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1 Introduction
Let K and D be nonempty closed convex subsets of real Hilbert spacesH andH, respec-
tively. The split feasibility problem is formulated as finding a point x̄ satisfying

x̄ ∈ K and Ax̄ ∈D, (.)

where A is bounded linear operator from H into H. A split feasibility problem in finite
dimensionalHilbert spaceswas first studied byCensor andElfving [] formodeling inverse
problems which arise in medical image reconstruction, image restoration and radiation
therapy treatment planing (see, e.g., [–]).
It is clear that x̄ is a solution to the split feasibility problem (.) if and only if x̄ ∈ K and

Ax̄ – PDAx̄ = , where PD is the metric projection from H onto D. Set

min
x∈K ϕ(x) :=min

x∈K


‖Ax – PDAx‖. (.)

Then x̄ is a solution of (.) if and only if x̄ solves the minimization problem (.) with the
minimum equal to zero. Now, assume that (.) is consistent (i.e., (.) has a solution), and
let � denote the (closed convex) solution set of (.) (or equivalently, solution of (.)).
Then, in this case, � has a unique element x̄ if and only if it is a solution of the following
variational inequality:

x̄ ∈ K ,
〈�ϕ(x̄),x – x̄

〉
=

〈
A*(I – PD)Ax̄,x – x̄

〉 ≥ , x ∈ K , (.)
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where A* is the adjoint of A. In addition, inequality (.) can be rewritten as

x̄ ∈ K ,
〈
x̄ – γA*(I – PD)Ax̄ – x̄,x – x̄

〉 ≤ , x ∈ K , (.)

where γ >  is any positive scalar. Using the nature of projection, (.) is equivalent to the
fixed point equation

x̄ = PK
(
x̄ – γA*(I – PD)Ax̄

)
. (.)

Recall that a point x̄ ∈ K is said to be a fixed point of T if T(x̄) = x̄. We denote the set of
fixed points of T by F(T), i.e., F(T) := {x̄ ∈ K : Tx̄ = x̄}. Therefore, finding a solution to
the split feasibility problem (.) is equivalent to finding the minimum-norm fixed point
of the mapping x �→ PK (x – γA*(I – PD)Ax).
Motivated by the above split feasibility problem, we study the general case of finding the

minimum-norm fixed point of an asymptotically nonexpansive self-mapping T on K ; that
is, we find a minimum-norm fixed point of T which satisfies

x̄ ∈ F(T) such that ‖x̄‖ =min
{‖x‖ : x ∈ F(T)

}
. (.)

Let K be a nonempty subset of a real Hilbert space H ; a mapping T : K → K is said
to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ K and it is called asymptotically
nonexpansive if there exists a sequence {kn} ⊂ [,∞) with kn → , as n→ ∞, such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈ K , and n≥ . (.)

The class of asymptotically nonexpansive mappings was introduced as a generalization
of the class of nonexpansive mappings by Goebel and Kirk [] who proved that if K is a
nonempty closed convex bounded subset of a real uniformly convex Banach spaces which
includes Hilbert spaces as a special case and T is an asymptotically nonexpansive self-
mapping of K , then T has a fixed point.
Let T : K → K be a nonexpansive mapping. For a given u ∈ K and a given t ∈ (, ),

define a contraction Tt : K → K by

Ttx = ( – t)u + tTx, x ∈ K .

By the Banach contraction principle, it yields a fixed point zt ∈ K of Tt , i.e., zt is the unique
solution of the equation

zt = ( – t)u + tTzt . (.)

In [], Browder proved that, as t → , zt converges strongly to the nearest point projection
of u onto F(T).
In [], Halpern introduced an explicit iteration scheme {xn} (which was referred to as

Halpern iteration) defined by

xn+ = αnu + ( – αn)Txn. (.)
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He proved that, as n → ∞, {xn} converges strongly to the fixed point of a nonexpansive
self-mappingT that is closest to u provided that {αn} satisfies (i) limn→∞ αn = , (ii)

∑
αn =

∞ and (iii) limn→∞ αn
αn+

= . Wittmann [] also showed that the sequence {xn} defined by

x = u ∈ K , xn+ = an+u + ( – an+)Txn, n≥ , (.)

converges strongly to the element of F(T) which is nearest to u under certain conditions
on {an} ⊂ (, ).
Moreover, using the idea of Browder [], Shioji and Takahashi [] studied the following

scheme for an approximating fixed point of an asymptotically nonexpansive mapping. Let
T be an asymptotically nonexpansive mapping from K into itself with F(T) nonempty.
Then they proved that the sequence generated by

x = u ∈ K , xn = anu + ( – an)


n + 

n∑
j=

Tjxn, n≥ , (.)

where {an} ⊂ (, ) satisfies certain conditions, converges strongly to the element of F(T)
which is nearest to u. Shioji and Takahashi [] also studied an explicit scheme for asymp-
totically nonexpansive mappings. They showed that the sequence {xn} defined by

x = u ∈ K , xn+ = bnu + ( – bn)


n + 

n∑
j=

Tjxn, n≥ , (.)

where {bn} ⊂ (, ) satisfies certain conditions, converges strongly to the element of F(T)
which is nearest to u.
Several authors have extended the above results either to a more general Banach spaces

or to a more general class of mappings (see, e.g., [–]).
It is worthmentioning that themethods studied above are used to approximate the fixed

point of T which is closest to the point u ∈ K . These methods can be used to find the
minimum-norm fixed point x* of T if  ∈ K . If, however,  /∈ K , any of the methods above
fails to provide the minimum-norm fixed point of T .
In connection with the iterative approximation of the minimum-norm fixed point of a

nonexpansive self-mapping T , Yang et al. [] introduced an explicit scheme given by

xn+ = βTxn + ( – β)PK
[
( – αn)xn

]
, n≥ .

They proved that under appropriate conditions on {αn} and β , the sequence {xn} converges
strongly to the minimum-norm fixed point of T in real Hilbert spaces.
More recently, Yao and Xu [] have also shown that the explicit scheme xn+ = PK (( –

αn)Txn), n ≥ , converges strongly to the minimum-norm fixed point of a nonexpansive
self-mapping T provided that {αn} satisfies certain conditions.
A natural question arises whether we can extend the results of Yang et al. [] and Yao

and Xu [] to a class of mappings more general than nonexpansive mappings or not.
LetK be a closed convex subset of a realHilbert spaceH and letTi : K → K , i = , , . . . ,N

be a finite family of asymptotically nonexpansive mappings.
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It is our purpose in this paper to introduce an explicit iteration process which converges
strongly to the commonminimum-norm fixed point of {Ti : i = , , . . . ,N}. Our theorems
improve several results in this direction.

2 Preliminaries
In what follows, we shall make use of the following lemmas.

Lemma . Let H be a real Hilbert space. Then, for any given x, y ∈ H , the following in-
equality holds:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.

Lemma . [] Let E be a real Hilbert space and BR() be a closed ball of H . Then, for
any given subset {x,x, . . . ,xN } ⊂ Br() and for any positive numbers α,α, . . . ,αN with∑N

i= αi = , we have that

‖αx + αx + αx + · · · + αNxN‖ =
N∑
i=

αi‖xi‖ –
∑

≤i,j≤N

αiαj‖xi – xj‖.

Lemma . [] Let K be a closed and convex subset of a real Hilbert space H . Let x ∈H .
Then x = PKx if and only if

〈z – x,x – x〉 ≤ , ∀z ∈ K .

Lemma . [] Let H be a real Hilbert space, K be a closed convex subset of H and T :
K → K be an asymptotically nonexpansive mapping, then (I –T) is demiclosed at zero, i.e.,
if {xn} is a sequence in K such that xn ⇀ x and Txn – xn → , as n→ ∞, then x = T(x).

Lemma . [] Let {an} be a sequence of nonnegative real numbers satisfying the follow-
ing relation:

an+ ≤ ( – αn)an + αnδn, n≥ n,

where {αn} ⊂ (, ), and {δn} ⊂ R satisfying the following conditions: limn→∞ αn = ,∑∞
n= αn = ∞, and lim supn→∞ δn ≤ , as n→ ∞. Then limn→∞ an = .

Lemma . [] Let {an} be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} such that ani < ani+ for all i ∈ N. Then there exists a nondecreasing
sequence {mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all
(sufficiently large) numbers k ∈ N:

amk ≤ amk+ and ak ≤ amk+.

In fact,mk =max{j ≤ k : aj < aj+}.

Proposition . Let H be a real Hilbert space, let K be a closed convex subset of H , and
let T be an asymptotically nonexpansive mapping from K into itself. Then F(T) is closed
and convex.
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Proof Clearly, the continuity of T implies that F(T) is closed. Now, we show that F(T) is
convex. For x, y ∈ F(T) and t ∈ (, ), put z = tx + ( – t)y. Now, we show that z = T(z). In
fact, we have

∥∥z – Tnz
∥∥ = ‖z‖ – 

〈
z,Tnz

〉
+

∥∥Tnz
∥∥

= ‖z‖ – 
〈
tx + ( – t)y,Tnz

〉
+

∥∥Tnz
∥∥

= ‖z‖ – t
〈
x,Tnz

〉
– ( – t)

〈
y,Tnz

〉
+

∥∥Tnz
∥∥

= ‖z‖ + t
∥∥x – Tnz

∥∥ + ( – t)
∥∥y – Tnz

∥∥ – t‖x‖ – ( – t)‖y‖

≤ ‖z‖ + tkn‖x – z‖ + ( – t)kn‖y – z‖ – t‖x‖ – ( – t)‖y‖

≤ ‖z‖ + tkn〈x – z,x – z〉 + ( – t)kn〈y – z, y – z〉
– t‖x‖ – ( – t)‖y‖

≤ (
kn – 

)[
t‖x‖ + ( – t)‖y‖ + ‖z‖], (.)

and hence, since kn →  as n → ∞, we get that limn→∞ ‖z – Tnz‖ = , which implies
that limn→∞ Tnz = z. Now, by the continuity of T , we obtain that z = limn→∞ Tnz =
limn→∞ T(Tn–z) = T(limn→∞ Tn–z) = T(z). Hence, z ∈ F(T) and that F(T) is convex. �

3 Main result
We now state and proof our main theorem.

Theorem . Let K be a nonempty, closed and convex subset of a real Hilbert space H .
Let Ti : K → K be asymptotically nonexpansive mappings with sequences {kn,i} for each
i = , , . . . ,N .Assume that F :=

⋂N
i= F(Ti) is nonempty. Let {xn} be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩

x ∈ K , chosen arbitrarily,

yn = PK [( – αn)xn],

xn+ = βn,xn +
∑N

i= βn,iTn
i yn, n ≥ ,

(.)

where αn ∈ (, ) such that limn→∞ αn = , limn→∞
(kn,i–)

αn
= , for each i ∈ {, , . . . ,N} and∑∞

n= αn = ∞, {βn,i} ⊂ [a,b] ⊂ (, ) for i = , , . . . ,N , satisfying βn, + βn, + · · · + βn,N = 
for each n≥ . Then {xn} converges strongly to the common minimum-norm point of F .

Proof Let x* ∈ PF. Let kn := max{kn,i : i = , , . . . ,N}. Then from (.) and asymptotical
nonexpansiveness of Ti, for each i ∈ {, , . . . ,N}, we have that

∥∥yn – x*
∥∥ =

∥∥PC
[
( – αn)xn

]
– PKx*

∥∥

≤ ∥∥( – αn)xn – x*
∥∥

=
∥∥αn

(
 – x*

)
+ ( – αn)

(
xn – x*

)∥∥

≤ αn
∥∥x*∥∥ + ( – αn)

∥∥xn – x*
∥∥, (.)
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and

∥∥xn+ – x*
∥∥ =

∥∥∥∥∥βn,xn +
N∑
i=

βn,iTn
i yn – x*

∥∥∥∥∥

≤ βn,
∥∥xn – x*

∥∥ +
N∑
i=

βn,i
∥∥Tn

i yn – x*
∥∥

≤ βn,
∥∥xn – x*

∥∥ + ( – βn,)kn
∥∥yn – x*

∥∥
≤ βn,

∥∥xn – x*
∥∥ + ( – βn,)kn

[
αn

∥∥x*∥∥ + ( – αn)
∥∥xn – x*

∥∥]

≤ [
βn, + ( – βn,)kn( – αn)

]∥∥xn – x*
∥∥ +

[
( – βn,)knαn

]∥∥x*∥∥
≤ δn

∥∥x*∥∥ +
[
 – ( – ε)δn

]∥∥xn – x*
∥∥, (.)

where δn = (–βn,)knαn, since there existsN >  such that (kn–)
αn

≤ εkn for all n≥ N and
for some ε >  satisfying ( – ε)δn ≤ . Thus, by induction,

∥∥xn+ – x*
∥∥ ≤ max

{∥∥x – x*
∥∥, ( – ε)–

∥∥x*∥∥}
, ∀n≥ N,

which implies that {xn} and hence {yn} is bounded. Moreover, from (.) and Lemma .,
we obtain that

∥∥yn – x*
∥∥ =

∥∥PK
[
( – αn)xn

]
– PKx*

∥∥

≤ ∥∥αn
(
 – x*

)
+ ( – αn)

(
xn – x*

)∥∥

≤ ( – αn)
∥∥xn – x*

∥∥ – αn
〈
x*, yn – x*

〉
. (.)

Furthermore, from (.), Lemma . and asymptotical nonexpansiveness of Ti, for each
i = , , . . . ,N , we have that

∥∥xn+ – x*
∥∥ =

∥∥∥∥∥βn,xn +
N∑
i=

βn,iTn
i yn – x*

∥∥∥∥∥


≤ βn,
∥∥xn – x*

∥∥ +
N∑
i=

βn,i
∥∥Tn

i yn – x*
∥∥

–
N∑
i=

βn,βn,i
∥∥xn – Tn

i yn
∥∥

≤ βn,
∥∥xn – x*

∥∥ + ( – βn,)kn
∥∥yn – x*

∥∥

–
N∑
i=

βn,βn,i
∥∥xn – Tn

i yn
∥∥,

which implies, using (.), that

∥∥xn+ – x*
∥∥ ≤ βn,

∥∥xn – x*
∥∥ + ( – βn,)kn

[
( – αn)

∥∥xn – x*
∥∥

– αn
〈
x*, yn – x*

〉]
–

N∑
i=

βn,βn,i
∥∥xn – Tn

i yn
∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/1
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≤ ( – θn)
∥∥xn – x*

∥∥ – θn
〈
x*, yn – x*

〉
+

(
kn – 

)
M

–
N∑
i=

βn,βn,i
∥∥xn – Tn

i yn
∥∥ (.)

≤ ( – θn)
∥∥xn – x*

∥∥ – θn
〈
x*, yn – x*

〉
+

(
kn – 

)
M (.)

for someM > , where θn := αn( – βn,) for all n ∈N .
Now, we consider the following two cases.
Case . Suppose that there exists n ∈ N such that {‖xn – x*‖} is non-increasing for

all n ≥ n. In this situation, {‖xn – x*‖} is convergent. Then from (.), we have that∑N
i= βn,βn,i‖xn – Tn

i yn‖ → , which implies that

xn – Tn
i yn → , as n→ ∞, (.)

for each i ∈ {, , . . . ,N}. Moreover, from (.) and (.) and the fact that αn → , we get
that

‖xn+ – xn‖ = βn,
∥∥Tn

 yn – xn
∥∥ + · · · + βn,N

∥∥Tn
Nyn – xn

∥∥ → , (.)

and

‖yn – xn‖ =
∥∥PC

[
( – αn)xn

]
– Pkxn

∥∥
≤ ‖ – αnxn‖ → , (.)

as n→ ∞ and hence

‖yn+ – yn‖ ≤ ‖yn+ – xn+‖ + ‖xn+ – xn‖ + ‖xn – yn‖ → , (.)

as n→ ∞. Furthermore, from (.) and (.), we get that

∥∥yn – Tn
i yn

∥∥ ≤ ‖yn – xn‖ +
∥∥xn – Tn

i yn
∥∥ → , as n→ ∞. (.)

Therefore, since

‖yn – Tiyn‖ ≤ ‖yn – yn+‖ +
∥∥yn+ – Tn+

i yn+
∥∥ +

∥∥Tn+
i yn+ – Tn+

i yn
∥∥

+
∥∥Tn+

i yn – Tiyn
∥∥,

≤ ‖yn – yn+‖ +
∥∥yn+ – Tn+

i yn+
∥∥ + kn+‖yn+ – yn‖

+
∥∥Ti

(
Tn
i yn

)
– Tiyn

∥∥, (.)

we have from (.), (.), (.) and uniform continuity of Ti that

‖yn – Tiyn‖ → , as n→ ∞, for each i = , , . . . ,N . (.)

Let {ynk } be a subsequence of {yn} such that

lim sup
n→∞

〈
x*, yn – x*

〉
= lim

k→∞
〈
x*, ynk – x*

〉
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/1
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and ynk ⇀ z. Then from (.), we have that xnk ⇀ z. Therefore, by Lemma ., we obtain
that

lim sup
n→∞

〈
x*, yn – x*

〉
= lim

k→∞
〈
x*, ynk – x*

〉
=

〈
x*, z – x*

〉 ≥ . (.)

Now, we show that xn+ → x*, as n → ∞. But from (.) and Lemma ., we get that
z ∈ F(Ti) for each i ∈ {, , . . . ,N} and hence z ∈ ⋂N

i= F(Ti). Then from (.), we get that

∥∥xn+ – x*
∥∥ ≤ ( – θn)

∥∥xn – x*
∥∥ – θn

〈
x*, yn – x*

〉

+
(
kn – 

)
M (.)

for some M > . But note that θn satisfies limn θn =  and
∑∞

n= θn = ∞. Thus, it follows
from (.) and Lemma . that ‖xn – x*‖ → , as n → ∞. Consequently, xn → x*.
Case . Suppose that there exists a subsequence {ni} of {n} such that

∥∥xni – x*
∥∥ <

∥∥xni+ – x*
∥∥

for all i ∈ N. Then by Lemma ., there exists a nondecreasing sequence {mk} ⊂ N such
that mk → ∞, ‖xmk – x*‖ ≤ ‖xmk+ – x*‖ and ‖xk – x*‖ ≤ ‖xmk+ – x*‖ for all k ∈ N. Then
from (.) and the fact that θn → , we have

N∑
i=

βmk ,βmk ,i
∥∥xmk – Tmk

i ymk

∥∥

≤ ∥∥xmk – x*
∥∥ –

∥∥xmk+ – x*
∥∥ + θmk

∥∥xmk – x*
∥∥

– θmk

〈
x*, ymk – x*

〉
+ (kmk – )M → , as k → ∞.

This implies that xmk – Tmk
i ymk → , as k → ∞. Thus, following the method of Case ,

we obtain that xmk – ymk →  and ymk – Tiymk →  as k → ∞ for each i = , , . . . ,N and
hence there exists z′ ∈ F such that

lim sup
n→∞

〈
x*, yn – x*

〉
= lim

k→∞
〈
x*, ynk – x*

〉
=

〈
x*, z′ – x*

〉 ≥ . (.)

Then from (.), we get that

∥∥xmk+ – x*
∥∥ ≤ ( – θmk )

∥∥xmk – x*
∥∥ – θmk

〈
x*, ymk – x*

〉

+
(
kmk

– 
)
M. (.)

Since ‖xmk – x*‖ ≤ ‖xmk+ – x*‖, (.) implies that

θmk

∥∥xmk – x*
∥∥ ≤ ∥∥xmk – x*

∥∥ –
∥∥xmk+ – x*

∥∥ – θmk

〈
x*, ymk – x*

〉

+
(
kmk

– 
)
M

≤ –θmk

〈
x*, ymk – x*

〉
+

(
kmk

– 
)
M.

http://www.fixedpointtheoryandapplications.com/content/2013/1/1
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In particular, since θmk > , we have that

∥∥xmk – x*
∥∥ ≤ –

〈
x*, ymk – x*

〉
+
(kmk

– )
θmk

M.

Thus, from (.) and the fact that
(kmk–)

θmk
→ , we obtain that ‖xmk – x*‖ →  as k → ∞.

This together with (.) gives ‖xmk+ – x*‖ →  as k → ∞. But ‖xk – x*‖ ≤ ‖xmk+ – x*‖
for all k ∈ N, thus we obtain that xk → x*. Therefore, from the above two cases, we can
conclude that {xn} converges strongly to a point x* of F which is the common minimum-
norm fixed point of the family {Ti, i = , , . . . ,N} and the proof is complete. �

If in Theorem . we assume that N = , then we get the following corollary.

Corollary . Let K be a nonempty, closed and convex subset of a real Hilbert space H .
Let T : K → K be an asymptotically nonexpansive mapping with a sequence {kn}. Assume
that F(T) is nonempty. Let {xn} be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩

x ∈ C, chosen arbitrarily,

yn = PK [( – αn)xn],

xn+ = βnxn + ( – βn)Tnyn, n≥ ,

(.)

where αn ∈ (, ) such that limn→∞ αn = , limn→∞
(kn–)

αn
=  and

∑∞
n= αn = ∞, {βn} ⊂

[a,b]⊂ (, ) for each n≥ .Then {xn} converges strongly to theminimum-norm fixed point
of T .

If in Theorem . we assume that each Ti is nonexpansive for i = , , . . . ,N , then the
method of proof of Theorem . provides the following corollary.

Corollary . Let K be a nonempty, closed and convex subset of a real Hilbert space H .
Let Ti : K → K be nonexpansive mappings with F :=

⋂N
i= F(Ti) nonempty. Let {xn} be a

sequence generated by

⎧⎪⎪⎨
⎪⎪⎩

x ∈ K , chosen arbitrarily,

yn = PK [( – αn)xn],

xn+ = βn,xn +
∑N

i= βn,iTiyn, n ≥ ,

(.)

where αn ∈ (, ) such that limn→∞ αn =  and
∑∞

n= αn = ∞, {βn,i} ⊂ [a,b] ⊂ (, ), for i =
, , . . . ,N , satisfying βn, + βn, + · · · + βn,N =  for each n ≥ . Then {xn} converges strongly
to the common minimum-norm point of F .

If in Corollary . we assume that N = , then we have the following corollary.

Corollary . Let K be a nonempty, closed and convex subset of a real Hilbert space H .
Let T : K → K be a nonexpansive mapping with F(T) nonempty. Let {xn} be a sequence

http://www.fixedpointtheoryandapplications.com/content/2013/1/1
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generated by

⎧⎪⎪⎨
⎪⎪⎩

x ∈ K , chosen arbitrarily,

yn = PK [( – αn)xn],

xn+ = βnxn + ( – βn)Tyn, n≥ ,

(.)

where αn ∈ (, ) such that limn→∞ αn =  and
∑∞

n= αn = ∞, {βn} ⊂ [a,b] ⊂ (, ) for each
n≥ . Then {xn} converges strongly to the minimum-norm point of F(T).

4 Applications
In this section, we study the problem of finding a minimizer of a continuously Fréchet-
differentiable convex functional which has the minimum norm in Hilbert spaces.
Let K be a closed convex subset of a real Hilbert space H . Consider the minimization

problem given by

min
x∈K ϕ(x), (.)

and ϕ : K → R be a continuously Fréchet-differentiable convex functional. Let �, the so-
lution set of (.), be nonempty; that is,

� :=
{
z ∈ K : ϕ(z) =min

x∈K ϕ(x)
}

�= ∅. (.)

It is known that a point z ∈ K is a solution of (.) if and only if the following optimality
condition holds:

z ∈ K ,
〈�ϕ(z),x – z

〉 ≥ , x ∈ K , (.)

where �ϕ(x) is the gradient of ϕ at x ∈ K . It is also known that the optimality condition
(.) is equivalent to the following fixed point problem:

z = Tγ (z), where Tγ := PK (I – γ � ϕ), (.)

for all γ > .
Now, we have the following corollary deduced from Corollary ..

Corollary . Let K be a closed convex subset of a real Hilbert space H . Let ϕ be a con-
tinuously Fréchet-differentiable convex functional on K such that Tγ := PK (I – γ � ϕ) is
asymptotically nonexpansive with a sequence {kn} for some γ > .Assume that the solution
of the minimization problem (.) is nonempty. Let {xn} be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩

x ∈ K , chosen arbitrarily,

yn = PK [( – αn)xn],

xn+ = βnxn + ( – βn)[PK (I – γ � ϕ)]nyn, n≥ ,

(.)

where αn ∈ (, ) such that limn→∞ αn = , limn→∞
(kn–)

αn
=  and

∑∞
n= αn = ∞, {βn} ⊂

[a,b] ⊂ (, ) for each n ≥ . Then {xn} converges strongly to the minimum-norm solution
of the minimization problem (.).

http://www.fixedpointtheoryandapplications.com/content/2013/1/1
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Remark . Our results extend and unify most of the results that have been proved for
this important class of nonlinear mappings. In particular, Theorem . improves Theo-
rem . of Yang et al. [] and of Yao and Xu [] to a more general class of a finite family
of asymptotically nonexpansive mappings.
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