a number of
selected corollaries that extend and encompass several well-known results in the literature.

Corollary . Let M be a closed subset of an ordered Banach space X with normal order
cone, and let S, T : M → M be two monotone-closed mappings. In addition, suppose that
S is a T-weakly isotone mapping and the pair (S, T) satisfies (A). Then S and T have a
common fixed point.

Remark . Corollary . extends [], Theorem . and [], Theorem ..

As a consequence of Theorem ., we obtain the following sharpening of [], Theo-
rem . and [], Corollary ..

Corollary . Let M be a closed subset of an ordered Banach space X with normal order
cone, and let S, T : M → M be two closed (with closed graph) weakly isotone mappings
satisfying condition DM . Then S and T have a common fixed point.

Corollary . Let M be a closed subset of an ordered Banach space X with normal order
cone, and let S, T : M → M be two closed (with closed graph), weakly countably condensing
weakly isotone mappings. Then S and T have a common fixed point.

Corollary . Let M be a closed subset of an ordered Banach space X with normal order
cone, and let S, T : M → M be monotone-closed and such that the pair (S, T) is weakly
monotone-condensing. If S is a T-weakly isotone mapping, then S and T have a common
fixed point.

Remark . Corollary . extends [], Theorem .. In [] the pair (S, T) is assumed to
be monotone-condensing.

Another consequence of Theorem . is the following.

Corollary . Let X be an ordered Banach space with a normal order cone, and ψ a mea-
sure of weak noncompactness on X. Let M be a nonempty closed convex subset of X, and
S, T : M → M be two monotone-closed mappings satisfying:

(i) S is  – ψ-monotone-contractive, that is, S(M) is bounded, and for every bounded
monotone sequence {xn} of M, we have ψ(S({xn})) ≤ ψ({xn});

(ii) T is ψ-monotone-condensing, that is, T(M) is bounded, and for every bounded
monotone sequence {xn} of M with ψ({xn}) > , we have ψ(T({xn})) < ψ({xn});

(iii) S is T-weakly isotone.
Then T and S have a common fixed point.

Proof Thanks to Theorem ., it suffices to show that the pair (S, T) is weakly monotone-
condensing. To see this, let {xn} a bounded monotone sequence of M with ψ({xn}) >  and
ψ({Txn}) > . Then

ψ(S
(
T

({xn}
)) ≤ ψ

(
T

({xn}
))

< ψ
({xn}

)
.

This achieves the proof. �
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Remark . Corollary . extends [], Theorem . and [], Theorem ..

Whereas our interest lies in ensuring the existence of common fixed points for mul-
tivalued mappings in ordered Banach spaces, we will not rule out the possibility that the
involved operators are single-valued. Consequently, the results reported here also hold for
single-valued mappings with slight modifications. Specifically, the single-valued version of
Theorem . reduces to the following:

Theorem . Let X be an ordered Banach space with a normal order cone. Let M be a
nonempty closed convex subset of X, and S, T : M → M be two monotone-continuous (or
weakly monotone-continuous) mappings satisfying:

(i) The pair (S, T) satisfies (A) or (A);
(ii) S is T-weakly isotone.

Then T and S have a common fixed point.

Recall that T : M → M is said to be monotone-continuous (resp. weakly monotone con-
tinuous) if for any monotone sequence (xn) that converges strongly (resp. weakly) to x the
sequence (Txn) converges strongly (resp. weakly) to Tx.

Similarly to the multivalued case, we can get the following corollaries and related results.

Corollary . Let M be a closed subset of an ordered Banach space X with normal order
cone, and let S, T : M → M be two monotone-continuous mappings. Suppose in addition
that S is a T-weakly isotone mapping and the pair (S, T) satisfies (A). Then S and T have
a common fixed point.

Remark . Corollary . extends [], Theorem . and [], Theorem ..

Corollary . Let M be a closed subset of an ordered Banach space X with normal order
cone, and let S, T : M → M be two continuous weakly isotone mappings satisfying condition
DM . Then S and T have a common fixed point.

As an immediate consequence of Theorem ., we can derive the following sharpening
of [], Theorem ..

Corollary . Let M be a closed subset of an ordered Banach space X with normal order
cone, and let S, T : M → M be two continuous weakly countably condensing weakly isotone
mappings. Then S and T have a common fixed point.

Corollary . Let M be a closed subset of an ordered Banach space X with normal order
cone, and let S, T : M → M be monotone-continuous such that the pair (S, T) is weakly
monotone-condensing. If S is a T-weakly isotone mapping, then S and T have a common
fixed point.

Remark . Corollary . extends [], Theorem .. In [] the pair (S, T) is assumed to
be monotone-condensing.

Another consequence of Theorem . is the following result.
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Corollary . Let X be an ordered Banach space with a normal order cone, and ψ a
measure of weak noncompactness on X. Let M be a nonempty closed convex subset of X,
and S, T : M → M be two monotone-continuous mappings satisfying:

(i) S is  – ψ-monotone-contractive,
(ii) T is ψ-monotone-condensing,

(iii) S is T-weakly isotone.
Then T and S have a common fixed point.

3 Application
Consider the nonlinear integral inclusions

x(t) ∈ q(t) +
∫ σ (t)


k(t, s)F

(
s, x(s)

)
ds (.)

and

x(t) ∈ q(t) +
∫ σ (t)


k(t, s)G

(
s, x(s)

)
ds (.)

for t ∈ [, ], where σ : [, ] → [, ], q : → E, k : [, ] × [, ] → R are continuous, and
F , G : [, ] × E → C(E); Here E is a Banach space with norm ‖ · ‖E . By a common solution
for the integral inclusions (.) and (.) we mean a continuous function x : [, ] → E such
that

x(t) = q(t) +
∫ σ (t)


k(t, s)v(s) ds

and

x(t) = q(t) +
∫ σ (t)


k(t, s)v(s) ds

for some v, v ∈ B([, ], E) satisfying v(t) ∈ F(t, x(t)) and v(t) ∈ G(t, x(t)), t ∈ [, ], where
B([, ], E) is the space of all E-valued Bochner-integrable functions on [, ]. In ,
Turkoglu and Altun [] proved an existence theorem of common solutions for the integral
inclusions (.) and (.) by using a common fixed point theorem of Dhage et al. []. In
this section, we provide sufficient conditions ensuring the existence of common solutions
for (.) and (.) within the same framework and under weaker hypotheses compared
with those of [].

From now on, we will simply follow the notation and terminology of [], and the integral
inclusions (.)-(.) will be discussed under the same assumptions as in [], except for
the compactness assumption (H), which will be replaced with the weaker assumption:

(H′) For any countable and bounded set A of E, w(F([, ]×A)) ≤ λF w(A) and w(G([, ]×
A)) ≤ λGw(A) for some reals λF ,λG > , where w is the De Blasi measure of weak
noncompactness.

Theorem . Under the assumptions above, the integral inclusions (.) and (.) have a
common solution in C([, ], E), provided that λFλGM < .
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Proof Let X = C([, ], E) and consider the order interval [a, b], which is well defined in
view of (H). To allow the abstract formulation of our problem, we define two multivalued
mappings S, T : [a, b] → X as in [] by

Sx =
{

u : u(t) = q(t) +
∫ σ (t)


k(t, s)v(s) ds, v ∈ S

F (x)
}

,

Tx =
{

u : u(t) = q(t) +
∫ σ (t)


k(t, s)v(s) ds, v ∈ S

G(x)
}

.

Our strategy is to apply Corollary . to find a common fixed point for the multivalued
mappings S and T that is, in turn, a common solution to the integral inclusions (.) and
(.). First, notice that a similar reasoning as in [] yields that S and T are weakly isotone
and have closed graphs. Now we show that the pair (S, T) is weakly countably condensing.
The main idea of the proof is similar, in spirit, to that of []. Let us for now choose an
arbitrary A ⊂ [a, b] countable. Then invoking [], Theorem ., the mean value theorem,
and the properties of the De Blasi measure of weak noncompactness [], we get, for t ∈
[, ],

w
(
T

(
A(t)

)) ≤ w
(⋃{

q(t) +
∫ σ (t)


k(t, s)G

(
s, x(s)

)
ds : x ∈ A

})

≤ w
(⋃{∫ σ (t)


k(t, s)G

(
s, x(s)

)
ds : x ∈ A

})

≤ w
(∫ σ (t)


k(t, s)G

(
s, A(s)

))

≤ w
(
σ (t)conv

({
k(t, s)G

(
s, A(s)

)}))

≤ Mw(G
(
[, ] × A

(
[, ]

))

≤ MλF w
(
A

(
[, ]

))

≤ MλF w(A).

Now, following a standard argument used in [], we can prove that T(A) is uniformly
bounded and equicontinuous, and therefore

w
(
T(A)

) ≤ MλGw(A). (.)

Similarly, we have

w
(
S(A)

) ≤ MλF w(A). (.)

Combining (.) and (.), we arrive at

w
(
S
(
T(A)

)) ≤ MλFλGw(A), (.)

where MλFλG < . This shows that the pair (S, T) is weakly countably condensing. The
result follows from Corollary .. �
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Remark .
. The results of [] are established under much stronger hypotheses on the

multivalued mappings F and G, made necessary by the fact that some compactness
conditions are imposed (Condition (H)). In our considerations, only some
conditions expressed in terms of the De Blasi measure of weak noncompactness are
required (Condition (H′)). We also emphasize that it is straightforward to
guarantee the existence of solutions for the integral inclusions (.) and (.) if the
De Blasi measure of noncompactness is replaced by any axiomatic measure of weak
noncompactness satisfying conditions of Ambrosetti type [], Theorem ..

. If E is reflexive and F and G are bounded (i.e. map bounded sets into bounded sets),
then condition (H′) is automatically satisfied.
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