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Abstract
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1 Introduction
Contractive mappings and iteration procedures are some of the main tools in the study
of fixed point theory. There are many contractive mappings and iteration schemes that
have been introduced and developed by several authors to serve various purposes in the
literature of this highly active research area, viz., [–] among others.
Whether an iteration method used in any investigation converges to a fixed point of a

contractive type mapping corresponding to a particular iteration process is of utmost im-
portance. Therefore it is natural to see many works related to the convergence of iteration
methods such as [–].
Fixed point theory is concerned with investigating a wide variety of issues such as the

existence (and uniqueness) of fixed points, the construction of fixed points, etc. One of
these themes is data dependency of fixed points. Data dependency of fixed points has
been the subject of research in fixed point theory for some time now, and data dependence
research is an important theme in its own right.
Several authors who have made contributions to the study of data dependence of fixed

points are Rus and Muresan [], Rus et al. [, ], Berinde [], Espínola and Petruşel
[], Markin [], Chifu and Petruşel [], Olantiwo [, ], Şoltuz [, ], Şoltuz and
Grosan [], Chugh and Kumar [] and the references therein.
This paper is organized as follows. In Section  we present a brief survey of some known

contractive mappings and iterative schemes and collect some preliminaries that will be
used in the proofs of our main results. In Section  we show that the convergence of a new
multi-step iteration, which is a special case of the Jungck multistep-SP iterative process
defined in [], and S-iteration (due toAgarwal et al.) can be used to approximate the fixed
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points of contractive-like operators. Motivated by the works of Şoltuz [, ], Şoltuz and
Grosan [], and Chugh and Kumar [], we prove two data dependence results for the
newmulti-step iteration and S-iteration schemes by employing contractive-like operators.
As a background of our exposition, we now mention some contractive mappings and

iteration schemes.
In [] Zamfirescu established an important generalization of the Banach fixed point

theorem using the following contractive condition. For a mapping T : E → E, there exist
real numbers a, b, c satisfying  < a < ,  < b, c < / such that, for each pair x, y ∈ X, at
least one of the following is true:

⎧⎪⎪⎨
⎪⎪⎩
(z) ‖Tx – Ty‖ ≤ a‖x – y‖,
(z) ‖Tx – Ty‖ ≤ b(‖x – Tx‖ + ‖y – Ty‖),
(z) ‖Tx – Ty‖ ≤ c(‖x – Ty‖ + ‖y – Tx‖).

(.)

A mapping T satisfying the contractive conditions (z), (z) and (z) in (.) is called a
Zamfirescu operator. An operator satisfying condition (z) is called a Kannan operator,
while the mapping satisfying condition (z) is called a Chatterjea operator. As shown in
[], the contractive condition (.) leads to

⎧⎨
⎩(b) ‖Tx – Ty‖ ≤ δ‖x – y‖ + δ‖x – Tx‖ if one uses (z), and

(b) ‖Tx – Ty‖ ≤ δ‖x – y‖ + δ‖x – Ty‖ if one uses (z),
(.)

for all x, y ∈ E, where δ :=max{a, b
–b ,

c
–c }, δ ∈ [, ), and it was shown that this class of op-

erators is wider than the class of Zamfirescu operators. Any mapping satisfying condition
(b) or (b) is called a quasi-contractive operator.
Extending the above definition, Osilike and Udomene [] considered operators T for

which there exist real numbers L ≥  and δ ∈ [, ) such that for all x, y ∈ E,

‖Tx – Ty‖ ≤ δ‖x – y‖ + L‖x – Tx‖. (.)

Imoru and Olantiwo [] gave a more general definition: An operator T is called a
contractive-like operator if there exists a constant δ ∈ [, ) and a strictly increasing and
continuous function ϕ : [,∞) → [,∞), with ϕ() = , such that for each x, y ∈ E,

‖Tx – Ty‖ ≤ δ‖x – y‖ + ϕ
(‖x – Tx‖). (.)

A map satisfying (.) need not have a fixed point, even if E is complete. For example, let
E = [,∞) and define T by

Tx =

⎧⎨
⎩.,  ≤ x ≤ .,

., . < x.

WLOG, assume that x < y. Then, for  ≤ x < y≤ . or . < x < y, ‖Tx–Ty‖ = , and (.)
is automatically satisfied.
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If  ≤ x≤ . < y, then ‖Tx – Ty‖ = ..
Define ϕ by ϕ(t) = Lt for any L ≥ . Then ϕ is increasing, continuous, and ϕ() = . Also,

‖x – Tx‖ =  – x so that ϕ(‖x – Tx‖) = L( – x)≥ .L ≥ ..
Therefore

. = ‖Tx – Ty‖ ≤ L‖x – Tx‖ ≤ δ‖x – y‖ + L‖x – Tx‖

for any  ≤ δ < , and (.) is satisfied for  ≤ x≤ . < y. But T has no fixed point.
However, using (.) it is obvious that if T has a fixed point, then it is unique.
From now on, we demand that N denotes the set of all nonnegative integers. Let X be

a Banach space, let E ⊂ X be a nonempty closed, convex subset of X, and let T be a self-
map on E. Define FT := {p ∈ X : p = Tp} to be the set of fixed points of T . Let {αn}∞n=,
{βn}∞n=, {γn}∞n= and {β i

n}∞n=, i = ,k – , k ≥  be real sequences in [, ) satisfying certain
conditions.
In [] Rhoades and Şoltuz introduced a multi-step iterative procedure given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ E,

yk–n = ( – βk–
n )xn + βk–

n Txn, k ≥ ,

yin = ( – β i
n)xn + β i

nTyi+n , i = ,k – ,

xn+ = ( – αn)xn + αnTyn, n ∈N.

(.)

The sequence {xn}∞n= defined by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ E,

xn+ = ( – αn)Txn + αnTyn,

yn = ( – βn)xn + βnTxn, n ∈ N,

(.)

is known as the S-iteration process (see [, , ]).
Thianwan [] defined a two-step iteration {xn}∞n= by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ E,

xn+ = ( – αn)yn + αnTyn,

yn = ( – βn)xn + βnTxn, n ∈ N.

(.)

Recently Phuengrattana and Suantai [] introduced an SP iteration method defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ E,

xn+ = ( – αn)yn + αnTyn,

yn = ( – βn)zn + βnTzn,

zn = ( – γn)xn + γnTxn, n ∈N.

(.)
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We shall employ the following iterative process. For an arbitrary fixed order k ≥ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E,

xn+ = ( – αn)yn + αnTyn,

yn = ( – β
n)yn + β

nTyn,

yn = ( – β
n)yn + β

nTyn,

· · · ,
yk–n = ( – βk–

n )yk–n + βk–
n Tyk–n ,

yk–n = ( – βk–
n )xn + βk–

n Txn, n ∈N,

(.)

or, in short,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ E,

xn+ = ( – αn)yn + αnTyn,

yin = ( – β i
n)yi+n + β i

nTyi+n , i = ,k – ,

yk–n = ( – βk–
n )xn + βk–

n Txn, n ∈N,

(.)

where

{αn}∞n= ⊂ [, ),
∞∑
n=

αn = ∞, (.)

and

{
β i
n
}∞
n= ⊂ [, ), i = ,k – . (.)

Remark  If each γn = , then SP iteration (.) reduces to two-step iteration (.). By
taking k =  and k =  in (.), we obtain iterations (.) and (.), respectively.

We shall need the following definition and lemma in the sequel.

Definition  [] Let T , T̃ : X → X be two operators. We say that T̃ is an approximate
operator for T if, for some ε > , we have

‖Tx – T̃x‖ ≤ ε

for all x ∈ X.

Lemma  [] Let {an}∞n= be a nonnegative sequence for which one assumes that there
exists an n ∈N such that for all n≥ n,

an+ ≤ ( –μn)an +μnηn

is satisfied, where μn ∈ (, ) for all n ∈ N,
∑∞

n= μn = ∞ and ηn ≥ , ∀n ∈ N. Then the
following holds:

 ≤ lim
n→∞ supan ≤ lim

n→∞ supηn.
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2 Main results
For simplicity we use the following notation throughout this section.
For any iterative process, {xn}∞n= and {un}∞n= denote iterative sequences associated to T

and T̃ , respectively.

Theorem  Let T : E → E be a map satisfying (.) with FT 
= ∅, and let {xn}∞n= be a se-
quence defined by (.), then the sequence {xn}∞n= converges to the unique fixed point of T .

Proof The proof can be easily obtained by using the argument in the proof of ([], The-
orem .). �

This result allows us to give the next theorem.

Theorem  Let T : E → E be a map satisfying (.) with FT 
= ∅, and let T̃ be an ap-
proximate operator of T as in Definition . Let {xn}∞n=, {un}∞n= be two iterative sequences
defined by (.) with real sequences {αn}∞n=, {β i

n}∞n= ⊂ [, ) satisfying (i)  ≤ β i
n < αn ≤ ,

i = ,k – , (ii)
∑

αn = ∞. If p = Tp and q = T̃q, then we have

‖p – q‖ ≤ kε
 – δ

.

Proof For given x ∈ E and u ∈ E, we consider the following multi-step iteration for T
and T̃ :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ E,

xn+ = ( – αn)yn + αnTyn,

yin = ( – β i
n)yi+n + β i

nTyi+n , i = ,k – ,

yk–n = ( – βk–
n )xn + βk–

n Txn, k ≥ ,n ∈N,

(.)

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ E,

un+ = ( – αn)vn + αnT̃vn,

vin = ( – β i
n)vi+n + β i

nT̃vi+n , i = ,k – ,

vk–n = ( – βk–
n )un + βk–

n T̃un, k ≥ ,n ∈ N.

(.)

Thus, from (.), (.) and (.), we have the following inequalities.

‖xn+ – un+‖ =
∥∥( – αn)

(
yn – vn

)
+ αn

(
Tyn – T̃vn

)∥∥
≤ ( – αn)

∥∥yn – vn
∥∥ + αn

∥∥Tyn – T̃vn
∥∥

= ( – αn)
∥∥yn – vn

∥∥ + αn
∥∥Tyn – Tvn + Tvn – T̃vn

∥∥
≤ ( – αn)

∥∥yn – vn
∥∥ + αn

∥∥Tyn – Tvn
∥∥ + αn

∥∥Tvn – T̃vn
∥∥

≤ ( – αn)
∥∥yn – vn

∥∥ + αnδ
∥∥yn – vn

∥∥ + αnϕ
(∥∥yn – Tyn

∥∥)
+ αnε

=
[
 – αn( – δ)

]∥∥yn – vn
∥∥ + αnϕ

(∥∥yn – Tyn
∥∥)

+ αnε, (.)
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∥∥yn – vn
∥∥ =

∥∥(
 – β

n
)(
yn – vn

)
+ β

n
(
Tyn – T̃vn

)∥∥
≤ (

 – β
n
)∥∥yn – vn

∥∥ + β
n
∥∥Tyn – T̃vn

∥∥
≤ (

 – β
n
)∥∥yn – vn

∥∥ + β
n
∥∥Tyn – Tvn

∥∥ + β
n
∥∥Tvn – T̃vn

∥∥
≤ (

 – β
n
)∥∥yn – vn

∥∥ + β
nδ

∥∥yn – vn
∥∥ + β

nϕ
(∥∥yn – Tyn

∥∥)
+ β

nε

=
[
 – β

n( – δ)
]∥∥yn – vn

∥∥ + β
nϕ

(∥∥yn – Tyn
∥∥)

+ β
nε, (.)∥∥yn – vn

∥∥ =
∥∥(
 – β

n
)(
yn – vn

)
+ β

n
(
Tyn – T̃vn

)∥∥
≤ (

 – β
n
)∥∥yn – vn

∥∥ + β
n
∥∥Tyn – T̃vn

∥∥
≤ (

 – β
n
)∥∥yn – vn

∥∥ + β
n
∥∥Tyn – Tvn

∥∥ + β
n
∥∥Tvn – T̃vn

∥∥
≤ (

 – β
n
)∥∥yn – vn

∥∥ + β
nδ

∥∥yn – vn
∥∥ + β

nϕ
(∥∥yn – Tyn

∥∥)
+ β

nε

=
[
 – β

n( – δ)
]∥∥yn – vn

∥∥ + β
nϕ

(∥∥yn – Tyn
∥∥)

+ β
nε. (.)

Combining (.), (.) and (.), we obtain

‖xn+ – un+‖ ≤ [
 – αn( – δ)

][
 – β

n( – δ)
][
 – β

n( – δ)
]∥∥yn – vn

∥∥
+

[
 – αn( – δ)

][
 – β

n( – δ)
]
β
nϕ

(∥∥yn – Tyn
∥∥)

+
[
 – αn( – δ)

][
 – β

n( – δ)
]
β
nε

+
[
 – αn( – δ)

]
β
nϕ

(∥∥yn – Tyn
∥∥)

+
[
 – αn( – δ)

]
β
nε + αnϕ

(∥∥yn – Tyn
∥∥)

+ αnε. (.)

Thus, by induction, we get

‖xn+ – un+‖ ≤ [
 – αn( – δ)

]
[
 – β

n( – δ)
] · · · [ – βk–

n ( – δ)
]∥∥yk–n – vk–n

∥∥
+

[
 – αn( – δ)

]
[
 – β

n( – δ)
] · · · [ – βk–

n ( – δ)
]
βk–
n ϕ

(∥∥yk–n – Tyk–n
∥∥)

+ · · · + [
 – αn( – δ)

]
β
nϕ

(∥∥yn – Tyn
∥∥)

+ αnϕ
(∥∥yn – Tyn

∥∥)
+

[
 – αn( – δ)

][
 – β

n( – δ)
] · · · [ – βk–

n ( – δ)
]
βk–
n ε

+ · · · + [
 – αn( – δ)

]
β
nε + αnε. (.)

Again, using (.), (.) and (.), we get

∥∥yk–n – vk–n
∥∥ =

∥∥(
 – βk–

n
)
(xn – un) + βk–

n (Txn – T̃un)
∥∥

≤ (
 – βk–

n
)‖xn – un‖ + βk–

n ‖Txn – T̃un‖
≤ (

 – βk–
n

)‖xn – un‖ + βk–
n ‖Txn – Tun‖ + βk–

n ‖Tun – T̃un‖
≤ [

 – βk–
n ( – δ)

]‖xn – un‖ + βk–
n ϕ

(‖xn – Txn‖
)
+ βk–

n ε. (.)
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Substituting (.) in (.), we have

‖xn+ – un+‖ ≤ [
 – αn( – δ)

]
[
 – β

n( – δ)
] · · · [ – βk–

n ( – δ)
]‖xn – un‖

+
[
 – αn( – δ)

]
[
 – β

n( – δ)
] · · · [ – βk–

n ( – δ)
]
βk–
n ϕ

(‖xn – Txn‖
)

+
[
 – αn( – δ)

]
[
 – β

n( – δ)
] · · · [ – βk–

n ( – δ)
]
βk–
n ϕ

(∥∥yk–n – Tyk–n
∥∥)

+ · · · + [
 – αn( – δ)

]
β
nϕ

(∥∥yn – Tyn
∥∥)

+ αnϕ
(∥∥yn – Tyn

∥∥)
+

[
 – αn( – δ)

][
 – β

n( – δ)
] · · · [ – βk–

n ( – δ)
]
βk–
n ε

+ · · · + [
 – αn( – δ)

]
β
nε + αnε. (.)

Since δ ∈ [, ) and {αn}∞n=, {β i
n}∞n= ⊂ [, ), for i = ,k – , we have

[
 – αn( – δ)

][
 – β

n( – δ)
] · · · [ – β i

n( – δ)
] ≤ [

 – αn( – δ)
]
. (.)

From inequality (.) and assumption (i) in (.), it follows

‖xn+ – un+‖ ≤ [
 – αn( – δ)

]‖xn – un‖
+ αnϕ

(‖xn – Txn‖
)
+ αnϕ

(∥∥yk–n – Tyk–n
∥∥)

+ · · · + αnϕ
(∥∥yn – Tyn

∥∥)
+ αnϕ

(∥∥yn – Tyn
∥∥)

+ αnε + αnε + · · · + αnε + αnε

=
[
 – αn( – δ)

]‖xn – un‖

+ αn( – δ)
{

ϕ(‖xn – Txn‖) + ϕ(‖yk–n – Tyk–n ‖)
 – δ

+ · · · + ϕ(‖yn – Tyn‖) + kε
 – δ

}
. (.)

Define

an := ‖xn – un‖,
μn := αn( – δ) ∈ (.),

ηn :=
{

ϕ(‖xn – Txn‖) + ϕ(‖yk–n – Tyk–n ‖)
 – δ

+ · · · + ϕ(‖yn – Tyn‖) + kε
 – δ

}
.

From Theorem  it follows that limn→∞ ‖xn – p‖ = . Since T satisfies condition (.) and
Tp = p ∈ FT ,

 ≤ ‖xn – Txn‖
≤ ‖xn – p‖ + ‖Tp – Txn‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/76
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≤ ‖xn – p‖ + δ‖p – xn‖ + ϕ
(‖p – Tp‖)

= ( + δ)‖xn – p‖ →  as n→ ∞. (.)

Since β i
n ∈ [, ), ∀n ∈ N, i = ,k – , using (.) and (.), we have

 ≤ ∥∥yn – Tyn
∥∥ =

∥∥yn – p + p – Tyn
∥∥

≤ ∥∥yn – p
∥∥ +

∥∥Tp – Tyn
∥∥

≤ ∥∥yn – p
∥∥ + δ

∥∥p – yn
∥∥ + ϕ

(‖p – Tp‖)
= ( + δ)

∥∥yn – p
∥∥

= ( + δ)
∥∥(
 – β

n
)
yn + β

nTy

n – p

(
 – β

n + β
n
)∥∥

≤ ( + δ)
{(
 – β

n
)∥∥yn – p

∥∥ + β
n
∥∥Tyn – Tp

∥∥}
≤ ( + δ)

{(
 – β

n
)∥∥yn – p

∥∥ + β
nδ

∥∥yn – p
∥∥}

= ( + δ)
[
 – β

n( – δ)
]∥∥yn – p

∥∥
≤ · · ·
≤ ( + δ)

[
 – β

n( – δ)
] · · · [ – βk–

n ( – δ)
]∥∥yk–n – p

∥∥
≤ ( + δ)

[
 – β

n( – δ)
] · · · [ – βk–

n ( – δ)
]‖xn – p‖

≤ ( + δ)‖xn – p‖ →  as n→ ∞. (.)

It is easy to see from (.) that this result is also valid for ‖Tyn – yn‖, . . . ,‖Tyk–n – yk–n ‖.
Since ϕ is continuous, we have

lim
n→∞ϕ

(‖xn – Txn‖
)
= lim

n→∞ϕ
(∥∥yn – Tyn

∥∥)
= · · · = lim

n→∞ϕ
(∥∥yk–n – Tyk–n

∥∥)
= . (.)

Hence an application of Lemma  to (.) leads to

‖p – q‖ ≤ kε
 – δ

. (.)
�

As shown by Hussain et al. ([], Theorem ), in an arbitrary Banach space X, the S-
iteration {xn}∞n= given by (.) converges to the fixed point of T , where T : E → E is a
mapping satisfying condition (.).

Theorem  Let T : E → E be a map satisfying (.) with FT 
= ∅, and let {xn}∞n= be de-
fined by (.)with real sequences {βn}∞n=, {αn}∞n= ⊂ [, ) satisfying

∑∞
n= αn = ∞. Then the

sequence {xn}∞n= converges to the unique fixed point of T .

Proof The argument is similar to the proof of Theorem  of [], and is thus omitted.
�

We now prove the result on data dependence for the S-iterative procedure by utilizing
Theorem .

http://www.fixedpointtheoryandapplications.com/content/2013/1/76
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Theorem  Let T , T̃ be two operators as in Theorem . Let {xn}∞n=, {un}∞n= be S-iterations
defined by (.) with real sequences {βn}∞n=, {αn}∞n= ⊂ [, ) satisfying (i) 

 ≤ αn, ∀n ∈ N,
and (ii)

∑∞
n= αn = ∞. If p = Tp and q = T̃q, then we have

‖p – q‖ ≤ ε
 – δ

.

Proof For a given x ∈ E and u ∈ E, we consider the following iteration for T and T̃ :

⎧⎪⎪⎨
⎪⎪⎩
x ∈ E,

xn+ = ( – αn)Txn + αnTyn,

yn = ( – βn)xn + βnTxn, n ∈ N

(.)

and

⎧⎪⎪⎨
⎪⎪⎩
u ∈ E,

un+ = ( – αn)T̃un + αnT̃vn,

vn = ( – βn)un + βnT̃un, n ∈N.

(.)

Using (.), (.) and (.), we obtain the following estimates:

‖xn+ – un+‖ =
∥∥( – αn)(Txn – T̃un) + αn(Tyn – T̃vn)

∥∥
≤ ( – αn)‖Txn – T̃un‖ + αn‖Tyn – T̃vn‖
= ( – αn)‖Txn – Tun + Tun – T̃un‖ + αn‖Tyn – Tvn + Tvn – T̃vn‖
≤ ( – αn)

{‖Txn – Tun‖ + ‖Tun – T̃un‖
}

+ αn
{‖Tyn – Tvn‖ + ‖Tvn – T̃vn‖

}
≤ ( – αn)

{
δ‖xn – un‖ + ϕ

(‖xn – Txn‖
)
+ ε

}
+ αn

{
δ‖yn – vn‖ + ϕ

(‖yn – Tyn‖
)
+ ε

}
, (.)

‖yn – vn‖ =
∥∥( – βn)(xn – un) + βn(Txn – T̃un)

∥∥
≤ ( – βn)‖xn – un‖ + βn‖Txn – T̃un‖
= ( – βn)‖xn – un‖ + βn‖Txn – Tun + Tun – T̃un‖
≤ ( – βn)‖xn – un‖ + βn

{‖Txn – Tun‖ + ‖Tun – T̃un‖
}

≤ ( – βn)‖xn – un‖ + βn
{
δ‖xn – un‖ + ϕ

(‖xn – Txn‖
)
+ ε

}
=

[
 – βn( – δ)

]‖xn – un‖ + βnϕ
(‖xn – Txn‖

)
+ βnε. (.)

Combining (.) and (.), we get

‖xn+ – un+‖ ≤ {
( – αn)δ + αnδ

[
 – βn( – δ)

]}‖xn – un‖
+ { – αn + αnδβn}ϕ

(‖xn – Txn‖
)
+ αnϕ

(‖yn – Tyn‖
)

+ αnδβnε + ( – αn)ε + αnε. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/76
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For {αn}∞n=, {βn}∞n= ⊂ [, ) and δ ∈ [, ),

( – αn)δ <  – αn,  – βn( – δ) < , αnδβn < αn. (.)

It follows from assumption (i) that

 – αn < αn, ∀n ∈ N. (.)

Therefore, combining (.) and (.) to (.) gives

‖xn+ – un+‖ ≤ [
 – αn( – δ)

]‖xn – un‖
+ αnϕ

(‖xn – Txn‖
)
+ αnϕ

(‖yn – Tyn‖
)

+ αnε + αnε + αnε, (.)

or, equivalently,

‖xn+ – un+‖ ≤ [
 – αn( – δ)

]‖xn – un‖

+ αn( – δ)
{ϕ(‖xn – Txn‖) + ϕ(‖yn – Tyn‖) + ε}

 – δ
. (.)

Now define

an := ‖xn – un‖,
μn := αn( – δ) ∈ (, ),

ηn :=
ϕ(‖xn – Txn‖) + ϕ(‖yn – Tyn‖) + ε

 – δ
.

From Theorem , we have limn→∞ ‖xn – p‖ = . Since T satisfies condition (.), and Tp =
p ∈ FT , using an argument similar to that in the proof of Theorem ,

lim
n→∞‖xn – Txn‖ = lim

n→∞‖yn – Tyn‖ = . (.)

Using the fact that ϕ is continuous, we have

lim
n→∞ϕ

(‖xn – Txn‖
)
= lim

n→∞ϕ
(‖yn – Tyn‖

)
= . (.)

An application of Lemma  to (.) leads to

‖p – q‖ ≤ ε
 – δ

. (.)
�

3 Conclusion
Since the iterative schemes (.) and (.) are special cases of the iterative process (.),
Theorem  generalizes Theorem . of [] and Theorem . of []. By taking k =  and
k =  in Theorem , data dependence results for the iterative schemes (.) and (.) can
be easily obtained. For k = , Theorem  reduces to Theorem . of []. Since condition
(.) is more general than condition (.), Theorem  generalizes Theorem  of [].

http://www.fixedpointtheoryandapplications.com/content/2013/1/76
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25. Rus, IA, Petruşel, A, Sîntamarian, A: Data dependence of the fixed point set of some multivalued weakly Picard

operators. Nonlinear Anal., Theory Methods Appl. 52, 1947-1959 (2003)
26. Berinde, V: On the approximation of fixed points of weak contractive mappings. Carpath. J. Math. 19, 7-22 (2003)
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