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Abstract
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1 Introduction and preliminaries
It is well established that fixed point theory, which mainly concerns the existence and
uniqueness of fixed points, is today’s one of the most investigated research areas as a ma-
jor subfield of nonlinear functional analysis. Historically, the first outstanding result in
this field that guaranteed the existence and uniqueness of fixed points was given by Ba-
nach []. This result, known as the Banach mapping contraction principle, simply states
that every contractionmapping has a unique fixed point in a complete metric space. Since
the first appearance of the Banach principle, the ever increasing application potential
of the fixed point theory in various research fields, such as physics, chemistry, certain
engineering branches, economics and many areas of mathematics, has made this topic
more crucial than ever. Consequently, after the Banach celebrated principle, many au-
thors have searched for further fixed point results and reported successfully new fixed
point theorems conceived by the use of two very effective techniques, combined or sepa-
rately.
The first one of these techniques is to ‘replace’ the notion of a metric space with a more

general space.Quasi-metric spaces, partialmetric spaces, rectangularmetric spaces, fuzzy
metric space, b-metric spaces, D-metric spaces, G-metric spaces are generalizations of
metric spaces and can be considered as examples of ‘replacements’. Amongst all of these
spaces, G-metric spaces, introduced by Zead and Sims [], are ones of the interesting.
Therefore, in the last decade, the notion of a G-metric space has attracted considerable
attention from researchers, especially from fixed point theorists [–].
The second one of these techniques is to modify the conditions on the operator(s). In

other words, it entails the examination of certain conditions under which the contraction
mapping yields a fixed point. One of the attractive results produced using this approach
was given by Kirk et al. [] in  through the introduction of the concepts of cyclic
mappings and best proximity points. After this work, best proximity theorems and, in
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particular, the fixed point theorems in the context of cyclic mappings have been studied
extensively (see, e.g., [–]).
The two uppermentioned topics, cyclicmappings andG-metric spaces, have been com-

bined byAydi in [] andKarapınar et al. in []. In these papers, the existence andunique-
ness of fixed points of cyclic mappings are investigated in the framework of G-metric
spaces. In this paper, we aim to improve on certain statements proved on these two topics.
For the sake of completeness, we will include basic definitions and crucial results that we
need in the rest of this work.
Mustafa and Sims [] defined the concept of G-metric spaces as follows.

Definition . (See []) Let X be a nonempty set, G : X × X × X → R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z,
(G)  <G(x,x, y) for all x, y ∈ X with x �= y,
(G) G(x,x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y �= z,
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables),
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) (rectangle inequality) for all x, y, z,a ∈ X .
Then the function G is called a generalized metric or, more specifically, a G-metric on

X, and the pair (X,G) is called a G-metric space.

Note that every G-metric on X induces a metric dG on X defined by

dG(x, y) =G(x, y, y) +G(y,x,x) for all x, y ∈ X. ()

For a better understanding of the subject, we give the following examples of G-metrics.

Example . Let (X,d) be a metric space. The functionG : X×X×X → [, +∞), defined
by

G(x, y, z) =max
{
d(x, y),d(y, z),d(z,x)

}

for all x, y, z ∈ X, is a G-metric on X.

Example . (See, e.g., []) LetX = [,∞). The functionG : X×X×X → [, +∞), defined
by

G(x, y, z) = |x – y| + |y – z| + |z – x|

for all x, y, z ∈ X, is a G-metric on X.

In their initial paper, Mustafa and Sims [] also defined the basic topological concepts
in G-metric spaces as follows.

Definition . (See []) Let (X,G) be a G-metric space, and let {xn} be a sequence of
points of X. We say that {xn} is G-convergent to x ∈ X if

lim
n,m→+∞G(x,xn,xm) = ,
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that is, for any ε > , there exists N ∈ N such that G(x,xn,xm) < ε for all n,m ≥ N . We call
x the limit of the sequence and write xn → x or limn→+∞ xn = x.

Proposition . (See []) Let (X,G) be a G-metric space. The following are equivalent:
() {xn} is G-convergent to x,
() G(xn,xn,x) →  as n→ +∞,
() G(xn,x,x)→  as n→ +∞,
() G(xn,xm,x)→  as n,m → +∞.

Definition . (See []) Let (X,G) be a G-metric space. A sequence {xn} is called a
G-Cauchy sequence if, for any ε > , there exists N ∈ N such that G(xn,xm,xl) < ε for all
m,n, l ≥ N , that is, G(xn,xm,xl) →  as n,m, l → +∞.

Proposition . (See []) Let (X,G) be a G-metric space. Then the following are equiva-
lent:
() the sequence {xn} is G-Cauchy,
() for any ε > , there exists N ∈ N such that G(xn,xm,xm) < ε for allm,n≥ N .

Definition . (See []) A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence is G-convergent in (X,G).

Definition . Let (X,G) be a G-metric space. A mapping F : X × X × X → X is said to
be continuous if for any threeG-convergent sequences {xn}, {yn} and {zn} converging to x,
y and z respectively, {F(xn, yn, zn)} is G-convergent to F(x, y, z).

Note that each G-metric on X generates a topology τG on X whose base is a family of
openG-balls {BG(x, ε),x ∈ X, ε > }, where BG(x, ε) = {y ∈ X,G(x, y, y) < ε} for all x ∈ X and
ε > . A nonempty set A ⊂ X is G-closed in the G-metric space (X,G) if A = A. Observe
that

x ∈ A ⇐⇒ BG(x, ε)∩A �= ∅

for all ε > . We recall also the following proposition.

Proposition . (See, e.g., []) Let (X,G) be aG-metric space andA be a nonempty subset
of X. The set A is G-closed if for any G-convergent sequence {xn} in A with limit x, we have
x ∈ A.

Mustafa [] extended the well-known Banach contraction principle mapping in the
framework of G-metric spaces as follows.

Theorem . (See []) Let (X,G) be a complete G-metric space and T : X → X be a map-
ping satisfying the following condition for all x, y, z ∈ X:

G(Tx,Ty,Tz) ≤ kG(x, y, z), ()

where k ∈ [, ). Then T has a unique fixed point.
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Theorem . (See []) Let (X,G) be a complete G-metric space and T : X → X be a map-
ping satisfying the following condition for all x, y ∈ X:

G(Tx,Ty,Ty) ≤ kG(x, y, y), ()

where k ∈ [, ). Then T has a unique fixed point.

Remark . We notice that the condition () implies the condition (). The converse is
true only if k ∈ [,  ). For details, see [].

Lemma. ([]) By the rectangle inequality (G) together with the symmetry (G),we have

G(x, y, y) =G(y, y,x) ≤ G(y,x,x) +G(x, y,x) = G(y,x,x). ()

A map T : X → X on a metric space (X,d) is called a weak φ-contraction if there exists
a strictly increasing function φ : [,∞)→ [,∞) with φ() =  such that

d(Tx,Ty) ≤ d(x, y) – φ
(
d(x, y)

)
,

for all x, y ∈ X. We notice that these types of contractions have also been a subject of
extensive research (see, e.g., [–]). In what follows, we recall the notion of cyclic weak
ψ-contractions onG-metric spaces. Let� be the set of continuous functions φ : [,∞) →
[,∞) with φ() =  and φ(t) >  for t > . In [], the authors concentrated on two types
of cyclic contractions: cyclic-type Banach contractions and cyclic weak φ-contractions.

Theorem . Let (X,G) be a G-complete G-metric space and {Aj}mj= be a family of
nonempty G-closed subsets of X with Y =

⋃m
j=Aj. Let T : Y → Y be a map satisfying

T(Aj) ⊆ Aj+, j = , . . . ,m, where Am+ = A. ()

Suppose that there exists a function φ ∈ � such that the map T satisfies the inequality

G(Tx,Ty,Tz) ≤ M(x, y, z) – φ
(
M(x, y, z)

)
()

for all x ∈ Aj and y, z ∈ Aj+, j = , . . . ,m, where

M(x, y, z) =max
{
G(x, y, z),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz)

}
. ()

Then T has a unique fixed point in
⋂m

j=Aj.

The following result, which can be considered as a corollary of Theorem ., is stated in
[].

Theorem . (See []) Let (X,G) be a G-complete G-metric space and {Aj}mj= be a family
of nonempty G-closed subsets of X. Let Y =

⋃m
j=Aj and T : Y → Y be a map satisfying

T(Aj) ⊆ Aj+, j = , . . . ,m, where Am+ = A. ()
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If there exists k ∈ (, ) such that

G(Tx,Ty,Tz) ≤ kG(x, y, z) ()

holds for all x ∈ Aj and y, z ∈ Aj+, j = , . . . ,m, then T has a unique fixed point in
⋂m

j=Aj.

In this paper, we extend, generalize and enrich the results on the topic in the litera-
ture.

2 Main results
We start this section by defining some sets of auxiliary functions. Let F denote all func-
tions f : [,∞)→ [,∞) such that f (t) =  if and only if t = . Let � and � be the subsets
of F such that

� = {ψ ∈F :ψ is continuous and nondecreasing},
� = {φ ∈F : φ is lower semi-continuous}.

Lemma . Let (X,G) be a G-complete G-metric space and {xn} be a sequence in X such
that G(xn,xn+,xn+) is nonincreasing,

lim
n→∞G(xn,xn+,xn+) = . ()

If {xn} is not a Cauchy sequence, then there exist ε >  and two sequences {nk} and {�k} of
positive integers such that the following sequences tend to ε when k → ∞:

G(x�(k),xn(k),xn(k)), G(x�(k),xn(k)+,xn(k)+), G(x�(k)–,xn(k),xn(k)),

G(x�(k)–,xn(k)+,xn(k)+), G(xn(k),x�(k),x�(k)+).
()

Proof Due to Lemma ., we have

G(xn,xn+,xn+)≤ G(xn,xn+,xn+).

Letting n → ∞ regarding the assumption of the lemma, we derive that

lim
n→∞G(xn,xn,xn+) = . ()

If {xn} is notG-Cauchy, then, due to Proposition ., there exist ε >  and corresponding
subsequences {n(k)} and {�(k)} of N satisfying n(k) > �(k) > k for which

G(x�(k),xn(k),xn(k)) ≥ ε, ()

where n(k) is chosen as the smallest integer satisfying (), that is,

G(x�(k),xn(k)–,xn(k)–) < ε. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/49
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By (), () and the rectangle inequality (G), we easily derive that

ε ≤ G(x�(k),xn(k),xn(k)) ≤ G(x�(k),xn(k)–,xn(k)–) +G(xn(k)–,xn(k),xn(k))

< ε +G(xn(k)–,xn(k),xn(k)). ()

Letting k → ∞ in () and using (), we get

lim
k→∞

G(x�(k),xn(k),xn(k)) = ε. ()

Further,

G(x�(k),xn(k),xn(k)) ≤ G(x�(k),xn(k)+,xn(k)+) +G(xn(k)+,xn(k),xn(k)), ()

and

G(x�(k),xn(k)+,xn(k)+) ≤ G(x�(k),xn(k),xn(k)) +G(xn(k),xn(k)+,xn(k)+). ()

Passing to the limit when k → ∞ and using () and (), we obtain that

lim
k→∞

G(x�(k),xn(k)+,xn(k)+) = ε. ()

In a similar way,

G(x�(k)–,xn(k),xn(k)) ≤ G(x�(k)–,x�(k),x�(k)) +G(x�(k),xn(k),xn(k)), ()

and

G(x�(k),xn(k),xn(k)) ≤ G(x�(k),x�(k)–,x�(k)–) +G(x�(k)–,xn(k),xn(k)). ()

Passing to the limit when k → ∞ and using () and (), we obtain that

lim
k→∞

G(x�(k)–,xn(k),xn(k)) = ε. ()

Furthermore,

G(x�(k–),xn(k)+,xn(k)+)

≤ G(x�(k–),x�(k),x�(k)) +G(x�(k),xn(k),xn(k)) +G(xn(k),xn(k)+,xn(k)+) ()

and

G(x�(k),xn(k),xn(k))

≤ G(x�(k),x�(k–),x�(k–)) +G(x�(k–),xn(k)+,xn(k)+) +G(xn(k)+,xn(k),xn(k)). ()

Passing to the limit when k → ∞ and using () and (), we obtain that

lim
k→∞

G(x�(k)–,xn(k)+,xn(k)+) = ε. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/49
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By regarding the assumptions (G) and (G) together with the expression (), we derive
the following:

ε ≤ G(x�(k),xn(k),xn(k)) ≤ G(xn(k),x�(k),x�(k)+)

≤ G(xn(k),x�(k),x�(k)) +G(x�(k),x�(k),x�(k)+). ()

Letting k → ∞ in the inequality above and using () and (), we conclude that

lim
k→∞

G(xn(k),x�(k),x�(k)+) = ε. ()
�

Theorem . Let (X,G) be a G-complete G-metric space and {Aj}mj= be a family of
nonempty G-closed subsets of X with Y =

⋃m
j=Aj. Let T : Y → Y be a map satisfying

T(Aj) ⊆ Aj+, j = , , . . . ,m, where Am+ = A. ()

Suppose that there exist functions φ ∈ � and ψ ∈ � such that the map T satisfies the
inequality

ψ
(
G(Tx,Ty,Ty)

) ≤ ψ
(
M(x, y, y)

)
– φ

(
M(x, y, y)

)
()

for all x ∈ Aj and y ∈ Aj+, j = , , . . . ,m, where

M(x, y, y) = max

{
G(x, y, y),G(x,Tx,Tx),G(y,Ty,Ty),G(x, y,Tx),



[
G(x,Ty,Ty) +G(y,Tx,Tx)

]
,


[
G(x,Ty,Ty) + G(y,Tx,Tx)

]}
. ()

Then T has a unique fixed point in
⋂m

j=Aj.

Proof First we show the existence of a fixed point of the map T . For this purpose, we take
an arbitrary x ∈ A and define a sequence {xn} in the following way:

xn = Txn–, n = , , , . . . . ()

We have x ∈ A, x = Tx ∈ A, x = Tx ∈ A, . . . since T is a cyclic mapping. If xn+ = xn
for some n ∈ N, then, clearly, the fixed point of the map T is xn . From now on, assume
that xn+ �= xn for all n ∈N. Consider the inequality () by letting x = xn and y = xn+,

ψ
(
G(Txn,Txn+,Txn+)

)
= ψ

(
G(xn+,xn+,xn+)

)
≤ ψ

(
M(xn,xn+,xn+)

)
– φ

(
M(xn,xn+,xn+)

)
, ()

where

M(xn,xn+,xn+) = max

{
G(xn,xn+,xn+),G(xn,Txn,Txn),G(xn+,Txn+,Txn+),

G(xn,xn+,Txn),


[
G(xn,Txn+,Txn+) +G(xn+,Txn,Txn)

]
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/49


Bilgili and Karapınar Fixed Point Theory and Applications 2013, 2013:49 Page 8 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/49



[
G(xn,Txn+,Txn+) + G(xn+,Txn,Txn)

]}

= max

{
G(xn,xn+,xn+),G(xn,xn+,xn+),G(xn+,xn+,xn+),

G(xn,xn+,xn+),


[
G(xn,xn+,xn+) +G(xn+,xn+,xn+)

]
,



[
G(xn,xn+,xn+) + G(xn+,xn+,xn+)

]}

= max

{
G(xn,xn+,xn+),G(xn+,xn+,xn+),



G(xn,xn+,xn+)

}

≤ max
{
G(xn,xn+,xn+),G(xn+,xn+,xn+)

}
. ()

IfM(xn,xn+,xn+) =G(xn+,xn+,xn+), then the expression () implies that

ψ
(
G(xn+,xn+,xn+)

) ≤ ψ
(
G(xn+,xn+,xn+)

)
– φ

(
G(xn+,xn+,xn+)

)
. ()

So, the inequality () yields φ(G(xn+,xn+,xn+)) = . Thus, we conclude that

G(xn+,xn+,xn+) = .

This contradicts the assumption xn �= xn+ for all n ∈N. So, we derive that

M(xn,xn+,xn+) =G(xn,xn+,xn+). ()

Hence the inequality () turns into

ψ
(
G(xn+,xn+,xn+)

) ≤ ψ
(
G(xn,xn+,xn+)

)
– φ

(
G(xn,xn+,xn+)

)
≤ ψ

(
G(xn,xn+,xn+)

)
. ()

Thus, {G(xn,xn+,xn+)} is a nonnegative, nonincreasing sequence that converges to L ≥ .
We will show that L = . Suppose, on the contrary, that L > . Taking lim supn→+∞ in (),
we derive that

lim sup
n→+∞

ψ
(
G(xn+,xn+,xn+)

)

≤ lim sup
n→+∞

ψ
(
G(xn,xn+,xn+)

)
– lim inf

n→+∞ φ
(
G(xn,xn+,xn+)

)

≤ lim sup
n→+∞

ψ
(
G(xn,xn+,xn+)

)
. ()

By the continuity of ψ and the lower semi-continuity of φ, we get

ψ(L)≤ ψ(L) – φ(L). ()

Then it follows that φ(L) = . Therefore, we get L = , that is,

lim
n→∞G(xn,xn+,xn+) = . ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/49
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Lemma . with x = xn and y = xn– implies that

G(xn,xn–,xn–) ≤ G(xn–,xn,xn). ()

So, we get that

lim
n→∞G(xn,xn–,xn–) = . ()

Next, we will show that {xn} is a G-Cauchy sequence in (X,G). Suppose, on the contrary,
that {xn} is not G-Cauchy. Then, due to Proposition ., there exist ε >  and correspond-
ing subsequences {n(k)} and {�(k)} of N satisfying n(k) > �(k) > k for which

G(x�(k),xn(k),xn(k)) ≥ ε, ()

where n(k) is chosen as the smallest integer satisfying (), that is,

G(x�(k),xn(k)–,xn(k)–) < ε. ()

By (), () and the rectangle inequality (G), we easily derive that

ε ≤ G(x�(k),xn(k),xn(k)) ≤ G(x�(k),xn(k)–,xn(k)–) +G(xn(k)–,xn(k),xn(k))

< ε +G(xn(k)–,xn(k),xn(k)). ()

Letting k → ∞ in () and using (), we get

lim
k→∞

G(x�(k),xn(k),xn(k)) = ε. ()

Notice that for every k ∈N there exists s(k) satisfying  ≤ s(k)≤ m such that

n(k) – �(k) + s(k)≡ (m). ()

Thus, for large enough values of k, we have r(k) = �(k) – s(k) > , and xr(k) and xn(k) lie in
the adjacent sets Aj and Aj+ respectively for some  ≤ j ≤ m. When we substitute x = xr(k)
and y = xn(k) in the expression (), we get that

ψ
(
G(Txr(k),Txn(k),Txn(k))

) ≤ ψ
(
M(xr(k),xn(k),xn(k))

)
– φ

(
M(xr(k),xn(k),xn(k))

)
, ()

where

M(xr(k),xn(k),xn(k)) = max

{
G(xr(k),xn(k),xn(k)),G(xr(k),xr(k)+,xr(k)+),

G(xn(k),xn(k)+,xn(k)+),G(xr(k),xn(k),xr(k)+),


[
G(xr(k),xn(k)+,xn(k)+) +G(xn(k),xr(k)+,xr(k)+)

]
,



[
G(xr(k),xn(k)+,xn(k)+) + G(xn(k),xr(k)+,xr(k)+)

]}
. ()
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By using Lemma ., we obtain that

lim
k→∞



[
G(xr(k),xn(k)+,xn(k)+) +G(xn(k),xr(k)+,xr(k)+)

]
= ε, ()

and

lim
k→∞



[
G(xr(k),xn(k)+,xn(k)+) + G(xn(k),xr(k)+,xr(k)+)

]
= ε. ()

So, we obtain that

ψ(ε) ≤ ψ
(
max{ε, , , ε, ε, ε}) – φ

(
max{ε, , , ε, ε, ε}) = ψ(ε) – φ(ε). ()

So, we have φ(ε) = . We deduce that ε = . This contradicts the assumption that {xn} is
notG-Cauchy. As a result, the sequence {xn} isG-Cauchy. Since (X,G) isG-complete, it is
G-convergent to a limit, say w ∈ X. It easy to see that w ∈ ⋂m

j=Aj. Since x ∈ A, then the
subsequence {xm(n–)}∞n= ∈ A, the subsequence {xm(n–)+}∞n= ∈ A and, continuing in this
way, the subsequence {xm(n–)}∞n= ∈ Am. All the m subsequences are G-convergent in the
G-closed sets Aj and hence they all converge to the same limit w ∈ ⋂m

j=Aj. To show that
the limit w is the fixed point of T , that is, w = Tw, we employ () with x = xn, y = w. This
leads to

ψ
(
G(Txn,Tw,Tw)

) ≤ ψ
(
M(xn,w,w)

)
– φ

(
M(xn,w,w)

)
, ()

where

M(xn,w,w) = max

{
G(xn,w,w),G(xn,xn+,xn+),G(w,Tw,Tw),

G(xn,w,xn+),


[
G(xn,Tw,Tw) +G(w,xn+,xn+)

]
,



[
G(xn,Tw,Tw) + G(w,xn+,xn+)

]}
. ()

Passing to limsup as n→ ∞, we get

ψ
(
G(w,Tw,Tw)

) ≤ ψ
(
G(w,Tw,Tw)

)
– φ

(
G(w,Tw,Tw)

)
. ()

Thus, φ(G(w,Tw,Tw)) =  and hence G(w,Tw,Tw) = , that is, w = Tw.
Finally, we prove that the fixed point is unique. Assume that v ∈ X is another fixed point

of T such that v �= w. Then, since both v and w belong to
⋂m

j=Aj, we set x = v and y = w in
(), which yields

ψ
(
G(Tv,Tw,Tw)

) ≤ ψ
(
M(v,w,w)

)
– φ

((
M(v,w,w)

))
, ()

where

M(v,w,w) = max

{
G(v,w,w),G(v,Tv,Tv),G(w,Tw,Tw),



[
G(v,Tw,Tw) +G(w,Tv,Tv)

]
,


[
G(v,Tw,Tw) + G(w,Tv,Tv)

]}
. ()
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On the other hand, by setting x = w and y = v in (), we obtain that

ψ
(
G(Tw,Tv,Tv)

) ≤ ψ
(
M(w, v, v)

)
– φ

((
M(w, v, v)

))
, ()

where

M(w, v, v) = max

{
G(w, v, v),G(w,Tw,Tw),G(v,Tv,Tv),G(w, v,Tw),



[
G(w,Tv,Tv) +G(v,Tw,Tw)

]
,


[
G(w,Tv,Tv) + G(v,Tw,Tw)

]}
. ()

If G(v,w,w) = G(w, v, v), then v = w. Indeed, by definition, we get that dG(v,w) = . Hence
v = w. If G(v,w,w) >G(w, v, v), then by ()M(v,w,w) =G(v,w,w) and by (),

ψ
(
G(v,w,w)

) ≤ ψ
(
G(v,w,w)

)
– φ

((
G(v,w,w)

))
, ()

and, clearly, G(v,w,w) = . So, we conclude that v = w. Otherwise, G(w, v, v) > G(v,w,w).
Then by (),M(w, v, v) =G(w, v, v) and by (),

ψ
(
G(w, v, v)

) ≤ ψ
(
G(w, v, v)

)
– φ

((
G(w, v, v)

))
, ()

and, clearly, G(w, v, v) = . So, we conclude that v = w. Hence the fixed point of T is
unique. �

Remark . We notice that some fixed point result in the context of G-metric can be
obtained by usual (well-known) fixed point theorems (see, e.g., [, ]). In fact, this is
not a surprising result due to strong relationship between the usual metric and G-metric
space (see, e.g., [, , ]). Note that aG-metric space tells about the distance of three points
instead of two points, whichmakes it original.We also emphasize that the techniques used
in [, ] are not applicable to our main theorem.

To illustrate Theorem ., we give the following example.

Example . Let X = [–, ] and let T : X → X be given as Tx = –x
 . Let A = [–, ] and

B = [, ]. Define the function G : X ×X ×X → [,∞) as

G(x, y, z) = |x – y| + |y – z| + |z – x|. ()

Clearly, the function G is a G-metric on X. Define also φ : [,∞) → [,∞) as φ(t) = t
 and

ψ : [,∞)→ [,∞) asψ = t
 . Obviously, themap T has a unique fixed point x =  ∈ A∩B.

It can be easily shown that the map T satisfies the condition (). Indeed,

G(Tx,Ty,Ty) = |Tx – Ty| + |Ty – Ty| + |Ty – Tx| = |Tx – Ty| = |y – x|


,

which yields

ψ
(
G(Tx,Ty,Ty)

)
=

|y – x|


. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/49
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Moreover, we have

M(x, y, y) = max

{
|x – y| + |y – y| + |y – x|, |x – Tx| + |Tx – Tx| + |Tx – x|,

|y – Ty| + |Ty – Ty| + |Ty – y|, |x – y| + |Tx – y| + |Tx – x|,


[

(|x – Ty| + |Ty – Ty| + |Ty – x|) + |y – Tx| + |Tx – Tx| + |Tx – y|],



[|x – Ty| + |Ty – Ty| + |Ty – x| + 

(|y – Tx| + |Tx – Tx| + |Tx – y|)]
}

= max

{
|x – y|, |Tx – x|, |Ty – y|,



[
|Ty – x| + |Tx – y|], 


[
|Ty – x| + |Tx – y|]

}
. ()

We derive from () that

|x – y| ≤ M(x, y, y). ()

On the other hand, we have the following inequality:

ψ
(
M(x, y, y)

)
– φ

(
M(x, y, y)

)
=
M(x, y, y)


–
M(x, y, y)


=
M(x, y, y)


. ()

By elementary calculation, we conclude from () and () that

|x – y|


≤ M(x, y, y)


= ψ
(
M(x, y, y)

)
– φ

(
M(x, y, y)

)
. ()

Combining the expressions () and (), we obtain that

ψ
(
G(Tx,Ty,Ty)

)
=

|y – x|


≤ |x – y|


≤ M(x, y, y)


= ψ
(
M(x, y, y)

)
– φ

(
M(x, y, y)

)
. ()

Hence, all conditions of Theorem . are satisfied. Notice that  is the unique fixed point
of T .

For particular choices of the functions φ, ψ , we obtain the following corollaries.

Corollary . Let (X,G) be a G-complete G-metric space and {Aj}mj= be a family of
nonempty G-closed subsets of X with Y =

⋃m
j=Aj. Let T : Y → Y be a map satisfying

T(Aj) ⊆ Aj+, j = , , . . . ,m, where Am+ = A. ()

Suppose that there exists a constant k ∈ (, ) such that the map T satisfies

G(Tx,Ty,Ty) ≤ kM(x, y, y) ()
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for all x ∈ Aj and y ∈ Aj+, j = , , . . . ,m, where

M(x, y, y) = max

{
G(x, y, y),G(x,Tx,Tx),G(y,Ty,Ty),



[
G(x,Ty,Ty) +G(y,Tx,Tx)

]
,



[
G(x,Ty,Ty) + G(y,Tx,Tx)

]}
. ()

Then T has a unique fixed point in
⋂m

j=Aj.

Proof The proof is obvious by choosing the functions φ,ψ in Theorem . as φ(t) = (–k)t
and ψ(t) = t. �

Corollary . Let (X,G) be a G-complete G-metric space and {Aj}mj= be a family of
nonempty G-closed subsets of X with Y =

⋃m
j=Aj. Let T : Y → Y be a map satisfying

T(Aj) ⊆ Aj+, j = , , . . . ,m, where Am+ = A. ()

Suppose that there exist constants a, b, c, d and e with  < a + b + c + d + e <  and there
exists a function ψ ∈ � such that the map T satisfies the inequality

ψ
(
G(Tx,Ty,Ty)

) ≤ aG(x, y, y) + bG(x,Tx,Tx) + cG(y,Ty,Ty)

+ d
(


[
G(x,Ty,Ty) +G(y,Tx,Tx)

])

+ e
(


[
G(x,Ty,Ty) + G(y,Tx,Tx)

])
()

for all x ∈ Aj and y ∈ Aj+, j = , , . . . ,m. Then T has a unique fixed point in
⋂m

j=Aj.

Proof Clearly, we have

aG(x, y, y) + bG(x,Tx,Tx) + cG(y,Ty,Ty) + d
(


[
G(x,Ty,Ty) +G(y,Tx,Tx)

])

+ e
(


[
G(x,Ty,Ty) + G(y,Tx,Tx)

])

≤ (a + b + c + d + e)M(x, y, y), ()

where

M(x, y, y) = max

{
G(x, y, y),G(x,Tx,Tx),G(y,Ty,Ty),



[
G(x,Ty,Ty) +G(y,Tx,Tx)

]
,



[
G(x,Ty,Ty) + G(y,Tx,Tx)

]}
. ()

By Corollary ., the map T has a unique fixed point. �

Corollary . Let (X,G) be a G-complete G-metric space and {Aj}mj= be a family of
nonempty G-closed subsets of X with Y =

⋃m
j=Aj. Let T : Y → Y be a map satisfying

T(Aj) ⊆ Aj+, j = , , . . . ,m, where Am+ = A.
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Suppose that there exist functions φ ∈ � and ψ ∈ � such that the map T satisfies the
inequality

ψ
(
G(Tx,Ty,Tz)

) ≤ ψ
(
M(x, y, z)

)
– φ

(
M(x, y, z)

)

for all x ∈ Aj and y ∈ Aj+, j = , , . . . ,m, where

M(x, y, z) = max

{
G(x, y, z),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz),



[
G(x,Ty,Ty) +G(y,Tx,Tx) +G(z,Tx,Tx)

]
,



[
G(x,Tz,Tz) +G(z,Tx,Tx) +G(y,Tx,Tx)

]
,



[
G(y,Tx,Tx) +G(x,Ty,Ty) +G(z,Ty,Ty)

]
,



[
G(y,Tz,Tz) +G(z,Ty,Ty) +G(x,Ty,Ty)

]
,



[
G(z,Tx,Tx) +G(x,Tz,Tz) +G(y,Tz,Tz)

]
,



[
G(z,Ty,Ty) +G(y,Tz,Tz) +G(x,Tz,Tz)

]}
. ()

Then T has a unique fixed point in
⋂m

j=Aj.

Proof The expression () coincides with the expression (). Following the lines in the
proof of Theorem ., by letting x = xn and y = z = xn+, we get the desired result. �

Cyclic maps satisfying integral type contractive conditions are amongst common appli-
cations of fixed point theorems. In this context, we consider the following applications.

Corollary . Let (X,G) be a G-complete G-metric space and {Aj}mj= be a family of
nonempty G-closed subsets of X with Y =

⋃m
j=Aj. Let T : Y → Y be a map satisfying

T(Aj) ⊆ Aj+, j = , , . . . ,m, where Am+ = A.

Suppose also that there exist functions φ ∈ � and ψ ∈ � such that the map T satisfies

ψ

(∫ G(Tx,Ty,Ty)


ds

)
≤ ψ

(∫ M(x,y,y)


ds

)
– φ

(∫ M(x,y,y)


ds

)
,

where

M(x, y, y) = max

{
G(x, y, y),G(x,Tx,Tx),G(y,Ty,Ty),



[
G(x,Ty,Ty) +G(y,Tx,Tx)

]
,



[
G(x,Ty,Ty) + G(y,Tx,Tx)

]}

for all x ∈ Aj and y ∈ Aj+, j = , , . . . ,m. Then T has a unique fixed point in
⋂m

j=Aj.
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Corollary . Let (X,G) be a G-complete G-metric space and {Aj}mj= be a family of
nonempty G-closed subsets of X with Y =

⋃m
j=Aj. Let T : Y → Y be a map satisfying

T(Aj) ⊆ Aj+, j = , , . . . ,m, where Am+ = A.

Suppose also that

∫ G(Tx,Ty,Ty)


ds≤ k

∫ M(x,y,y)


ds,

where k ∈ (, ) and

M(x, y, y) = max

{
G(x, y, y),G(x,Tx,Tx),G(y,Ty,Ty),



[
G(x,Ty,Ty) +G(y,Tx,Tx)

]
,



[
G(x,Ty,Ty) + G(y,Tx,Tx)

]}

for all x ∈ Aj and y ∈ Aj+, j = , , . . . ,m. Then T has a unique fixed point in
⋂m

j=Aj.

Proof The proof is obvious by choosing the function φ,ψ in Corollary . as φ(t) = (–k)t
and ψ(t) = t. �
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